

Prepared for:

The Kentucky Division of Water 300 Sower Blvd Frankfort, KY 40601 502-564-3410

Prepared By:

Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, KY 40503 859-977-2000

September 18, 2019

TABLE OF CONTENTS

CHAPIE	R I.	INTRODUCTION	ı	
A.	Wa	tershed Background	3	
B.	Partners and Stakeholders			
CHAPTE	R II.	WATERSHED INFORMATION	4	
A.	Wa	tershed Location	4	
B.	Surf	face Hydrology and Geomorphology	4	
C.	Clin	nate and Precipitation	7	
D.	Gro	oundwater-Surface Water Interaction	7	
E.	Floo	oding	9	
F.	Geo	ology	9	
G.	Eco	region and Topography	10	
H.	Soils	s	П	
l.	Ripa	arian Ecosystem	12	
J.	Faur	na and Flora	14	
K.	Poir	nt Sources and Municipal Utilities	18	
L.	Nor	n-Point Sources and Land Management	31	
M.	Stat	us of Waterways	40	
N.	Sum	nmary and Conclusions	43	
CHAPTE	R III.	MONITORING	46	
A.	Eval	uation and Criteria Benchmarks	46	
B.	Hist	coric Biologic and Water Quality Monitoring	50	
C.	Mor	nitoring Needs and Plan	64	
D.	Mor	nitoring Implementation Overview	67	
CHAPTE	R IV.	ANALYSIS	68	
A.	Aqu	natic Community and Habitat	68	
B.	Pollutant Concentrations and Health Grades			
C.	Pollutant Loads and Target Reductions			

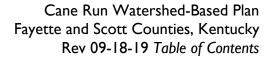

CHAPTER	V. POLLUTANT SOURCES AND BMP IMPLEMENTATION 94							
A.	Wastewater-Associated E. coli and Nutrient Reductions94							
B.	E. coli Reductions							
C.	. Nutrient Reductions							
D.	D. Watershed-Based Plan Goals and Objectives							
E.	BMP Implementation Plan							
F.	Funding Sources							
CHAPTER	VI. OVERSIGHT AND MONITORING 118							
A.	Organization 118							
B.	Education and Outreach 118							
C.	Schedule and Milestones 119							
D.	Monitoring Success							
E.	Evaluating and Updating the Plan							
CHAPTER	VII. REFERENCES							
	TABLES							
Table I	Monthly Climatological Normals 1981-2010							
Table 2	Relative Abundance of Soils by Hydrologic Soil Group I I							
Table 3	Riparian Zone Impact by Sub-watershed Area							
Table 4	Threatened, Endangered, and Special Concern Species							
Table 5	KPDES Dischargers							
Table 6	Pollutants of Concern in Industrial and High-Risk Commercial Facilities							
Table 7	Summary of LFUCG Stormwater Controls							
Table 8	LFUCG Cane Run Remedial Measures Plan Schedule							
Table 9	General Zoning Districts							
Table 10	Surface Permeability by Land Use							
Table II	able 11 Agricultural Statistics on Fayette and Scott County Farms, 2012							
Table 12	Census Data Summary							
Table 13	Cane Run Fecal Coliform TMDL Load Allocations							
Table 14	Biological Warmwater Aquatic Habitat Criteria46							
Table 15	Regulatory Water Quality Standards							
Table 16	able 16 Non-Regulatory Reference Points5							
Table 17	Water Quality Health Grades							

Table 18	Historic Monitoring Summary	5
Table 19	Historic Monitoring Site Cross Reference	53
Table 20	Historic Monitoring Results Summary	54
Table 21	LFUCG HISTORIC MS4-Permit Monitoring Data Summary	56
Table 22	City of Georgetown Historic Monitoring Data Summary	58
Table 23	KDOW Historic Monitoring Summary	59
Table 24	KWRRI 2002 Fecal Coliform Data Summary	60
Table 25	UK BAE Historic Monitoring Summary	62
Table 26	UK ERTL 2005 Microbial Source Tracking Study Summary	62
Table 27	Kentucky River Watershed Watch Historic Monitoring Summary	64
Table 28	KDOW WBP Monitoring Locations	65
Table 29	LFUCG WFMP Cane Run Monitoring Locations	67
Table 30	Macroinvertebrate Sampling Results Summary	70
Table 31	Habitat Assessment (RBP) Results Summary	72
Table 32	Average Concentrations and Health Grades for E. coli and Nutrients	74
Table 33	E. coli Concentration Data Summary	75
Table 34	E. coli Geomean Concentrations and Exceedances for Six Events May 2017	76
Table 35	Microbial Source Tracking Results Summary	78
Table 36	Average Concentrations and Health Grades for In-Situ Water Quality Parameters	83
Table 37	Annual E. coli Loads and Reductions Needed	86
Table 38	Annual Total Nitrogen or Nitrate Loads and Reductions Needed	88
Table 39	Annual Ammonia-Nitrogen Loads and Reductions Needed	89
Table 40	Annual Total Phosphorus Loads and Reductions Needed	90
Table 41	Incremental Load Reduction Priorities and Source Summary	92
Table 42	LFUCG Cane Run Watershed Remedial Measures Plan Schedule	95
Table 43	Concentrations and Discharge for MHP Package Treatment Plant Sources	95
Table 44	MHP Package Treatment Plant Pollutant Source Loads	96
Table 45	Potential E. coli Load Reductions per Pollutant Source	97
Table 46	Potential Total Nitrogen Load Reductions per Pollutant Source	100
Table 47	Potential Ammonia-Nitrogen Load Reductions per Pollutant Source	10
Table 48	Potential Total Phosphorus Load Reductions per Pollutant Source	102
Table 49	Cane Run WBP Goals and Objectives	105
Table 50	Cane Run WBP BMP Implementation Plan	109

APPENDICES

Appendix A	EXHIBITS
Appendix B	Wellhead Protection Plan
Appendix C	Cane Run Basin Retrofits

Appendix D Laws and Ordinances
Appendix E Implemented BMPs

Appendix F Wolf Run Nutrient Benchmark Recommendations

Appendix G Cane Run WBP Severe Erosion Survey

Appendix H Cane Run WBP Biological and Habitat Monitoring Report

Appendix I Cane Run WBP Water Quality and Quality Assurance Project Report

Appendix | LFUCG Cane Run WFMP Stream Corridor Characterization Technical Memo

Appendix K LFUCG Cane Run WFMP Stream Biology Technical Memo

Appendix L LFUCG Cane Run WFMP Water Quality Monitoring Technical Memo

Appendix M LFUCG Cane Run WFMP Discharge Prevention Technical Memo

Appendix N LFUCG Cane Run WFMP Priority Area Upland Assessment Technical Memo

I. INTRODUCTION

A. Watershed Background

Cane Run Watershed is in northcentral Lexington, Fayette County, and southwestern Scott County, Kentucky. The headwaters of Cane Run originate in central Fayette County and flow north into Scott County. Once Cane Run crosses into Scott County it flows northwest to its confluence with North Elkhorn Creek just west of the City of Georgetown. The land use of the upper portion of the watershed area is mostly urban within Lexington and has more rural land uses downstream in northern Fayette County and southwestern Scott County. The lower portion of the watershed also drains portions of the City of Georgetown. The watershed has areas of karst, and includes the Royal Spring karst basin, which serves as a water supply for Georgetown.

Cane Run was first listed as impaired for aquatic life in the 1998 303(d) list of Kentucky impaired waters, with river mile 10.0 to 17.4 listed for organic enrichment biological indicators and pathogens (fecal coliform). In subsequent years, additional segments and causes were listed, including impairment to warmwater aquatic habitat (WAH) due to sediment, and recreational uses due to pathogens, nutrients/eutrophication, and organic enrichment (sewage) by 2002. The entire main stem (17.4 miles) of Cane Run was listed for at least one type of impairment by 2002. Additionally, in 2002, 3.5 miles of an unnamed tributary to Cane Run, located at river mile 6.13, was listed for impairment to recreational uses due to pathogens. In 2010, two additional unnamed tributaries to Cane Run were listed for impairment at river miles 10.8 and 12.9. The unnamed tributary at river mile 10.8 was listed for impairment to WAH due to nutrients (nitrogen and phosphorus). The unnamed tributary at river mile 12.9 was also impaired for WAH due to nutrients (phosphorus). Royal Spring was also listed in 2010 for impairment due to nutrients (nitrogen and phosphorus). With these additional listings in 2010, Cane Run (in its entirety) and all major tributaries were listed on the 303(d) list of Kentucky impaired waters. These stream segments were also listed on the draft 2012 303(d) list.

The impairment of Cane Run, in addition to other Lexington streams, led the U.S. Environmental Protection Agency (EPA) and the Kentucky Environmental and Public Protection Cabinet (KY EPPC) to file a lawsuit (United States 2006) against Lexington-Fayette Urban County Government (LFUCG) over violations of the Clean Water Act in 2006. The lawsuit was due to failure of the city to maintain the sanitary and storm sewer systems causing raw sewage discharges into streams. On March 14, 2008, LFUCG lodged a Consent Decree to resolve this lawsuit (United States, 2008). Within the Consent Decree, LFUCG agreed to make extensive improvements to its sewer systems, address sanitary sewer overflows and associated Municipal Separate Storm System (MS4) permit violations, as well as to reduce the discharge of pollutants via stormwater. With the Consent Decree in place, LFUCG is furthering its efforts to improve water quality in Cane Run.

This Watershed-Based Plan (WBP) provides a comprehensive assessment of the health of the watershed, citizen and stakeholder concerns, watershed remediation strategies, and implementation plans for the future. This document is intended to address the nine minimum elements required in the EPA's Handbook for Developing Watershed Plans to Restore and Protect Our Waters (USEPA 2008). These nine elements are:

I. An identification of the causes and sources or groups of similar sources that will need to be controlled to achieve the load reductions estimated in this WBP (and to achieve any other

watershed goals identified in the WBP), as discussed in element two. Sources that need to be controlled should be identified at the significant subcategory level with estimates of the extent to which they are present in the watershed (e.g., X numbers of dairy cattle feedlots needing upgrading, including a rough estimate of the number of cattle per facility; Y acres of row crops needing improved nutrient management or sediment control; or Z linear miles of eroded stream bank needing remediation).

- 2. An estimate of the load reductions expected for the management measures described under element three (recognizing the natural variability and the difficulty in precisely predicting the performance of management measures over time). Estimates should be provided at the same level as in element one above (e.g., the total load reduction expected for dairy cattle feedlots, row crops, or eroded stream banks).
- 3. A description of the nonpoint source management measures that will need to be implemented to achieve the load reductions estimated under element two (as well as to achieve other watershed goals identified in this WBP), and an identification (using a map or a description) of the critical areas in which those measures will be needed to implement this plan.
- 4. An estimate of the amounts of technical and financial assistance needed, associated costs, and/or the sources and authorities that will be relied upon to implement this plan. Sources of funding to consider include Section 319(h) Funds, State Revolving Funds, U.S. Department of Agriculture's (USDA) Environmental Quality Incentives program (EQIP) and Conservation Reserve Program (CRP), and other relevant federal, state, local, and private funds that may be available to assist in implementing this plan.
- 5. An information/education component that will be used to enhance public understanding of the project and encourage early and continued public participation in selecting, designing, and implementing nonpoint source management measures.
- 6. A schedule for implementing the nonpoint source management measures identified in this plan that is reasonably expeditious.
- 7. A description of interim, measurable milestones for determining whether nonpoint source management measures or other control actions are being implemented.
- 8. A set of criteria that can be used to determine whether loading reductions are being achieved over time and substantial progress is being made towards attaining water quality standards and, if not, the criteria for determining whether this WBP needs to be revised or, if a nonpoint source Total Maximum Daily Load (TMDL) has been established, whether the nonpoint source TMDL needs to be revised.
- 9. A monitoring component to evaluate the effectiveness of the implementation efforts over time, measured against the criteria established under element eight.

