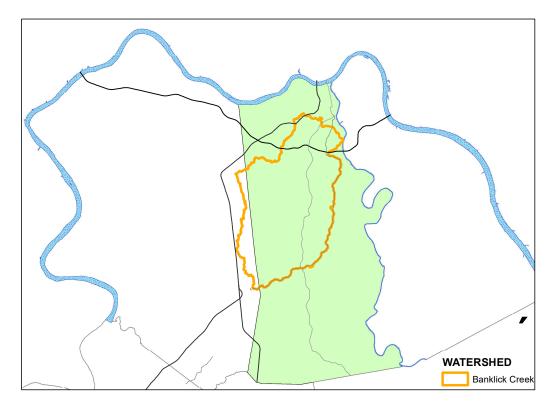
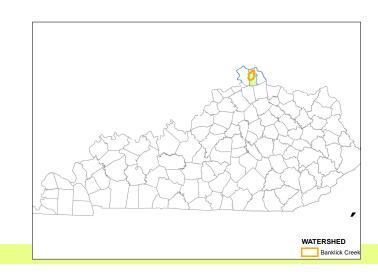
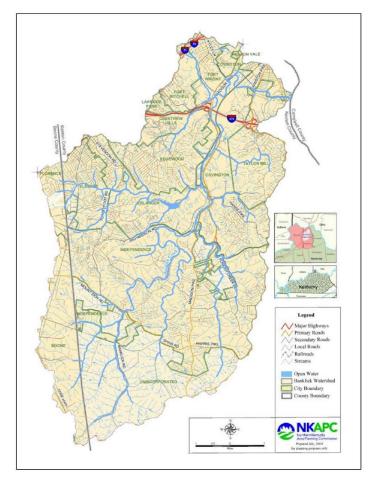
Basin Retrofits & Partnerships Banklick Watershed

Kentucky Watershed Academy: Likely Partners

Nicole Clements Watershed Coordinator Banklick Watershed Council

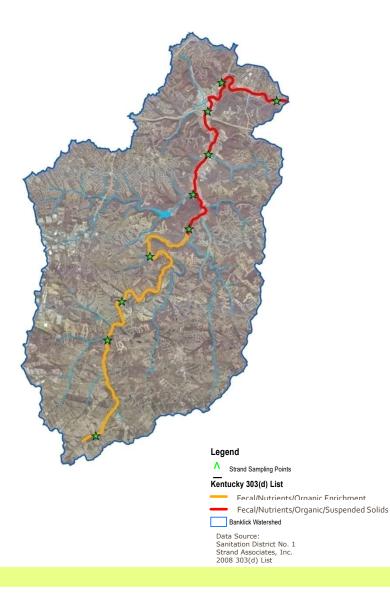





Banklick Watershed Council

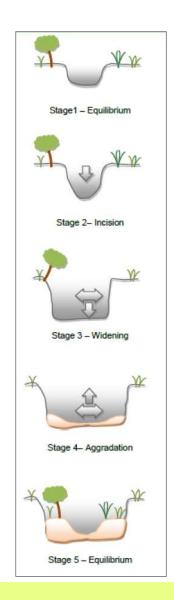
- Formed in 2002
- Nonprofit, Volunteer Board
- Plan Developed in 2005
 - Revised 2010
 - 319(h) Funding

Banklick Watershed



- 58 square miles
- 19 miles long
- Agriculture in Headwaters, Highly Developed in Lower Reaches

Banklick Challenges


- Pollution
 - Fecal coliform, Nutrients, Organic, and Sediment
- Flooding
- Erosion & Stormwater Management

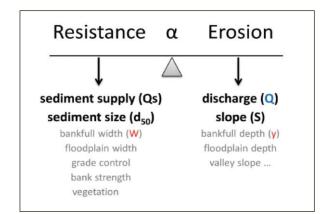
Channel Evolution From Land Use Changes

- Landuse Changes
 - More Runoff
 - Faster Runoff
 - = Erosion of Streambank/bed
 - = Instability of Channel
- Channel Evolution Model
 - Natural Process, as Streams 'Resize' and Erode to Adapt to Increased Flows
 - Consistent with NKY Steams
- Eroding, Evolving, Unstable Streams Problematic in Urban Areas

Channel Evolution Model (Adapted from Schumm et al., and Hawley et al., 2020)

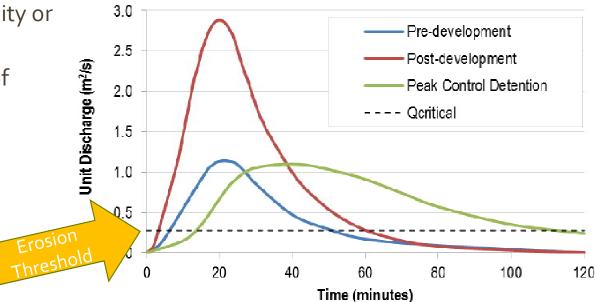
Runoff and Erosion Threatens Infrastructure

- Channel Incision & Widening Threatening Community Infrastructure
- Impacts to:
 - Roads, Bridges
 - Utilities (Gas Lines, Water, Sewers)
- Expensive, Recurring Repairs
 - KYTC \$3.1 Million in Damages in 2011
 - Dry Creek Watershed –
 \$2.6 Million in Sewer Repairs over 7yrs.