B. Partners and Stakeholders

The Cane Run Watershed Council (CRWC) was formed in December 2007, with the first meeting taking place on December 18, 2007. The watershed council was preceded by the formation of Friends of Cane Run, Inc. (FOCR) which composed bylaws on October 18, 2006. FOCR was organized as a non-profit educational group to protect and improve the water quality of Cane Run and its members are members of the CRWC. The CRWC was formed to identify and include potential stakeholders and partners, help develop a WBP for Cane Run and Royal Spring (UK BAE, 2011) and implement proposed corrective actions. Issues and problems related to the Cane Run Watershed are discussed by the CRWC, and potential solutions are proposed. The CRWC also discusses proposed water quality monitoring plans for Cane Run and helps coordinate funding or other support to programs to improve water quality. Cane Run Watershed partners and stakeholders include the following organizations:

Barton Brothers Farms	Kentucky Horse Park
Bluegrass Greensource	Kentucky River Water Watch Program
Cane Run Watershed Council	Kentucky Water Resources Research Institute
City of Georgetown	Lexington-Fayette Urban County Government
Coldstream Research Campus	Lexmark International
Fayette County Conservation District	Marriott Griffin Gate Resort
Fayette County Public Schools	Natural Resource Conservation Service
Friends of Cane Run	North Limestone Neighborhood Association
Georgetown Municipal Water and Sewer	Scott County Conservation District
Georgetown-Scott County Planning	
Commission	Scott County Department of Health
Green Acres Neighborhood Association	Scott County Public Schools
Kentucky Department of Fish and Wildlife	Thoroughbred Resource Conservation and Development
Kentucky Department of Transportation	United States Environmental Protection Agency
Kentucky Division of Conservation	University of Kentucky College of Agriculture
Reflector Division of Conservation	University of Kentucky Cooperative Extension
Kentucky Division of Forestry	Service Service
	University of Kentucky Environmental Research
Kentucky Division of Water	and Training Laboratory
Kentucky Geological Survey	Vulcan Materials

II. WATERSHED INFORMATION

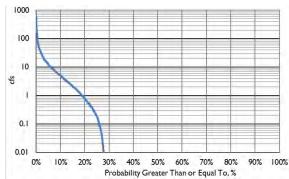
A. Watershed Location

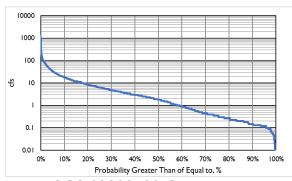
The Cane Run Watershed, Hydrologic Unit Code (HUC-14) number 05100205-280-200, is a 45.4 square mile (mi²; 29,056 acre) watershed located within Fayette and Scott Counties, Kentucky. The portion of the Cane Run Watershed within Fayette County is 28.4 mi² (18,176 acres), while the remaining 17 mi² (10,880 acres) lies in Scott County. The only named stream in the watershed is Cane Run. However, large unnamed tributaries flow into Cane Run at river miles 2.8, 4.6, 6.13, 9.6, 10.8, 12.9, 15.7, and 15.8.

The headwaters of Cane Run originate in central Fayette County and flow north into Scott County. Once Cane Run crosses into Scott County, it flows northwest to its confluence with North Elkhorn Creek just west of the City of Georgetown. North Elkhorn Creek flows in a westerly direction until it joins with South Elkhorn Creek to form Elkhorn Creek – just east of the City of Frankfort in Franklin County, Kentucky. Elkhorn Creek continues in a northern direction until it empties into the Kentucky River approximately 7 miles north of the City of Frankfort.

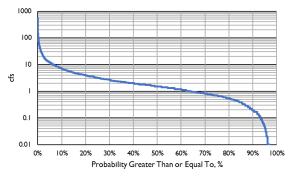
The Cane Run Watershed boundary is shown on **Exhibit I** (Appendix A). The southern boundary of the Cane Run Watershed originates just north of the intersection of East Loudon Avenue and Winchester Road in northeastern Lexington. From this location, the western boundary parallels East Loudon Avenue to the south in a western direction, until crossing North Broadway and Newtown Pike where it roughly parallels Georgetown Road in a northern direction. This boundary begins to parallel I-64 in a western direction until it crosses the Fayette County border near the intersection of Kearney Road and North Yarnallton Pike. The border continues to the Lancelot Estates and then follows just west of Cane Run Road to the mouth of Cane Run near US-460 (Frankfort Pike). The eastern boundary captures the southern portion of Georgetown following Pocahontas Trail, then across to near Jolomic Lane and I-75. It proceeds to near the intersection of Newtown Pike and Ironworks Pike. Following Ironworks Pike to near Russell Cave Road, it then extends to Paris Pike, just east of the I-75 intersection. The border then bisects the Bryan Station Neighborhood as it continues to near East Loudon Avenue.

B. Surface Hydrology and Geomorphology


Cane Run lies within the Inner Bluegrass Ecoregion, which contains undulating terrain with moderate rates of both surface runoff and subsurface drainage. Cane Run flows for approximately 17.4 miles from its headwaters to its confluence with North Elkhorn Creek. With numerous small intermittent and perennial streams contributing to its flow, a total of 77.8 miles of stream are in the watershed. Cane Run is predominately a high gradient stream of mixed substrates flowing through a gently rolling topography with slight relief. Several small water bodies (i.e., ponds) are scattered throughout the watershed, some adjacent to Cane Run or its tributaries, and other impoundments of them. A large portion of the headwaters are developed with impervious surfaces (streets, roofs, etc.) that contribute to flashy storm flows due to quick runoff from the impervious surfaces. Outside of this area, land use is more agricultural, promoting greater infiltration.


A U.S. Geological Survey (USGS) gaging station was established on Cane Run at Berea Road in Fayette County and was in operation from September 1997 to 2012. Basic statistics on the discharge at this station are provided in **Figure 1**. These statistics indicate that Cane Run, at the Berea Road gage station, discharges approximately 0.003 to 0.17 cubic feet per second (cfs) under low flows and 25.5 to 718 cfs in high flows. This gaging station, representative of most of Cane Run upstream of I-75 in Scott County, was dry during 72% of the period measured due to sinks and karst windows that diverted surface flow into the Royal Spring karst groundwater aquifer. Surface flow only occurred in response to heavy rainfall events at this gage station.

Because of low and inconsistent flows at this location, the gaging station was moved upstream to Citation Boulevard, near the Urban Service Boundary, in June 2012. This station represents one of the few reaches of Cane Run in Fayette County with routine flow due to a perennial spring. Additionally, a gage station was installed on an unnamed tributary to Cane Run at Newtown Pike in June 2012. This tributary, like many other tributaries to Cane Run, maintains flow throughout much of the year. The stage discharge curves for these stations are shown in **Figure 1**.


FIGURE I – CANE RUN AND TRIBUTARY FLOW DURATION CURVES AT VARIOUS LOCATIONS

USGS 03288200 Cane Run at Berea Road Near Donerail, KY

USGS 03288180 Cane Run at Citation Blvd Near Lexington, KY

USGS 03288190 Tributary to Cane Run at Newtown Pike Near Lexington, KY

Together, these gaging stations indicate that the interaction between the surface and groundwater systems has important implications on habitat for aquatic organisms.

Geomorphic studies, which describe the average stream dimensions, flow, and bed materials, assess the stream channel conditions and flow. All streams change in response to changes in the drainage area, **Figure 2** shows typical stream channel responses to modifications. In response to changes that occur in the watershed, the original condition (Stage I) becomes unstable and begins to channelize (Stage 2). Over time it will seek to find a new equilibrium (Stage 6) through a process that involves incision (Stage 3), mass erosion and bank failures (Stage 4), and widening and sedimentation (Stage 5).

FIGURE 2 – CHANNEL EVOLUTION MODEL Stage 1 Remodified Stage 2 Constructed Stage 3 Degradation and Widening Stage 5 Aggradation and Widening Direction of bed or bank movement

When stream channels become channelized (Stage 2) they change over time to re-stabilze through a process that involves incision (Stage 3), mass erosion and bank failures (Stage 4), and widening and sedimentation (Stage 5) before reaching a new equilibrium (Stage 6). (Image from Simon and Hupp, 1986)

Parola et al. (2007) performed an evaluation of the geomorphological and bankfull characteristics of streams in the Bluegrass physiographic region where Cane Run is located. Although Cane Run was not assessed during the study, this regional geomorphic study provides general characteristics that apply to Cane Run and its tributaries.

In their analysis of the bed material, they found that "the majority ... is comprised of locally broken bedrock and fine-gravel and sand-sized sediments ... The bedrock underlying channels in the Bluegrass most frequently consists of thinly bedded and densely jointed limestones and shales. This type of bedrock is susceptible to moderate to rapid rates of erosion by fluvial stresses." They note that when bedrock erodes, the chemical weathering typically leaves only clay, and not larger grain sizes.

In terms of channel evolution, the study indicates that "many of the larger Bluegrass streams have experienced several cycles of ... modifications, which caused them to incise multiple times." However, the process of reestablishing an equilibrium is relatively slow due to three main reasons. "First, erosion-resistant channel boundaries composed of bedrock and cohesive banks prevent rapid bank erosion or bed degradation. Second, the supply of coarse sediment ... is low. Third, the supply of sand-sized sediment that would rapidly reform floodplains is generally low."

Much of the degradation to the aquatic and riparian ecosystem is attributed to geomorphic processes,

including increases in-stream sediment due to bank erosion, limited in-stream habitat due to extensive exposure of bedrock in channels, and channel incision that disconnects streams from a floodplain.

Bank erosion was found to be principally due to freeze-thaw process in winter and extreme drying in summer, contributing large volumes of fine-grained sediment to streams. A lowered water table, common in the region due to stream incision, also contributes to dry streams in the summer, except for isolated pools.

C. Climate and Precipitation

Table 1 shows the monthly climatological normal for temperature and precipitation at the Lexington Bluegrass Airport based on records from 1981 to 2010 compiled by the National Weather Service (NWS, 2011). The temperature in this area ranges from an average monthly minimum of 24.9 degrees Fahrenheit (°F) in January to an average monthly maximum of 86.1°F in July. The average total precipitation is 45.17 inches annually with 13.0 inches of snowfall on average. On average, the driest month is September, with an average of 2.91 inches of precipitation, and May is the wettest, with an average of 5.26 inches. Climate data collected at the Georgetown Water Works (site 153194) includes precipitation and snow (Southeast Regional Climate Center, 2019). Based on records from 1941 to 2012, the average total precipitation is 43.76 inches annually with 10.3 inches of snowfall on average per the Georgetown monitoring location. The Georgetown monitoring data also indicated that the driest month is typically October (with an average of 2.74 inches precipitation) and that May is the wettest month (with an average of 4.47 inches precipitation).

TABLE I MONTHLY CLIMATOLOGICAL NORMALS 1981 - 2010

Month	Max Temp (°F)	Min Temp (°F)	Avg Temp (°F)	Precip (in)	Snow (in)
January	40.9	24.9	32.9	3.20	3.9
February	45.6	28.1	36.9	3.20	4.6
March	55. 4	35.7	45.5	4.07	1.4
April	65.8	44.7	55.3	3.60	0.3
May	74.4	53.9	64.2	5.26	0
June	82.9	62.5	72.7	4.44	0
July	86.1	66.3	76.2	4.65	0
August	85.6	65.0	75.3	3.25	0
September	78.8	57.5	68.I	2.91	0
October	67.5	46.6	57.0	3.13	0
November	55. 4	37.3	46.3	3.53	0.3
December	43.9	28.0	36.0	3.93	2.5
Annual	65.3	46.0	55.6	45.17	13.0

National Weather Service, 2011

D. Groundwater-Surface Water Interaction

When limestone bedrock is near the surface, surface water and precipitation often pass through the soil into the limestone, where it is called groundwater. Over time, horizontal and vertical cracks in the rock can become enlarged by the acids in the water to form a landscape characterized by sinkholes, springs, and caves, called karst topography.

The Cane Run Watershed has numerous karst features throughout the watershed area, and several large karst basins (Currens et al. 2003). While numbers change over time, about 50 springs and 100 swallets, karst windows, cave streams, or other injection points have been identified per Kentucky

Geological Survey, University of Kentucky, and LFUCG databases. These features are shown in **Exhibit 2** (Appendix A).

The most significant karst feature within the watershed is the Royal Spring karst basin, a drinking water source for the City of Georgetown. This basin mirrors much of the Cane Run surface watershed, flowing from northcentral Fayette County to the City of Georgetown. Surface flow from Cane Run enters swallets and sinkholes in the upper reaches of the watershed into the Royal Spring karst basin and exits at Royal Spring in Georgetown. Over several decades, 65 swallet holes have been mapped along Cane Run, draining surface flow into the Royal Springs Aquifer (**Exhibit 2**). This is a general indication of swallet and sink presence, as confirmation surveys in recent years have indicated that some have closed by bank collapses and new holes have opened (Husic, 2016). Because of these numerous sinks (except for several short reaches downstream of tributaries or springs) and under normal flow conditions, Cane Run is dry from its headwaters to Lisle Road in Scott County. As exhibited by the historic USGS gage near Donerail (USGS Gage #03288200), surface flow typically only occurs in conjunction with precipitation events (Ormsbee et al., 2013).

Many of the karst basins in the Cane Run Watershed are "misbehaved," indicating that underground drainage is different from the boundary of the surface water. Royal Springs is an example, discharging outside of the Cane Run Watershed in downtown Georgetown. Slacks Spring, Silver Spring, Vaughans Spring, Russell Spring, and Holland Spring are misbehaved karst basins; all exporting surface waters from Cane Run to surrounding watersheds. The small karst basins for Jenning Springs and Stockyards Spring are located entirely within the Cane Run Watershed. Several karst basins that are immediately adjacent to the Cane Run Watershed, but are not within the watershed, include Nance Spring, Gano Spring, Lindsay Spring, Tevis Spring, and Sharp Spring karst basins.

The upper reaches of Slack Spring karst basin are partially located in the northwest section of the Cane Run Watershed in Fayette County and flows northwest until exiting at North Elkhorn Creek, just west of the confluence with Cane Run. This karst basin captures drainage from the Town Branch watershed as well as Cane Run.

The upper drainage area of Silver Spring karst basin originates in the Cane Run watershed and then flows west until exiting into the Town Branch watershed. Russell Spring karst basin is located within the southeastern section of the Cane Run watershed in Fayette County, and flows north until exiting into the North Elkhorn Creek watershed. Vaughans Spring karst basin originates in the Cane Run watershed within Fayette County and flows north until exiting into North Elkhorn Creek. A very small portion of the Holland Spring karst basin is in the Cane Run watershed in Scott County and flows east into North Elkhorn Creek.

To evaluate the sensitivity of groundwater resources to water pollution, Kentucky Division of Water (KDOW) developed a hydrologic sensitivity index to quantify the regions of Kentucky (Ray et al., 1994). Based on groundwater recharge, flow, and dispersion rates, the index ranges from I (low) to 5 (high). With the amount of karst in the Cane Run watershed, the hydrologic sensitivity index is 5 (high), indicating that the area is highly susceptible to groundwater pollution.

E. Flooding

Floodplains are lands adjacent to streams that flood during intense wet weather events. The ability of a stream to access the floodplain is a critical component of a stream's health. When water accesses a floodplain, it spreads out and slows down, facilitating sediment deposition, treatment of nonpoint source pollutants, and recharge of groundwater. A stream that cannot access a floodplain (e.g., by channelization, channel incision, or construction of a flood wall) will carry more energy, causing bank erosion and channel downcutting. It will also carry a higher pollutant load downstream during storm events and may have reduced base flow due to reduced groundwater recharge.

The 100-year floodplain is primarily located in agricultural lands for much of the watershed. However, flooding concerns are notable at multiple locations in the watershed.

The floodplain along Cane Run has been greatly encroached upon by urban development in the headwaters as illustrated on **Exhibit 3** (Appendix A), causing flooding impacts to some residences and infrastructure even in recent years. LFUCG has established greenways and parks along several sections of the floodplain area within the headwater reaches of the Cane Run watershed. Many of these greenways and parks are owned by LFUCG, which should prevent development of these floodplain areas. Parks and greenways located adjacent to the floodplain of Cane Run include Constitution Park adjacent to Bryan Avenue and East Loudon Avenue, Martin Luther King Park at McCullough Drive, and Oakwood Park at Briarwood Drive. The greenway of Coldstream Park also contains portions of the Cane Run floodplain.

Agricultural impacts, such as livestock grazing or row cropping, occurs within the downstream sections of Cane Run in Fayette County. Within Fayette County outside of the Urban Service Boundary, a large portion of the Cane Run floodplain is contained within the Kentucky Horse Park and University of Kentucky Farms. Much of the floodplains occur on private farmland in Scott County. Flooding in these locations can damage planted crops, fences, or other infrastructure, as well as deposit debris and stormwater trash in these locations. Several locations along US 25 have been impacted by flooding, resulting in road closings in recent years near crossings of Cane Run and its tributaries near Maple Grove Mobile Home Park and near Landscape Alternatives and Grace Christian Church.

The frequency and magnitude of flooding is affected by the percent of impervious surface in a watershed. Under natural conditions, most rainwater is infiltrated into the soil or evapotranspired by trees and vegetation. With increased impervious surfaces, such as rooftops or pavement, water cannot infiltrate into the soil and therefore quickly flows into the stream. This can lead to frequent and/or severe flooding events of higher magnitudes. Much of the upper portion of the Cane Run watershed is developed and has a high percentage of impervious surfaces.

F. Geology

The Cane Run watershed lies in the Lexington West (Miller, 1967), Lexington East (MacQuown and Dobrovolny, 1968), Centerville (Kanizay et al., 1967), and Georgetown (Cressman, 1967) geologic quadrangles. As shown on **Exhibit 4** (Appendix A), Tanglewood Limestone Member No. 2 (Lower Ordovician – Middle Ordovician) is the dominate formation in the watershed. The remainder of the

Cane Run watershed consists primarily of the Tanglewood Limestone Member No. I (Lower Ordovician – Middle Ordovician) and Upper part of Lexington Limestone (Lower Ordovician – Middle Ordovician), with Quaternary Alluvium deposited along stream channels.

The Tanglewood Limestone Member is a bioclastic formation described as medium to coarse grained, thin to thick bedded, phosphatic, and very fossiliferous to sparingly fossiliferous. The member is comprised mostly of limestone (80%), interbedded with shale.

The Upper part of Lexington Limestone member is medium gray, fossiliferous, with a micro-grained calcite matrix. The formation is poorly sorted bioclastic. Shale occurs as a matrix around nodules and lenses and in irregular beds.

Quaternary Alluvium is deposited along the stream channels. Per the geological quadrangles, the alluvium formation is clay, silt, and gravel, and locally may contain abundant chert and dense argillaceous limestone fragments. It is generally less than 5 feet thick along smaller tributaries and 10 feet thick along larger streams, although locally may be as thick as 20 feet.

Fossiliferous shale and limestone occurs primarily west of Cane Run, and is fine to coarse grained, and 0 to 15 feet in thickness. The unit contains numerous bryozoan, shell fragments, and other fossils.

G. Ecoregion and Topography

The Cane Run watershed is in the Inner Bluegrass (711) Level 4 Ecoregion (Woods et al., 2002). This region is described as unglaciated, weakly dissected upland plain that is level to gently rolling, with extensive karst. Upland streams have low to moderate gradients, with cobble and bedrock substrates. Many of these upland streams are intermittent, but some are fed by major springs and have plentiful year-round flow conditions. Sinking streams, underground drainage, springs, numerous sinkholes, and ponds occur throughout the region (Woods et al., 2002).

The natural vegetation of upland areas is described as remnants of an open oak-hickory forest with dominants of blue ash, white oak, shumard oak, walnut, chinquapin oak, bur oak, shellbark hickory, and Kentucky coffeetree. Dominant vegetation surrounding sinkholes is described as sycamore, black locust, hackberry, and mulberry, while abandoned agricultural land often has broomsedge and sumac dominants. Poorly drained floodplain forests of the region are dominated by sweet gum, pin oak, box elder, yellow poplar, and hackberry, while along rivers and gorges oak-maple forests dominate. This oak-maple forest is usually comprised of white oak, northern red oak, scarlet oak, black oak, chinquapin oak, white ash, sugar maple, red maple, and eastern red cedar. River cane is a common understory species throughout the inner bluegrass (Woods et al., 2002).

Current land use of the ecoregion includes pastureland (horse, cattle), cropland (burley tobacco, corn, and hay), and urban-suburban development. Urban-suburban areas are expanding within the ecoregion. The region is very fertile with alfisol and mollisol soils developed from the underlying phosphatic limestone (Woods et al., 2002).

Agricultural activities can contribute sediment, nutrients, pesticides, and pathogens to surface water within the ecoregion. High nutrient levels in the streams contribute to algal blooms and low dissolved oxygen levels, especially in areas with no tree canopy. Runoff from impervious surfaces of urban areas and wastewater discharges can release trace metals, nutrients, and pathogens into surface waters. The Kentucky River has very high concentrations of nutrients (nitrogen and phosphorus) in the state (Woods et al., 2002).

Exhibit 5 (Appendix A) shows that the topography of the Cane Run watershed is gently rolling with the most variation located in the southern portion of the watershed in Fayette County. Elevations range from approximately 750 feet above sea level at the confluence with North Elkhorn Creek to approximately 1,000 feet above sea level from the headwaters in Lexington.

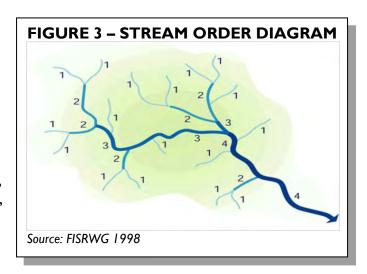
H. Soils

Per the soil survey of Fayette County (Sims et al., 1987), there are two soil associations within the Cane Run watershed and include the Maury-McAfee and the Lowell-Lordale-Mercer association. The Scott County soil survey (Weisenberger and Isgrig, 1977), shows only the Maury-McAfee association within the Cane Run watershed. The Maury-McAfee soil association is described as undulating, deep and moderately deep soils that are high in phosphates, well drained, and occur on uplands. The Lowell-Lordale-Mercer association is described as gently sloping, well drained to moderately well drained soils that are deep and moderately deep that also occur on uplands. Most of the watershed is within the Maury-McAfee association, while the Lowell-Lordale-Mercer association is restricted to eastern portions of the watershed in the headwater areas, and a small section of the western watershed near Donerail, Kentucky.

Soils are classified by the Natural Resource Conservation Service into four Hydrologic Soil Groups (HSG) based on the soil runoff potential (USDA-NRCS, 1986). The four HSGs are A, B, C and D, with HSG A having high infiltration capacity (little runoff) and HSG D having very low infiltration capacity (high runoff). **Table 2** shows the infiltration rates associated with each soil and the relative abundance at which these soils are present in the watershed. The locations of the soils are shown in **Exhibit 6** (Appendix A). The most dominant HSG was B, but C was also common. Group A was not present, and HSG D soils are rare. Based on this information, all soils will generate runoff when the rainfall intensity is more than 0.30 inches per hour.

TABLE 2
RELATIVE ABUNDANCE OF SOILS BY HYDROLOGIC SOIL GROUP

Hydrologic Soil	Infiltration Capacity	Infiltration Rate	Relative Abundance
Group	/ Permeability	(in/hr)	(%)
Α	High	> 0.30	0.0%
В	Moderate	0.15 - 0.30	63.4%
С	Low	0.05 - 0.15	29.2%
D	Very Low	0.00 - 0.05	3.0%
Water / Made Land	None / Very Low	0.00 - 0.05	2.0%
Not Available	Unknown	Unknown	2.4%



Areas of hydric soil are important since wetland restoration or expansion is more likely to be successful in these areas. Wetlands provide key habitat for aquatic organisms, improve water quality through filtration and biogeochemical processes, and provide flood water retention. Hydric soils comprise about 5% of the watershed land area and are primarily located near streams. Lanton silty clay loam and Melvin silt loam are listed as hydric within Fayette County (http://soils.usda.gov/use/hydric/) and Lawrence silt loam, Loudon silt loam, and Newark silt loam are listed as possibly having inclusions of hydric soils. In Scott County, Dunning silty clay loam is listed as hydric with Newark silt loam having hydric inclusions. Because of karst drainages, few wetlands exist in the watershed.

I. Riparian Ecosystem

Although riparian zones produce many water quality benefits, these benefits are dependent on the width of the riparian area, the size of the stream that it borders, vegetation composition, and vegetation density. Stream ordination is a system applied to designate the size and location of stream systems.

One method of stream ordination, as shown in Figure 3, assigns all headwater perennial streams with an order of one, and increases the order at the confluence of streams of equal order. Thus, when two third-order streams combine, a fourth-order stream is produced. The water quality functions provided by the riparian zone vary by stream order. Riparian zones on first and second-order streams provide the maximum nutrient removal, shading, and bank stabilization benefits (Palone and Todd, 1997). Fish habitat and aquatic ecosystem benefits of riparian buffers are typically greatest for third and fourth-order streams, while flood mitigation benefits of riparian zones increase as the stream order increases. Sediment control benefits of riparian buffers remain relatively constant for all stream orders.

The width of the riparian zone necessary to achieve these benefits varies depending on the function. The U.S. Army Corps of Engineers (USACE; Fischer and Fischenich, 2000), recommends the following riparian buffer widths for various functions: 5 meters to 30 meters (16 feet to 100 feet) for water quality protection, 30 meters to over 500 meters (100 feet to over 1,600 feet) for riparian habitat, 10 meters to 20 meters (30 feet to 65 feet) for stream stabilization, 20 meters to 150 meters (65 feet to 500 feet) for flood attenuation, and 3 meters to 10 meters (10 feet to 30 feet) for detrital input.