Sanitation District No. 1 (SD1)

- Regional Wastewater/Stormwater (MS4) Utility
 - Boone, Kenton, Campbell Counties
- Recognized that Stream Erosion & Channel Instability
 - Risk To Infrastructure
 - Repairs Impacting Budget
- SD1 Investigation & Research
 - Started in 2009
 - Lead by Matt Wooten (SD1 Aquatic Biologist)
 - Collected Hydrogeomorphic Data at 61 locations; 2x Annually
 - Channel Cross-sections, Longitudinal Profiles, Bed Material Composition
 - Tracked/Documented Erosion and Movement of Streams
- Conventional Urban Development was Altering Flow Regime in Creeks such that Hydromodification (Flashier Streams, Larger Flow) was the Cause of Excessive Stream Erosion and Overall Channel Instability

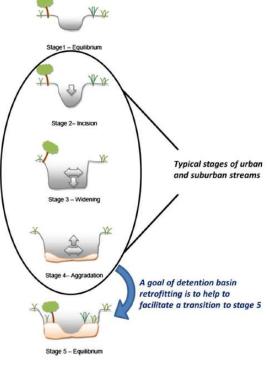
SD1 Research Findings


- Research Identified <u>'Critical Flow'</u> Rate for NKY
 - Threshold at Which Streambed Mobilization Begins to Occur
 - 0.4 cfs per acre of Drainage Area
- SD1's Provided Basis for a Revised Approach to Stormwater Management
 - 2015 New Basins Must Consider Erosion (Critical Flow)

Critical Flow Rate Considerations

Traditional Stormwater Controls

- Previously: Controls Peak Flow Rates for Large Storms to Minimize Downstream Flooding
- Does Not Address Channel Instability or Hydromodification Downstream
- Peak Control Elongates Duration of Erosive Flows



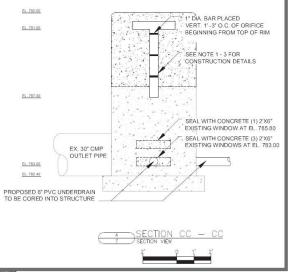
Detention Basin Retrofitting

Why Consider Basin Retrofitting?

- Retrofitting Goal:
 - More Natural Flow Regime
 - Facilitate Transition to Stage 5 (Equilibrium)

Adapted Channel Evolution Model (Hawley et al., 2017)

2014 Pilot Project

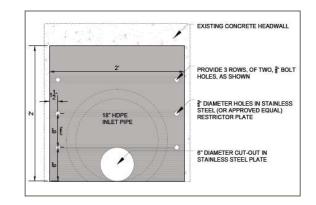

- How do We Retrofit Basins? What's Effective?
 - Completed Two Basin Retrofits Using Very Different Approaches
- #1) "Bioretention Retrofit"
 - Modify Outlet Control Structure
 - Excavation and Grading
 - Underdrains
 - Engineered Soils, Aggregate, Filter Fabric,
 - Native Plants
- #2) "Simplified Retrofit"
 - Modify Outlet Control Structure

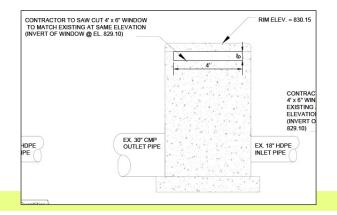
Bioretention Retrofit Before

• Residential Area (16 acre Drainage Area)

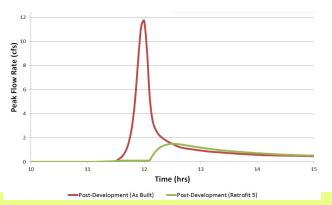
Bioretention Retrofit During Construction

Bioretention Retrofit Completed – **\$72,000**


Simplified Retrofit Before


• Residential Subdivision – ~10 Acre Drainage Area

Simplified Retrofit After - **\$4,000**

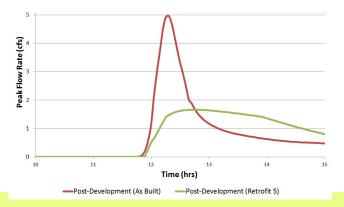

Pilot Modeling Results

"Bioretention Retrofit"