Aerial imagery was utilized to analyze the width of the riparian zones throughout the Cane Run watershed. Areas with forested canopy or overgrown vegetation were included in the riparian buffer zone. Reaches of stream were defined as heavily impacted, moderately impacted, or non-impacted

based on the width of the riparian zone. Non-impacted reaches were lengths of stream in which the riparian zone averaged 60 feet or wider for both banks. Heavily impacted reaches were defined as reaches where the riparian zone averaged less than 10 feet on both banks. Moderately impacted reaches had riparian zones that averaged between 10 and 60 feet. **Exhibit 7** (Appendix A) shows the results of this analysis, and **Table 3** (page 13) summarizes the results for each sub-watershed area.

Based on the aerial delineations, most of the streams (61%) were found to have little or no riparian zone (less than 10 feet). Ninety-five percent (95%) of the watershed was found to have some riparian zone impact, with only 7% with streams providing full ecological benefits associated with having 60 feet or wider riparian buffer for both banks.

While the quality of the riparian zone cannot be accurately determined via aerial analysis (i.e., mature trees, small shrubs, mowed grass, etc.), such an analysis is useful for identifying areas in need of additional plantings to enhance the riparian zone width. While all impacted reaches could benefit from riparian plantings, planting needs within sub-watersheds were prioritized relative to one another to identify the general areas with the greatest needs for planting. Tributaries along Paynes Depot Road and the tributaries near Etter Lane and Ironworks Pike were identified with some of the greatest needs, while the Lexington headwaters and the reaches near the mouth of Cane Run had some of the largest riparian zones. In recent years, University of Kentucky Farms have made noticeable advances in the expansion of the riparian buffers on their properties.

TABLE 3
RIPARIAN ZONE IMPACT BY SUB-WATERSHED AREA

			% Length by Riparian Impact			
		Total	Heavily	Moderately	Non-	Relative
Sub-		Stream	Impacted	Impacted	Impacted	Buffer
watershed	Sub-watershed	Length	(<10 ft	(10-60 ft	(>60 ft	Planting
ID	Description	(mi)	Width)	Width)	Width)	Need
I	Cane Run Mouth	6.28	34%	53%	13%	Low
2	McClelland Circle	6.50	61%	35%	4%	Moderate
	Paynes Depot Road					
3	Tributary	3.10	87%	13%	0%	High
4	Etter Lane Tributary	3.18	86%	9%	5%	High
5	Lisle Road Area	2.59	64%	36%	0%	Moderate
6	US 25 Tributary	8.99	63%	29%	8%	Moderate
7	East I-75	21.77	63%	30%	7%	Moderate
9	UK Farm Tributary	13.03	63%	30%	6%	Moderate
10	Lexington Headwaters	12.35	51%	40%	9%	Low

Totals 77.8 mi 61% 32% 7% 47.3 mi 25.3 mi 5.3 mi

Expansion of the riparian zone in urban areas is often challenging due to development along the riparian corridor. In these areas, planting efforts should be focused on connectivity. Connecting areas that support riparian habitat to areas with less abundant riparian cover that can be enhanced will increase migration corridors and could benefit wildlife by reducing habitat segmentation in the watershed. Protection of existing riparian zones in urban areas is essential.

Within the rural portion of the Cane Run watershed there is great potential for riparian zone enhancement. Tree plantings and livestock exclusion (i.e., fencing) are relatively inexpensive methods that could greatly improve riparian zone functions in this area. However, leaving riparian zones is often viewed as poor land management by landowners. A large-scale effort to establish no-mow zones along the agricultural areas was initiated on the University of Kentucky Farms during the Cane Run watershed Plan Project in 2012. These areas may be used to help landowners see what good riparian buffer practices looks like and allow them to consider adopting it on their lands.

J. Fauna and Flora

Fauna in the Cane Run watershed is primarily domestic animals, with pets (e.g. dogs, cats) more likely in the southern (Lexington) and northeastern (Georgetown), more urbanized portions of the watershed, and livestock (e.g. horses, cows) more likely in the northern, more rural portions of the watershed. Horses are particularly notable due to the location of the I,200-acre Kentucky Horse Park within the Cane Run watershed. Other animals inhabiting the watershed are wildlife that are highly adaptable and/or tolerant of disturbance, i.e., raccoon (*Procyon lotor*), opossum (*Didelphis virginiana*), squirrel (*Sciurus carolinensis*), northern cardinal (*Cardinalis cardinalis*), blue jay (*Cyanocitta cristata*), robin (*Turdus migratorius*), house sparrow (*Passer domesticus*), starling (*Sturnus vulgaris*), etc. Larger wildlife, such as white-tail deer (*Odocoileus virginianus*), groundhog (*Marmota monax*), beaver (*Castor canadensis*), and coyote (*Canis latrans*), are more likely to be encountered in the rural portions of the watershed. In addition to these wild and domestic animals, a few waterfowl, such as Canada goose (*Branta canadensis*) and mallard (*Anas platyrhynchos*; especially around the Marriott Griffin Gate Resort and Embassy Suites impoundments), are likely species that may contribute fecal inputs to Cane Run.

Per the Kentucky Department of Fish and Wildlife Resources' (KDFWR) website (http://fw.ky.gov/Hunt/Pages/Harvest-Results.aspx), 245 white-tail deer were harvested in Fayette County during the 2015 hunting season, and 1,624 were harvested in Scott County. Deer could be contributing fecal inputs to Cane Run within the rural sections of the watershed.

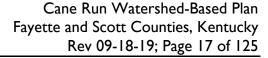
During the Lexington 2015 Christmas Birding Survey by the Audubon Society of Kentucky, a total of 1,109 waterfowl or birds closely associated with water bodies (i.e., great blue heron (Ardea herodias)) were observed and accounted for 6.2% of all birds observed (http://netapp.audubon.org/CBCObservation/CurrentYear/ResultsByCount.aspx). These bird species are likely to have direct fecal inputs to waterbodies, including streams of the Cane Run watershed.

According to the Kentucky State Nature Preserve Commission (KSNPC), U.S. Fish and Wildlife Services (USFWS), and the KDFWR, several state and federally listed threatened, endangered, or special concern species have the potential to occur within the watershed or within Fayette and Scott Counties, **Table 4** (pages 15 and 16).

Habitat for some of these species is present within the watershed, so management activities that create or enhance habitat for these species (i.e., tree plantings, wetland creation) and improve water quality (both within the watershed and in the receiving streams) would have opportunity for additional funding. Habitat creation and/or enhancement would most likely be limited to the greenways and parks within the watershed, and in the rural portions of the watershed.

TABLE 4
THREATENED, ENDANGERED, AND SPECIAL CONCERN SPECIES

			US	KY
Common Name	Scientific Name	Agency*	Status**	Status**
Amphibians				
Northern leopard frog	Rana pipiens	KSNPC, KDFWR	-	S
Mussels				
Clubshell	Pleurobema clava	USFWS	LE	E
Rayed bean	Villosa fabalis	KSNPC	LE	X
Birds				
American coot	Fulica americana	KSNPC, KDFWR	-	E
Bald eagle	Haliaeetus leucocephalus	KDFWR	-	Т
Bank swallow	Riþaria	KSNPC, KDFWR	-	S
Barn owl	Tyto alba	KSNPC, KDFWR	-	S
Bewick's wren	Thryomanes bewickii	KSNPC	SOMC	S
Black-crowned Night-				
heron	Nycticorax	KSNPC, KDFWR	-	Т
Blue-winged Teal	Anas discors	KSNPC, KDFWR	-	Т
Bobolink	Dolichonyx oryzivorus	KSNPC, KDFWR	-	S
Brown Creeper	Certhia americana	KDFWR	-	Е
Canada Warbler	Cardellina canadensis	KDFWR	-	S
Dark-eyed Junco	Junco hyemalis	KSNPC, KDFWR	-	S
Double-crested				
Cormorant	Phalacrocorax auritus	KSNPC, KDFWR	-	E
Henslow's sparrow	Ammodramus henslowii	KSNPC, KDFWR	-	S
Northern shoveler	Anas clypeata	KSNPC, KDFWR	-	E
Lark sparrow	Chondestes grammacus	KSNPC, KDFWR	-	Т
Mississippi kite	lctinia mississippiensis	KDFWR	-	S
Northern shoveler	Anas clypeata	KSNPC, KDFWR	-	E
Osprey	Pandion haliaetus	KDFWR	-	Т
Peregrine falcon	Falco peregrinus	KSNPC, KDFWR	PS-LE	E
Red-breasted nuthatch	Sitta Canadensis	KDFWR	-	Е
Savannah sparrow	Passerculus sandwichensis	KSNPC, KDFWR	-	S
Sharp-shinned hawk	Accipiter striatus	KDFWR	-	S
Sedge wren	Cistothorus platensis	KSNPC, KDFWR	-	S
Vesper sparrow	Pooecetes gramineus	KSNPC	-	Е
Yellow-crowned Night-	•			
heron	Nyctanassa violacea	KSNPC, KDFWR	-	Т


TABLE 4 THREATENED, ENDANGERED, AND SPECIAL CONCERN SPECIES

			US	KY
Common Name	Scientific Name	Agency*	Status**	Status**
Insects				
Garman's cave beetle	Pseudanophthalmus horni	KSNPC, KDFWR	-	S
Northern hairstreak	Satyrium favonius ontario	KSNPC, KDFWR	-	S
Sedge sprite	Nehalennia irene	KSNPC, KDFWR	1	Е
American burying beetle	Nicrophorus americanus	KSNPC	LE-X	X

Mammals				
Gray myotis	Myotis grisescens	KSNPC, USFWS	LE	Т
Northern long-eared bat	Myotis septentrionalis	KDFWR, USFWS	LT	Е
_		KSNPC, USFWS,		
Indiana bat	Myotis sodalis	KDFWR	LE	E
Least weasel	Mustela nivalis	KSNPC, KDFWR	-	S
Plants				
Marsh marigold	Caltha palustris	KSNPC	-	X
Western waterweed	Elodea nuttallii	KSNPC	-	Т
Svenson's wildrye	Elymus svensonii	KSNPC	SOMC	Т
White walnut	Juglans cinerea	KSNPC	SOMC	Т
Grape honeysuckle	Lonicera reticulate	KSNPC	-	Т
Hispid falsemallow	Malvastrum hispidum	KSNPC	-	Т
Stemless evening				
primrose	Oenothera triloba	KSNPC	-	Т
	Onosmodium			
Hairy false gromwell	hispidissimum	KSNPC	-	E
Mock orange	Philadelphus inodorus	KSNPC	-	Т
Globe bladderpod	Physaria globosa	KSNPC, USFWS	LE	E
Nodding rattlesnake-root	Prenanthes crepidinea	KSNPC	-	S
Water stitchwort	Sagina fontinalis	KSNPC	-	E
Purple oat	Schizachne purpurascens	KSNPC	-	Т
Yellow nodding ladies-				
tresses	Spiranthes ochroleuca	KSNPC	-	Т
Buffalo clover	Trifolium reflexum	KSNPC	-	E
Running buffalo clover	Trifolium stoloniferum	KSNPC, USFWS	LE	E
Softleaf arrowwood	Viburnum molle	KSNPC	-	S
Walter's violet	Viola walteri	KSNPC	-	Т

^{*} USFWS records are from the Cane Run watershed; KDFWR records are from USGS Quadrangles Lexington East, Lexington West, Centerville, and Georgetown; KSNPC records are from Fayette and Scott Counties.

^{**} Abbreviations are as follows: LE = Listed Endangered, PS = Partial Status (status only applies to a portion of the species range), SOMC=Species of Management Concern, E = Endangered, T = Threatened, S = Special Concern, X = Extirpated

Of the nine federally listed species, only four potentially have suitable habitat in the watershed. Globe bladderpod is a federal candidate species for listing that is found in dry to mesic limestone woods (Jones, 2005). This habitat type could occur in the rural portion of the watershed in northern Fayette County and Scott County, but is unlikely to occur in the urbanized areas. Running buffalo clover (*Trifolium stoloniferum*) is known to occur within Fayette County (Ashland – historic home of Henry Clay) and Scott County, and its habitat varies from stream banks and low moist forests to open woods and cemeteries (Slone and Wethington, 2001). It also requires filtered sunlight and moderate periodic disturbance such as grazing. Habitat with this type of disturbance could occur within the agricultural portions of the Cane Run watershed (i.e., Kentucky Horse Park). Projects to improve Cane Run water quality (i.e., stream restoration, riparian buffer creation/enhancement, wetland creation) could impact both plant species during construction activities. Surveys for these species should be conducted prior to any land disturbance.

Indiana bats (*Myotis sodalis*) and northern long-eared bats (*Myotis septentrionalis*) utilize floodplain, riparian, and upland forests for foraging and roosting habitat in the summer. This habitat does exist in the agricultural portions of the watershed. Riparian trees adjacent to Cane Run, wood lots, and fencerow trees in the agricultural portion of the watershed could provide potential summer roosting habitat for these bats. According to aerial mapping, this type of habitat, while present, is uncommon within the Cane Run watershed. Tree plantings along Cane Run could provide potential roosting habitat for both species, and improvements to water quality of Cane Run could improve forage for both bat species. Open pastures, and the riparian area of Cane Run, in the rural areas, could provide foraging, nesting, or other types of habitat to a few of the state-listed species (i.e., barn owl, least weasel).

Of the other federally listed species, habitat does not occur in the watershed, or the species is not federally listed in this region. American burying beetle (*Nicrophorus americanus*) and rayed bean (*Villosa fabalis*) are considered extirpated, and the peregrine falcon (*Falco peregrinus*) is not listed for this part of its range. Gray bats (*Myotis grisescens*) utilize hibernacula caves for year-round roosting. There are no known hibernacula caves within the Cane Run watershed. Additionally, gray bats forage over large bodies of water (i.e., rivers and lakes), which are not present within the watershed. Clubshell mussels (*Pleurobema clava*) are large river species (Slone and Wethington, 2001). There are no large rivers in the watershed.

While consideration of threatened and endangered species is important, consideration of exotic and invasive species in the watershed are also important. Exotic invasive species of plants can wreak havoc with ecological balance, creating trouble for rare and common species alike, and degrade waterways and interfere with water uses. Per Jim Lempke (personal communication, 2010), Curator of Native Plants and Natural Ecosystems for the Arboretum, the following exotic, invasive species have been found in the Arboretum Woods, which is located in central Lexington (in order from highest numbers to lowest): wintercreeper (Euonymus fortunei), bush honeysuckle (Lonicera maackii), Japanese honeysuckle (Lonicera japonica), burning bush (Euonymus alata), white mulberry (Morus alba), oriental bittersweet (Celastris orbiculatus), multiflora rose (Rosa multiflora), garlic mustard (Alliaria petiolata), privet (Ligustrum vulgare), English ivy (Hedera helix), Norway maple (Acer platanoides), rose of Sharon (Hibiscus syriacus), wayfaring tree (Viburnum lantana), Japanese knotweed (Polygonium cuspidatum), bird cherry (Prunus avium), and buckthorn (Rhamnus davurica).

Tree of heaven (Ailanthus altissima) is not currently in the Arboretum Woods but has been found not far from the woodland and has been removed in large numbers from the Arboretum. These exotic invasive species are also expected to be found elsewhere in Central Kentucky, including the Cane Run watershed, particularly along wooded riparian corridors.

K. Point Sources and Municipal Utilities

I. Drinking Water Service

Drinking water utilities provide water for indoor purposes such as drinking, food preparation, bathing, washing clothes and dishes, flushing toilets, and outdoor purposes such as watering lawns and gardens. Raw water is withdrawn from surface or groundwater sources, treated for public consumption, and then distributed to area residents.

Two drinking water utilities service residents of the Cane Run watershed: Kentucky-American Water Company (KAWC) and Georgetown Municipal Water and Sewer Service (GMWSS). The service area for GMWSS, including most of the Scott County portion of the watershed, is shown on **Exhibit 8** (Appendix A). The KAWC services most of the remaining portion of the watershed.

The Federal Safe Drinking Water Act Amendments of 1996 require states to analyze existing and potential threats to each of its public drinking water systems. Source Water Protection Plans assess the quantity of water used in a public water system and to formulate protection plans for the source waters used by these systems.

Raw water for KAWC is obtained from three sources: Kentucky River, Jacobson Reservoir on East Hickman Creek, and Lake Ellerslie on West Hickman Creek. The Kentucky River is the predominant supply of raw water for the system, providing 80% of the service area's daily consumption. The Kentucky River is utilized at Pool 9 and at Pool 3.

Raw water for the GMWSS is obtained from the Royal Spring Aquifer. To fulfill the requirements of the Safe Drinking Water Act, a wellhead protection plan was developed to identify potential sources of pollution into the water supply (Royal Spring Water Supply Protection Committee, 2003). The supply protection area for Royal Spring Aquifer is shown in **Exhibit 8** (Appendix A). Per the plan, the primary pollution concerns in the Royal Spring recharge area include the potential for leaking storage tanks and spills that allow chemical contaminants or petroleum products to enter the groundwater. Additional concerns were agricultural chemicals and sediment from erosion or construction. The wellhead protection plan is included in Appendix B.

Groundwater Protection Plans (GPPs) are required for anyone engaged in activities that have the potential to pollute groundwater. These activities include anything that could leach into the ground, including septic systems and pesticide storage. Kentucky Administrative Regulation 401 KAR 5:037 does not require GPPs to be submitted to the Cabinet for review and approval unless called in by Department for Environmental Protection inspectors, the

Groundwater Section of the Watershed Management Branch, or Division of Enforcement. Therefore, it is unknown how many GPPs have been developed in the Cane Run watershed.

2. Permitted Dischargers

All dischargers to waters of Kentucky are required to obtain a Kentucky Pollutant Discharge Elimination System (KPDES) permit including concentrated animal feeding operations (CAFOs), combined sewer overflows (CSOs), individual residences, Kentucky Inter-Municipal Operating Permits (KIMOPs), mining, municipal, industrial, oil, and gas. KPDES facilities were researched for the Cane Run watershed utilizing a combination of data available from the KDOW and USEPA. In total, there are 19 facilities with KPDES permits within the Cane Run watershed. Six of these KPDES permits have expired since 2011 or later. The locations of the permit holders are shown in **Exhibit 9** (Appendix A). The facilities and their discharges are summarized in **Table 5** (pages 20 and 21).

Information maintained by the EPA Enforcement and Compliance History Online (ECHO) database was reviewed in May 2016 for permit violations and exceedances that occurred in the previous three years. Five facilities had significant violations from the specified period including: Penske Truck Leasing Company LP (KY0103691); Spindletop Mobile Home Park (MHP; KY0081213); Georgetown Estates (KY0081221); Maple Grove MHP (KY0083321); and H&R Oil Company Inc. (KY0100960).

Penske Truck Leasing Company, LP had significant violations associated with the discharge of chlorine and ammonia for three quarters and had two notices of violation (NOV) in the previous five years. The facility's permit was terminated in 2014, after which they were placed on a "No Discharge" Operating Permit. H&R Oil Company Inc, a petroleum bulk station, has had significant violations in nine quarters for total suspended solids, and continues to have compliance problems for suspended solids.

Three of the permitted dischargers (Spindletop MHP, Maple Grove MHP, and Georgetown Estates) with significant violations are associated with sewage treatment. The reoccurrence of significant violations from 2013 -2016 suggests that the underlying problem has not been addressed at these facilities. Each of these facilities has regularly had significant violations for biological oxygen demand (BOD) and ammonia, as well as elevated *E. coli*. Spindletop MHP has also had significant violations for high chlorine levels.

Spindletop MHP (KY0081213) is a permitted package sewage treatment facility located on Lisle Road near US 25 near Fayette / Scott County border. Per the 2007 KPDES permit application, the facility serviced 265 lots and was zoned for 150 more. The current permit expires in 2019. The design flow capacity of the facility is 0.092 million gallons per day (MGD; 0.14 cfs). According to discharge monitoring reports, flows regularly exceeded this capacity during wet weather, reaching as high as 0.47 MGD (0.72 cfs) in records reviewed since January 2014. Significant violations occur regularly each quarter, even after a state administrative order of consent fined the operators thirty thousand dollars (\$30,000) in 2013 due to persistent violations.

TABLE 5 KPDES DISCHARGERS IN THE CANE RUN WATERSHED

		SIC Code /	
Permit No.	Discharger Name	Type of Discharge	Notes*
		3577 / Computer Peripheral Equipment,	Noncompliance for temperature last 5 consecutive
KY0001317	Lexmark International Inc	NEC	quarters.
		3229 / Pressed and Blown Glass and	
KY0002739	GE KY Glass LLC	Glassware, NEC	Permit expired in 2011.
			Significant violations in 11 of last 12 quarters for
		6515 / Operators of Residential Mobile	BOD, chlorine, and ammonia. Noncompliance for
KY0081213		Home Sites	Ist quarter 2016.
		6515 / Operators of Residential Mobile	Significant violations in 5 quarters, including last 2
KY0081221	8	Home Sites	quarters of 2015 for BOD and ammonia.
		6515 / Operators of Residential Mobile	Significant violations for BOD and ammonia in 5
KY0083321	Maple Grove MHP	Home Sites	quarters (2014-2015).
			Noncompliance for temperature last 5 consecutive
KY0097624	Lexmark International Inc	3579 / Office Machines, NEC	quarters.
			Noncompliance for copper last 9 consecutive
KY0110817	Baker Iron & Metal Company Inc	5093 / Scrap and Waste Materials	quarters.
			Significant violations in 9 of last 12 quarters for total
		5171 / Petroleum Bulk Stations and	suspended solids. Noncompliance I'st quarter
KY0100960	H&R Oil Company Inc	Terminals	2016.
			Significant violations in 3 quarters of 2014 for
		7513 / Truck Rental and Leasing, Without	chlorine and ammonia. Permit Terminated in 2014.
	Penske Truck Leasing Company LP		Issued a "No Discharge" Operating Permit.
KYG840002	Vulcan Construction Materials LLC	1422 / Crushed and Broken Limestone	No violations reported within last 3 years.
	ATS Construction		Noncompliance 2nd quarter 2015. Analysis not
KYG110028	Plant #16	2951 / Asphalt Paving Mixtures and Blocks	reported.
KYG110162		3273 / Ready-Mixed Concrete	No violations reported within last 3 years.
KYG910077	Speedway SuperAmerica #1102	5541 / Gasoline Service Stations	Permit expired in 2011.
KYR001230	Central Kentucky Processing	3398 / Metal Heat Treating	Permit expired in 2013.
KYR001527	U.S. Postal Service	4311 / United States Postal Service	Permit expired in 2013.

TABLE 5 KPDES DISCHARGERS IN THE CANE RUN WATERSHED

		SIC Code /	
Permit No.	Discharger Name	Type of Discharge	Notes*
		4173 / Terminal and Service Facilities for	
KYR003088	LFUCG - Transit Authority	Motor Vehicle Passenger Transportation	No violations reported within last 3 years.
KYR003586	Bluegrass Auto Parts	5015 / Motor Vehicle Parts, Used	No violations reported within last 3 years.
			One quarter noncompliance (4th qtr 2013). Permit
KYR003823	ATS Construction - Plant #12	2951 / Asphalt Paving Mixtures and Blocks	terminated in 2015.
	R & L Carriers - Lex Service		
KYR003934	Center	4213 / Trucking, Except Local	No violations reported within last 3 years.
		4173 / Terminal and Service Facilities for	·
KYR004161	Lextran Headquarters Complex	Motor Vehicle Passenger Transportation	No violations reported within last 3 years.

^{*} Data was analyzed for 2013 - 2015 with limited data available for 1st quarter 2016.

Georgetown Estates Mobile Home Park (KY0081221) is a permitted package sewage treatment facility located on Lisle Road near US 25 near Fayette / Scott County border, adjacent to the Spindletop Mobile Home Park. Per the 2007 KPDES permit application, the facility services 260 lots and is zoned for 250 more. The current permit expires in 2019. The design flow capacity of the facility is 0.04 MGD (0.06 cfs). Discharge monitoring reports indicate that flows regularly exceeded this capacity during wet weather, reaching as high as 0.25 MGD (0.38 cfs) in records reviewed since January 2014. Significant violations occur regularly each quarter. Per a January 19, 2017 article in the News Graphic (Adkins, 2017), problems with collapsing sanitary sewer infrastructure inside the park led a prospective buyer to withdrawal its bid to buy the park. Georgetown Mayor Prather and former Scott County Judge-Executive George Lusby "have described the situation as Scott County's most critical environmental crisis."

Maple Grove Mobile Home Park (KY0083321) is a permitted package sewage treatment facility located on US 25 in Fayette County. Approximately 100 units are located in the park based on sales advertisements. The current permit expires in 2019. The design flow capacity of the facility is 0.03 MGD (0.05 cfs). Discharge monitoring reports indicate that the flow at this facility is maintained at the capacity flow. Significant violations occur regularly each quarter, including *E. coli* concentrations routinely at 60,000 colonies per 100mL (more than 250 times the limit).

3. Stormwater Utilities

Stormwater discharges from municipal sources are permitted under the Clean Water Act. Stormwater runoff is commonly transported through municipal separate storm sewer systems (MS4s), which are defined as:

"A conveyance, or series of conveyances, that include roadways with drainage systems, streets, catch basins, curbs, gutters, ditches, man-made channels or storm drains that are owned and/or operated by the government, state, city, town, county, district or other association or public body or utility having jurisdiction over disposal of stormwater that discharges into the waterways of the Commonwealth of Kentucky; is designed or utilized for collecting or conveying stormwater; or is not a combined sewer and is not part of a publicly owned treatment facility."