- \$72,000
- Flows (3-Month Event)
 Post-Development (As Built) = 11.71 cfs (+245%)
 Post-Development (Retrofit) = 2.47 cfs (-27%)

• Sediment Transport Model

Pre-developed Existing (w/detention) Basin Retrofit 68 tons 398 tons (+407% or 330 tons) 225 tons (+210%; 187 tons)



"Simplified Retrofit"

- \$4,000
- Flows (3-Month Event)
 Post-Development (As Built) = 4.97 cfs (+4%)
 Post-Development (Retrofit) = 1.66 cfs (-65%)

• Sediment Transport Model

Pre-developed	516 tons
Existing (w/detention)	569 tons (+10% or 53 tons)
Basin Retrofit	340 tons (-34%; -176 tons)

Detention Basin Retrofit Pilot Approach Comparison

	Bioretention Retrofit	Basic Retrofit
Reduces Peak Flows for Small Storms		
Provides Hydromodification Benefits (Reduced Bank Erosion)		
Provides Volume Reductions		
Provides Water Quality Treatment		
Changed Aesthetics/Amenity		
Cost Savings		

Moving Forward with Retrofitting

- Detention Basin Retrofits
 - Key "Tool in the Toolbox" for <u>Hydrologic Restoration</u> in Urban Areas
 - Sustainable Approach to Address Erosion & Sediment
 - Cost Effective Opportunity
 - ~165 Detention Basins in Banklick Watershed
- 9 completed
 - Design & Construction
 - \$3,500 \$10,000 Depending on Complexity
 - "Batch" Projects (2 or 3 at a Time)
- Next Steps:
 - SD1 Regional Opportunities Analysis
 - Regional Needs
 - Strategic/Prioritized Implementation

"Low-Flow" Outlet at Basin Bottom (Before)

Lessons Learned

- Basin & Infrastructure Ownership
 - SD1 Easement vs. Private Ownership
 - Landowner Impacts More Frequent Water in the Basin and Slower Release
 - Maintenance of Structure & Basin
- Not all Basins Qualify...
 - Some don't Have Excess Capacity
 - Some Weren't Constructed as Designed, or Meet Current Flood Control Standards
- Modeling Is Important
 - Basin Selection
 - Benefit:Cost
 - Define Goals: Channel Stability vs. Volume vs. Water Quality

"Overflow" Structure (Before)

Keys to Success: Beneficial Partnerships

- Find Mutual Benefits
 - Sewer/MS4 = Infrastructure Risk Reduction
 - City, County, KYTC = Roadway/Bridge Protection
 - Property Owners = Property Loss & Erosion
- Approach to Partnership Building
 - Collaboration vs. Confrontation
 - Present Sound, Sustainable Solutions
 - Appeal to Fiscal Responsibility
 - Provide Value (Expertise, Time)
 - Experienced Team (Design & Construction)

Questions?

- Special Thanks:
 - <u>Matt Wooten</u>, SD1
 - Bob Hawley, Sustainable Streams
 - Katie MacMannis, Sustainable Stream
 - Chris Rust, Strand Associates
- For more Information: Nicole Clements, Watershed Coordinator Banklick Watershed Council www.Banklick.org Admin@Banklick.org

- Hawley, R.J., MacMannis, K.R., and M.S. Wooten. 2013. Bed Coarsening, Riffle Shortening, and Channel Enlargement in Urbanizing Watersheds, Northern Kentucky, USA. Geomorphology 201:111-126.
 Hawley, R.J.; Wooten, M.S., MacMannis, K.R., and E.V. Fet. 2016. When do Macroinvertebrate Communities of Reference Streams Resemble Urban Streams? The Biological Relevance of Qcritical. Freshwater Science.
- 35(3):778-794.
 Hawley, R.J., Goodrich, J.A., Korth, N.L., Rust, C.J., Fet, E.V., Frye, C., MacMannis, K.R., Wooten, M.S., Jacobs, M., Sinha, R. 2017. Detention Outlet Retrofit Improves the Functionality of Existing Detention Basins by Reducing Erosive Flows in Receiving Channels. Journal of the American Water Resources Association (JAWRA) 1-16.
- Hawley, R.J.; MacMannis, K.R.; Wooten, M.S.; Fet, E.V., Korth, N.L. 2020. Suburban stream erosion rates in northern Kentucky Exceed reference channels by an order of magnitude and follow predictable trajectories of channel evolution. Geomorphology 352(106998.