MS4 permits (administered by KDOW) are required to discharge stormwater to Kentucky's creeks, streams, and other waterways. MS4s are categorized into Phase I MS4s, which includes medium and large cities or counties with populations over 100,000, and Phase II MS4s, which includes small urbanized areas and some counties. All Phase I MS4s and some Phase II MS4s have individual permits in Kentucky, but most Phase II MS4s are covered under a general permit.

Three MS4 permittees are located within the Cane Run watershed: LFUCG is a Phase I MS4, City of Georgetown (along with Georgetown College and Scott County) is a Phase II community with a general permit, and Kentucky Transportation Cabinet (KYTC) has an individual stormwater MS4 permit. The infrastructure associated with these permits, including

pipes, basins / ponds, and other best management practices are shown in **Exhibit 10** (Appendix A).

a. LFUCG Consent Decree

The March 14, 2008 Consent Decree (United States, 2008) was filed by LFUCG to resolve the lawsuit led by the EPA and Commonwealth of Kentucky against violations of the Clean Water Act by LFUCG. The stated objective of the Consent Decree is:

"It is the express purpose of the Parties in entering this Consent Decree to further the objectives of the CWA [Clean Water Act]...and to eliminate SSOs, Unpermitted Discharges, Unpermitted Bypasses and Exceedances, to eliminate and prevent CWA permit violations, and, specifically with respect to LFUCG's Stormwater Quality Management Program ("SWQMP"), ensure implementation of a SWQMP that reduces the discharge of pollutants to the maximum extent practicable, and require implementation of measures to ensure compliance with LFUCG's MS4 Permit."

The Consent Decree contains compliance measures that relate to the storm sewer system as well as the sanitary sewer system and additional environmental projects. For the Storm Sewer System, the Consent Decree implements the following compliance measures:

- SWQMP (Section 11) Implementation of the SWQMP (LFUCG, 2008a) and enforcement of the "Performance Standards" stated therein.
- Legal Authority (Section 12) Numerous measures that confer legal authority to
 LFUCG to adopt and/or maintain ordinances that enforce the stormwater program
- Funding (Section 13) Establishment of a stormwater management fee to fund stormwater management services
- Personnel, Training, and Equipment (Section 14) Provide annual education on and obtain equipment necessary for Consent Decree compliance.
- Two Separate Environmental Projects (SEP) requiring 1) a minimum of one million dollars be spent to provide stream bank stabilization, habitat restoration and greenway creation to Cane Run at Coldstream Park, and 2) a minimum of \$230,000 be spent on one or more green infrastructure projects for the management of wet weather flows.

All Consent Decree related materials may be accessed on http://www.lexingtonky.gov/.

b. MS4 Permit

The Phase I MS4 Permit for LFUCG (KPDES No. KYS00002 AI No. 74551) went into effect on June 1, 2015 with a five-year duration period. The permit requires a comprehensive wet weather plan and implementation of a program that addresses eight program elements:

- Public Education and Outreach
- Public Participation and Involvement

- Illicit Discharge Detection and Elimination
- Construction Site Stormwater Runoff Control
- Post-Construction Stormwater Management in New Development and Redevelopment
- Pollution Prevention/Good Housekeeping for Municipal Operations
- Industrial Facility Stormwater Pollution Prevention
- Water Quality Monitoring

The permit applies to the entire urban-county government area, but the Illicit Discharge Detection and Elimination (IDDE) Program (except for the Industrial Facilities Program), Pollution Prevention in Residential and Commercial Areas, and Pollution Prevention for Municipal Operations only applies inside the Urban Service Boundary. The Storm Water Quality Management Program (SWQMP) developed by LFUCG must meet the minimum requirements specified in the permit for each of these programs. The content and provisions of the SWQMP are not considered permit conditions but a tool to ensure permit compliance.

LFUCG's MS4 permit may be viewed on-line at the Stormwater Web Page (http://www.lexingtonky.gov/).

The City of Georgetown has been an MS4 permittee since 2005, covered under the general Phase II MS4 permit. Georgetown College became a permittee in 2010, achieving program compliance by co-permitting with Georgetown. Scott County was permitted under the general stormwater permit effective May 1, 2018, when a new five-year MS4 general permit was issued by KDOW. Georgetown, Georgetown College, and Scott County achieve program compliance as co-permitees. The general Phase II MS4 permit contains the six minimum control elements, including same program elements as the LFUCG Phase I permit, except for the industrial facility and water quality monitoring elements. The requirements under these elements differ between the Phase I and Phase II permits. The permit also requires the development of a SWQMP.

KYTC was regulated under the general stormwater permit as a co-permitee with other MS4s starting in 2003. KYTC's individual stormwater permit (KYS000003) became effective October I, 2012. KYTC is regulated as a Phase II entity; the permit applies to MS4 conveyances and outfalls for KYTC facilities and right-of-ways located within the urbanized boundaries of the MS4s across Kentucky. Thus, they partner with over 40 MS4 communities in Kentucky to implement practices to protect waterways from stormwater pollution. The general Phase II MS4 permit contains the six minimum control elements, including same program elements as the LFUCG Phase I permit, except for the industrial facility and water quality monitoring elements. The permit also requires the development of a SWQMP.

c. Stormwater Quality Management Plan

The SWQMP is a comprehensive, detailed set of procedures and protocols for implementing the stormwater best management programs to manage the quality of

stormwater discharged from the storm sewer system. The content of the SWQMP is based on the terms and conditions of the MS4 permit.

The method used to evaluate the program elements of the SWQMP consists of assessing whether the "measurable goals" within each program element have been met. The "measurable goals" consist of clearly defined tasks and schedules.

The LFUCG SWQMP (2016) includes a total of 186 measurable goals among 10 program elements. In addition to the 8 program elements in the MS4 permit, there are also program elements addressing reporting and recordkeeping and total maximum daily loads and impaired waters.

d. Stormwater Pollution Prevention Plans (SWPPP)

Chapter 16, Article 10, Division 3 of the LFUCG Code of Ordinances (LFUCG, 2010) specifically allows LFUCG to regulate industrial and high-risk commercial facilities to develop and implement SWPPPs and monitoring plans. The purpose of this program is to reduce pollutant loadings and improve the quality of stormwater runoff discharged from these areas into the local waterways.

As shown on **Exhibit 9** (Appendix A), LFUCG identified 11 industrial / high-risk commercial facilities in need of a SWPPP within the Cane Run watershed. The pollutants of concern for these facilities are listed in **Table 6**, page 26. Of these 11 facilities, 8 have KDPES permits.

For the most part, these SWPPPs indicate that the largest potential stormwater contaminants from these sites are due to vehicle maintenance fluids (fuel, antifreeze, battery leakage, and oil), parking lot runoff, de-icing chemicals (salt), runoff from scrap metal piles (metals), and soil erosion. Chemical parameters that would reflect pollution from these sites in the watershed include oil and grease, chemical oxygen demand, total residual chlorine, and total suspended solids.

TABLE 6 POLLUTANTS OF CONCERN IN INDUSTRIAL AND HIGH-RISK COMMERCIAL FACILITIES IN THE CANE RUN WATERSHED

Facility	Pollutants of Concern	
	Fuels, oils, hydraulic fluids for equipment and operation of facility. Solids, dust, and	
Baker Iron & Metal Company Inc	particulates. Iron, zinc, aluminum, and other heavy metals from scrap metal.	
	Fuel, oils, antifreeze, acid (from batteries), transmission fluid, brake fluid, asbestos from brake	
Bluegrass Auto Parts	linings, and acid from batteries.	
Central Kentucky Processing (CKP) Heat		
Treating	Oil, cleaner, trichloroethylene, hardening salt, and quench salt.	
	Fuel and oil. Parameters sampled for include total suspended solids, oil and grease, benzene,	
H&R Oil Company Inc	naphthalene, total residual chlorine, and xylene.	
	Vehicle fuel and oil, horse manure, sand and salt for road maintenance during icy conditions.	
*Kentucky Horse Park	Runoff from scrap metal.	
*Kentucky Utilities	Pesticide, fertilizer, hazardous waste, maintenance chemicals, and fuel and oil.	
*Lexel Imaging Systems	Parameters tested for chemical oxygen demand, oil and grease, pH, and total suspended solids.	
	Petroleum products (fuels, oils, etc.), demolition projects with sediment containment /	
Lexmark International, Inc.	controls, cooling tower chemicals	
LexTran	Fuel, oil, antifreeze from vehicles, and acid from automotive batteries. Also cleaning solvents.	
	Fuel and oil from vehicles, and other pollutants associated with vehicle maintenance. Waste	
U.S. Postal Services	handling, and damaged mail.	
Vulcan Construction Materials LLC Georgetown		
Quarry	Fuel, and erosion from mining activities.	

^{*}Indicates a facility without a KPDES Permit

e. Stormwater Controls

Stormwater controls describe a wide variety of Best Management Practices (BMPs) used to treat, store, or otherwise manage the quality or quantity of stormwater. Four general types of stormwater controls have been identified within the Cane Run watershed: detention basins, retention basins, underground basins, and other water quality BMPs. The locations of these structures are shown in **Exhibit 10** (Appendix A).

A detention basin is a stormwater control basin designed to hold water when it rains and completely drain afterward. During a rainstorm, a detention basin can store a large quantity of water that will be allowed to discharge slowly. There are 133 detention basins in the Cane Run watershed in Fayette County and 7 in Scott County. The average basin in Fayette County is 0.29 acre in size, with the majority located on commercial lands, as shown in **Table 7**. Sizes of the Scott County basins were not available.

TABLE 7
SUMMARY OF LFUCG STORMWATER CONTROLS
IN THE CANE RUN WATERSHED

Stormwater Control Type	Number of Controls	Total Area (ac)	Average Area (ac)			
Detention Basin						
Commercial	110	24.9	0.22			
Residential	23	13.9	0.6			
Totals	133	38.8	0.29			
Retention Pond						
Commercial	6	13.9	2.32			
Residential	I	2.3	2.3			
Total	7	16.2	2.32			
Other Controls						
Underground Basins	5	N/A	N/A			
Other BMPs	24	N/A	N/A			

A retention pond maintains a permanent pool of water and can provide greater improvements in water quality when used to capture and treat stormwater runoff. These structures also slow incoming runoff and facilitate greater settling of sediment and can filter pollution from runoff through natural bio-chemical activity in the pond. Retention ponds also permanently hold water instead of draining within a few days of a precipitation event. As shown in **Table 7**, there are seven retention ponds in the Cane Run watershed in Fayette County. The average pond is 2.32 acres in size with the ponds on commercial lands averaging slightly larger in size than those on residential lands. One retention pond is in Scott County.

Retention ponds can be retrofitted to add enhanced removal capacities for suspended solids, nutrients, metals, and fecal coliforms. Typically, the retrofit involves the enhancement of the littoral shelf, or area in which wetland vegetation can grow. LFUCG surveyed each retention pond and detention basin larger than 0.4 acres in the Cane Run watershed for its retrofit potential to improve water quality. Thirty-seven (37) ponds and basins were identified for retrofit potential. The opportunities included extending detention to increase settling of pollutants, improving the channel condition to lengthen the travel time through the basin, promoting infiltration through various practices, and other opportunities such as education of residents and businesses near the basin, litter control, and stabilization of eroded areas. A Basin Retrofit Data Sheet for each evaluated basin is included (Appendix C).

Underground basins include underground pipe systems and vaults used to store stormwater. Five underground basins are in the Cane Run watershed, all in Fayette County, with locations at Arlington Elementary, Rite Aid, The Hope Center, Faith Community Housing, and Russell Cave Hope VI Development.

Numerous other stormwater water quality BMPs are located within the Cane Run watershed, including 20 in Fayette County and 47 in Scott County. These BMPs include water quality units, oil-water-debris separators, basin filters, inlet inserts, rain gardens, baffle boxes, permeable pavement, and other BMPs.

f. Applicable Laws and Ordinances

While numerous ordinances apply to watershed management and affect water quality in various manners, some ordinances are particularly applicable to watershed management. The LFUCG Code of Ordinances (LFUCG, 2010) and City of Georgetown Code of Ordinances (2015) were reviewed and briefly summarized. While some areas are addressed with specific ordinances, sinkholes, karst areas, and other special environmental areas are addressed through BMPs and site plans associated with other ordinances. Neighborhood specific ordinances, deed restrictions, and design standards not addressed herein may have applicability to watershed management in specific areas. The following sections of the local code of ordinances are applicable to watershed management with summaries of these ordinances included (Appendix D).

LFUCG Code of Ordinances

Chapter 12: Housing

Article III: Riparian Areas

Chapter 16: Sewage, Garbage, Refuse and Weeds

Article IX: Infrastructure and Environmental Hearing Board

Article X: Stormwater Discharges

Article XI: Sanitary Sewers Private Infiltration and Inflow

Article XIII: Sanitary Sewer Capacity Assurance Program (CAP)

Article XIV: Water Quality Management Fee

Chapter 20: Zoning

Article XIX: Floodplain Conservation and Protection

Article XXVI: Tree Protection Standards

City of Georgetown Code of Ordinances

Chapter 8: Flood Prevention
Chapter 18.1 Trees and Shrubbery
Chapter 19 Utilities
Article V Illicit Connections
Chapter 20 Zoning and Land Use

4. Sanitary Sewer System and Waste Management

In Fayette County, the Cane Run watershed contains over 15 miles of trunk sewer, 110 miles of collection sewer, 10 miles of force main, 3,400 manholes, and 15 pump stations (LFUCG 2008b). In Scott County, there are over 44 miles of sanitary pipe, 1,100 manholes, and 13 pump stations.

A total of 19 sanitary sewer overflow (SSO) locations were identified in this watershed, of which 10 are manhole SSOs, 5 are pump station SSOs, and 4 are basement SSOs. No known SSOs have occurred from the Georgetown sanitary system. The Lexington sanitary sewer lines in the Cane Run watershed flow to the Town Branch Wastewater Treatment Plant (WWTP), which discharges into the Town Branch Watershed. **Exhibit 11** (Appendix A), shows the locations of the sanitary sewer pipes, pump station, and the locations of the SSOs documented in the Lexington Consent Decree. Most of these SSOs are in the headwaters of Cane Run and tributaries and occur during sustained rain events.

The LFUCG Consent Decree (United States, 2006) contains compliance measures that relate to the storm sewer system, sanitary sewer system, and additional environmental projects. Regarding the sanitary sewer system, the Consent Decree is divided into two sections (15 and 16). Section 15 requires capital improvement projects and short-term measures, sewer system assessment (SSA), pumping station evaluation, capacity assessment, a hydraulic model, and a Remedial Measures Plan (RMP). Section 16, Capacity, Management, Operation, and Maintenance (CMOM) Program requires the development of a CMOM self-assessment including an overflow response plan, capacity assurance plan (CAP), fats, oils, and grease (FOG) program, preventative maintenance program, and power outage and backup plans. These various programs and documents have been developed and are available at LFUCG's Consent Decree Web Site (http://www.lexingtonky.gov/epa-consent-degree).

Sanitary sewer assessments (LFUCG, 2011) found 4,970 manhole defects, 1,779 smoke testing defects (1 for every 321 feet inspected; 148 of which were major), 2 stormwater crossconnections, and 10,884 defects of sewer pipes identified by closed-circuit television inspections (1 for every 10.6 feet inspected). The remedial measures plan (LFUCG, 2012) discusses how these problems are to be addressed. The proposed remedial measures for the Cane Run watershed include installing new trunk lines, upsizing existing trunk lines, installing

new force main, putting in two wet weather storage tanks, and new pump stations at Expansion Area 3 and Sharon Village. These improvements are scheduled to be completed as summarized in **Table 8**, below. The wet weather storage tank located in Coldstream Research (lower Cane Run) park near I-75 was constructed in 2018 is and operational. This tank collects and stores water from the sanitary sewer system when there are spikes in volume caused by wet weather events (due to inflow and infiltration) until it can be treated by the wastewater treatment plant (WWTP).

Numerous improvements and sewer rehabilitation projects have occurred within the watershed on problems identified through the assessment. These improvements included numerous sump pump redirections, downspout redirections, cleanout installations, manhole replacements or improvements, pipe lining or replacement, and other projects. A notable improvement includes an upgrade to the Griffin Gate pump station from 150 gallons per minute (GPM) to 188 GPM. Locations of improvements and repairs as of 2016 are shown in **Exhibit 11** (Appendix A).

As part of the Consent Decree, LFUCG is obligated to implement a Capacity Assurance Program (CAP) for the sanitary sewer system. This program, established in 2013, only allows for new tap-ons if adequate capacity can be certified for the collection, transmission, and wastewater treatment systems. An alternative to this certification would be the use of a "banked credit system". Flow removed from qualified activities may be used to offset flow from new connections at an exchange ratio from the Consent Decree. Qualified activities include inflow/infiltration removal, off-line storage, and capacity enhancement projects. Real-time information concerning the available capacity, projects to increase capacity, and new tap-ons in each sewershed bank can be found at http://ctims.lexingtonky.gov/.

TABLE 8
LFUCG CANE RUN REMEDIAL MEASURES PLAN SCHEDULE

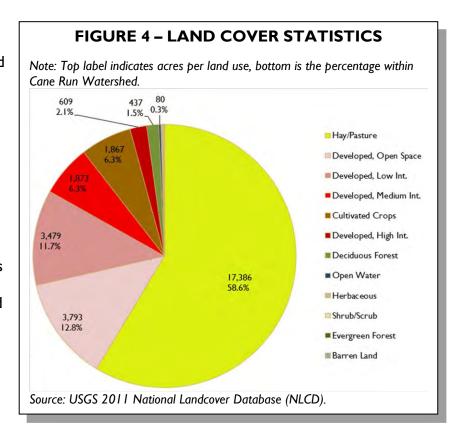
RMP Project Name	Construction Year	
Lower Cane Run Wet Weather Storage Tank	2018	
Expansion Area 3 Pump Station	2018	
Expansion Area 3 Force Main	2018	
Expansion Area 3 Trunk	2018	
Shandon Park Trunk	2018	
Winburn Trunk	2018	
Thoroughbred Acres Trunk	2018	
Sharon Village Pump Statjion and Force Main	2020	
Lower Griffin Gate Trunk	2018	
Upper Cane Run Wet Weather Storage Tank	2021	
Cane Run Trunk	2019	
LexMark Trunk A	2020	
LexMark Trunk B	2020	
New Circle Trunk A	2021	
New Circle Trunk B	2022	
Griffin Gate Rehabilitation	2020	

While LFUCG has a robust program to address SSOs from the public system, private sanitary sewer lateral lines can also be a source of bacteria pollution into the streams. Neighborhoods constructed in the 1970s and prior often have private lateral lines made of Orangeburg or clay pipe. Orangeburg pipe is bituminous fiber paper made from layers of wood pulp and pitch pressed together, and it degrades over time. Clay pipe can separate at the seams and break causing exfiltration into the groundwater or the karst system. Several neighborhoods within the Cane Run watershed were constructed prior to the 1970s, and many houses still have Orangeburg or clay lateral lines. LFUCG has a project underway to identify and rep/ace/repair failing laterals in the Highlands neighborhood, within the headwaters of the Cane Run watershed.

As discussed in "Permitted Dischargers" section, three failing package sewage treatment plants are in the Cane Run watershed servicing mobile home parks. Two of these facilities, Spindletop MHP and Georgetown Estates MHP are in Scott County, while Maple Grove MHP is in Fayette County.

The City of Georgetown has plans to extend sanitary sewers to the southern portion of Scott County from south Georgetown to the Scott County/Fayette County line along the US-25 corridor. The completion of this project would allow the opportunity to eliminate the two package treatment plants located at Georgetown Estates and Spindletop Mobile Home Park. It would also eliminate several older and failing septic systems along the corridor. A December 2018 article in the News Graphic (Scogin, 2018) announced that Georgetown contracted with an engineering firm to design additional sanitary sewer lines. It is anticipated that project construction will begin in the fall of 2019 and continue through 2021. As proposed, the sanitary sewer expansion project will add to the sanitary sewer collection system from the existing service area near the intersection of US 25 and Bypass US 62 to the intersection of US 25 and KY 1963, including sewer line that could provide service to Georgetown Estates and Spindletop Mobile Home Parks. An agreement still needs to be reached between GMWSS and the mobile home park owners associated with tie-in fees and the collection of sewage bills to help finance the project. Georgetown has applied for section 319(h) grant funding to repair/replace the laterals lines and perform work necessary to connect 500 mobile home units to the new sewer infrastructure. The proposed sanitary sewer line expansion by GMWSS will have capacity to service the Maple Grove Mobile Home Park.

L. Non-Point Sources and Land Management


I. Land Use

Because different types of land use contribute different types of pollution and stresses to the creek, identifying these land uses within the Cane Run watershed is important for watershed planning. The landcover of the watershed, according to the USGS 2011 National Landcover Database (NLCD), is shown in **Exhibit 12** (Appendix A) and summarized **Figure 4**, page 32.

Land use is dominated by hay/pasture, which accounts for approximately 59% of the watershed area. Open Space is the most common type of developed space in the watershed accounting for nearly 13% of the land use in the watershed, followed by low intensity developed (nearly 12%), medium intensity developed (6.3%), and cultivated crops (6.3%).

As hay/pasture land accounts for such a large proportion of land use in the watershed, nonpoint sources of pollution commonly associated with such land use may play a large role in the health of Cane Run and its tributaries. Horses, cattle, and other livestock may contribute direct inputs of fecal material or via runoff to Cane Run and its tributaries. This input of fecal material can raise the pathogen and nutrient levels of the streams. Row crops can also contribute nonpoint

source pollution due to the addition of fertilizers and pesticides, which may be carried via runoff into the streams. Sediment inputs from both livestock and row crops activities may also occur due to runoff from these land uses. Failing onsite sewage treatment (septic systems) may also be a source of nonpoint source pollution in the rural land use areas since they are located outside of the sanitary sewer coverage. The Scott County Health Department has identified several failing septic systems along the US 25 corridor south of Georgetown's urban boundary.

After hay/pasture, the most abundant land uses include developed spaces of open to medium intensity. The most common feature on this type of land use is single-family housing units. Lawn fertilizers (typically high in nitrogen and phosphorus), herbicides and pesticides are commonly applied in these zones to keep grass green. However, fertilizer may be carried into streams in runoff resulting in nutrient pollution problems and algal blooms in Cane Run and its tributaries. Often, household pets are associated with low-density residential areas and can contribute to fecal and nutrient pollution. Other threats to stream health and water quality exist, including roadway crossings, streamside businesses, sanitary sewer overflows, exfiltration from private sanitary lateral lines, and polluted runoff from impervious surfaces.

2. Zoning

Zoning is addressed in Chapter 20 of the Code of Ordinances for both the LFUCG and City of Georgetown. Zoning districts vary between Scott and Fayette County, so general groups were utilized for the purposes of this plan. The zoning districts for the watershed are shown in **Exhibit 13** (Appendix A) and a summary of the acreage and percentage in each district type are found in **Table 9**.

TABLE 9
GENERAL ZONING DISTRICTS

Zoning District	Acres	Percentage
A - Agricultural	20,148	67.9%
B - Business	1,218	4.1%
C - Conservation	48	0.2%
CC - Community Center	7	0.02%
ED - Economic Development	360	1.2%
I - Industrial	1,188	4.0%
M - Mobile Home	77	0.3%
MU - Mixed Use	0	0.0%
P - Professional	1, 4 31	4.8%
R - Residential	5,192	17.5%
Totals	29,669*	100%

^{*}Total acreage for zoning differs slightly from watershed area due to unknown overlap.

Agricultural zoning is the most prominent zoning area, comprising nearly 68% of the watershed. The agricultural greenbelt between Lexington and Georgetown is actively preserved by both communities to preserve the rural character of the area by promoting agricultural activities, and to discourage all forms of urban development, except for a limited amount of conditional uses such as horse sales establishments, commercial greenhouses, plant nurseries, and sales of agricultural products.

Residential zoned areas are the next most abundant zoned type with nearly 18% of the watershed, mostly in single-family residences. Professional zoning, consisting mostly of research parks, comprises nearly 5% of the watershed area while business (4.1%) and industrial (4%) also have some sizeable areas.

3. Impervious Surface

Impervious surfaces, such as roadways and rooftops, are surfaces which water cannot penetrate. Because these surfaces are unable to infiltrate water, precipitation runs off, subjecting subject streams to high flows during storm events and leading to erosion and further pollution. Impervious surfaces have been found to multiply in-stream discharge rates by two to five times for a given rain event.

In Fayette County, all impervious surfaces have been mapped, while in Scott County only building footprints and parking lots have been mapped. Based on these datasets, impervious surfaces account for 11% of the watershed area, as summarized in **Table 10**, below, and illustrated in **Exhibit 14** (Appendix A). Developed areas account for 87% of the imperviousness in the watershed. BMPs for improving infiltration should be targeted for the developed lands contributing the most to impervious surfaces in the watershed.

On impervious roadways, vehicles introduce numerous pollutants including oils, grease, rubber, and heavy metals (lead, zinc, copper). Some of these pollutants also accumulate when the vehicles are idle on parking lots, driveways, and other parking areas. Most heavy metals tend to accumulate and remain within vegetated ditches adjacent to the surface. Other roadway pollutants tend to be more mobile. Research indicates that the amount of pollutants in surface waters is proportional to the amount of average daily traffic. Also, in winter months, deicing salt transported through runoff can be a pollutant to surface waters. Roof runoff can also be high in certain metals and solids. In residential areas, lawn fertilization and pesticide applications, carried to streams through the storm sewer system, can also contribute to nonpoint source pollution. Additionally, runoff from impervious surfaces often has a higher temperature than receiving streams, which can negatively affect aquatic life.

TABLE 10
SURFACE PERMEABILITY BY LAND USE

Land Use Type	Impervious Acreage*	% Total Impervious in Watershed*	% Impervious by Land Use*
Developed, Low Intensity	1,096	33%	32%
Developed, Medium Intensity	910	28%	49%
Developed, High Intensity	4 81	15%	79%
Developed, Open Space	365	11%	10%
Hay/Pasture	319	9.7%	2%
Open Water	48	1.5%	60%
Cultivated Crops	37	1.1%	2%
Deciduous Forest	20	0.6%	5%
Barren Land	4	0.1%	26%
Evergreen Forest	2	0.1%	14%
Herbaceous	[0.0%	1%
Unknown	[0.0%	100%
Shrub/Scrub	0	0.0%	1%
Totals	3,284	100%	11%

^{*} Impervious data for Scott County only accounts for building footprints and parking lots and is therefore underrepresented.

4. Agricultural Land Use

Agricultural land accounts for approximately 65% (hay/pasture and cultivated crops) of land use in the watershed (**Figure 4**, page 32). Most agricultural zoned areas are in the green belt between the Lexington and Georgetown urban areas. Some smaller sections of agriculture land are also scattered inside the urban areas. Within Lexington, most of the urban agricultural areas are golf courses (Griffin Gate), local parks (Douglass Park, Shadybrook Park), or large public-school grounds (Winburn Middle School). One exception is that portions of the University of Kentucky Agricultural Experiment Station are located inside the LFUCG Urban Service Area.

Numerous thoroughbred horse and cattle farms are in the Cane Run watershed. The Kentucky Horse Park (a world-renowned equine theme park), Fasig-Tipton livestock auction house, Rood and Riddle Equine Hospital, numerous racing and training centers, and numerous prominent horse farms are scattered throughout the area. The Bluegrass Stockyards are located at 4561 Ironworks Pike, near I-75 with several large cattle farms in the watershed. The University of Kentucky Coldstream Dairy Farm Complex, located east of US 25 just south of I-64/I-75, represents one of the few dairies located in Fayette County. Several large row crop production farms are also located in the watershed.

The type of agricultural activity on these lands will affect the type of pollution produced. To estimate the number of livestock in the rural portion of Cane Run watershed, countywide estimates of the number of livestock were obtained from the 2012 Census of Agriculture (USDA, 2012). According to the census, a total of 718 farms with 114,857 acres are found within Fayette County and 838 farms with 127,479 acres in Scott County. Horses, cattle, and sheep are the top livestock inventory items and forage is most abundant row crop, followed by corn and soybeans. These values were used to estimate the agriculture land use in the Cane Run watershed based on the acreage of farms and the quantity of livestock or acreage of crops. The results are shown in **Table 11** (page 36). If the agricultural land use in Fayette and Scott County are typical of Cane Run, then an estimated 1,360 horses/ponies, 3,680 cattle/calves, and 160 sheep/lambs are in the Cane Run watershed. Additionally, croplands are estimated to include 3,430 acres of forage, 640 acres of corn, 540 acres of soybeans, 210 acres of tobacco, 80 acres of wheat, and 20 acres of vegetables.

TABLE 11 AGRICULTURAL STATISTICS ON FAYETTE AND SCOTT COUNTY FARMS, 2012

Livestock or Crop	Fayette County Quantity	Scott County Quantity	Fayette County Estimated Amount / Ag. Acre	Scott County Estimated Amount / Ag. Acre	Cane Run Watershed Estimated Quantity
Number of Farms	718	838			123
Average Size of Farm (acres)	160	152			156
Land in Farms (acres)	114,857	127,479			19,253
Horses and Ponies	11,105	4,501	0.097	0.035	1,360
Cattle and Calves	15,469	33,972	0.135	0.266	3,680
Hogs and Pigs	-	-	-	-	-
Sheep and Lambs	1,044	861	0.009	0.007	160
Forage (acres)	17,605	26,900	0.153	0.211	3,430
Corn (acres)	3,842	4,253	0.033	0.033	640
Soybeans (acres)	4,230	2,049	0.037	0.016	540
Tobacco (acres)	1,283	1,409	0.011	0.011	210
Wheat (acres)	347	790	0.003	0.006	80
Vegetables (acres)	127	157	0.001	0.001	20

5. Demographics and Community

A summary of the United States Census Bureau's 2010 Census statistics with 2014 estimates (U.S. Census Bureau, 2010) for the Fayette and Scott County census transects within the Cane Run watershed are shown in **Table 12** (page 37) to provide an overview of the area demographics. More specific statistics for individual tracts are shown in **Exhibit 15** (Appendix A).

Data was obtained from the American Fact Finder on May 12, 2015 for the 2014 American Community Survey 5-Year Estimates (U.S. Census Bureau, 2014). The population density in Cane Run watershed is higher than all of Scott County, but much lower than for all of Fayette County. Cane Run watershed residents tend to have lower income levels, are more frequently in poverty, and have lesser education levels than either Fayette or Scott County overall. Almost 50% of the population in Cane Run watershed have a high school education or less. Housing in the watershed tends to be older than in the counties. Approximately 40.2% of the housing units in the watershed are occupied by renters.

TABLE 12 CANE RUN CENSUS DATA SUMMARY

	Fayette	Scott	Cane Run
Census Statistic	County	County	Watershed
Population			
Total Population	295,803	47,173	83,250
Population Density (people/sq. mi.)	1,036	165	230
Income			
Per Capita Income	\$30,031	\$28,232	\$24,077
% Below Poverty	18.9%	11.0%	21.2%
Education (Adults 25 and older)			
% Education < 12th Grade	7.9%	9.0%	17.7%
% High School Diploma Only	17.1%	24.6%	29.8%
% College Degree or Above	41.2%	27.8%	22.7%
Age			
% Age < 18 Years	24.6%	29.1%	24.1%
Housing			
% Built Pre-1950	10.7%	11.2%	14.8%
% Housing Units Occupied by Renters	45.8%	29.3%	40.2%

Because many of the census tracts cross watershed boundaries and combine some distinct neighborhoods and communities, it is difficult to draw many localized conclusions about the demographics of the Cane Run watershed. Within the Cane Run watershed population densities generally ranged from 24 to over 2,700 people per mi² (U.S. Census Bureau, 2014). Per capita income ranges from approximately \$12,000 to almost \$50,000 by census tract. However, because many owners of larger horse farms do not have their primary residence on the property, these numbers do not include this information. Within the urban headwater section of the Cane Run watershed the percent of the population below poverty level is as high as 47% for some tracts, while the vast majority of the watershed north of the LFUCG Urban Service Area has less than 25% of the population below the poverty limit. Poverty even drops as low as 4% for some tracts (U.S. Census Bureau, 2014). Rental properties are common in both the urban and rural sections of the watershed, with the percentage of residents living in rental properties as high as 67% in some areas (U.S. Census Bureau, 2014).

The Cane Run watershed is somewhat unique in that most of the land is divided between relatively few property owners. Properties larger than 75 acres are shown in **Exhibit 16** (Appendix A). The landowners with the largest acreages in the watershed in public ownership include the Kentucky Horse Park, University of Kentucky Farms and Coldstream Research Campus, and LFUCG greenways/Kearney Hill Golf Links. Numerous large horse farms and equine facilities also comprise much of the area including Cane Run Farm, Castleton Lyons, Cobra Farm, Dan Scott Farm, Don Alberto Farm, Dromoland Farm, Dunford, Dunroven Stud, Eaton Farms, Fasig-Tipton, Hurricane Hall Farms, Marlendale, McLean Holdings, McPeek Racing, Mereworth Properties, Milestone Farm, Old Friends Farm, Peninsula Farm, Shylah

Farm, Spy Coast Farm, Summer Wind Farm, and Walnut Hall. Large cropland farms include Barton Brothers Farms and Ironworks Farm. Numerous other large family farms are in the area. Other large property holdings include Anderson Ramsey LLC, Con Robinson Company, and Sikura Properties. Griffin Gate Marriott's hotel and golf course, LexMark's large urban campus, and Vulcan Materials quarry (Georgetown Road) are also large business properties in the area. With a small number of landowners, efforts to improve the water quality using best management practices can be more easily targeted to key stakeholders.

Outside of large property owners, there are numerous neighborhood associations representing the residents of the area. The locations of these Neighborhood Associations are depicted in **Exhibit 17** (Appendix A). In Fayette County, neighborhoods at least partially within the Cane Run watershed include Spindletop, Glens of Greensdale, Belmont Farms, Highlands, Coldstream Station, Oakwood, Georgetown, Griffin Gate, Winburn, Green Acres-Hollow Creek-Breckinridge, Joyland, Radcliffe-Marlsboro, Elkhorn Park, Old Paris Place, North Pointe Neighbors, Bryan Station, North Limestone, Meadow Park, Meadows-Loudon, Castlewood, Northside, M L King, William Wells Brown. In Scott County, neighborhoods at least partially within the Cane Run watershed include Amerson Farms, Harmony Ridge, Sutton Place, Cassidy Heights, Stonecrest, Southgate, Southpoint, Mount Vernon, McMeekin, Hambrick Place, Indian Acres, Lancaster Heights, Old Armstrong, White Oak Village, The Enclave, Paynes Landing, Canewood, Ward Hall, McClelland View, McClelland Springs, Copperfield, Paynes Crossing, Bradford Place, Parkside, Willowbrook, Lancelot, Clayton Acres, Dream Chase Estates, Etterwood, Kentuckiana Farms, and Crestwood Ironworks. The watershed is within Fayette County Public School Board Districts 1, 2, and 3 and Scott County Elementary School Districts for Garth, Southern, Western, and Lemons Mill.

3. Watershed Management Activities

a. Kentucky River Basin Management Plan

In 2002, the Kentucky Watershed Management Framework completed the "Kentucky River Basin Management Plan" (KWRRI, 2002). This plan included summaries of each of the 97 watersheds in the Kentucky River Basin. Cane Run was analyzed as part of the North Elkhorn Creek Watershed.

The summary indicates that the North Elkhorn Watershed was identified as one of seven watersheds targeted for stakeholder mobilization, in the second cycle, for protection and restoration in the Kentucky River Watershed. Pathogens, sedimentation, and nutrients were the greatest concerns for the watershed. The watershed had "high" rankings for both observed impacts and potential impacts according to the management plan.

b. Greenway Master Plan

Greenways are linear corridors that can provide critical linkage and protection of natural and cultural resources. Issues, such as flooding, transportation, water quality, habitat loss, historic preservation, economic stimulation, recreation and fitness can be addressed and resolved by a multi-objective greenway system. In 2001 as part of the comprehensive

plan, LFUCG developed the Lexington-Fayette County Greenway Master Plan (LFUCG, 2001) to communicate the importance and need for greenways and recommends a countywide system of interconnected greenways. Greenways can include trails as well as conservation corridors.

Parks, greenways, and trails in the Cane Run watershed are shown in **Exhibit 18** (Appendix A). Parks in Fayette County include the Kentucky Horse Park, Kearney Hill Golf Links, Coldstream, Highlands, Oakwood, Douglass, Martin Luther King, Mary Todd, Marlboro, Green Acres, Elkhorn, Constitution, Brucetown, Dunbar, and Castlewood. The Legacy Trail is a prominent multi-use trail, which currently runs from Loudon Avenue in Lexington to the Kentucky Horse Park. Other proposed trails include the Cane Run Greenway Trail, the Constitution Greenway Trail, and the Citation Greenway Trail. While not part of the greenway plan, Marshall Park, Suffoletta Family Aquatic Center, and the Lisle Road Soccer Complex are parks located in Scott County.

The Cane Run Greenway Corridor extends along Cane Run and tributaries in the northern section of Fayette County. Within the corridor are the Kentucky Horse Park, Spindletop Research Park, Coldstream Park, and Coldstream Research Park. The Greenway Master Plan recommends the LFUCG focus on preserving the undeveloped floodplain between Newtown Pike and I-75 / I-64. The objectives of the conservation greenway include drinking water protection, water quality improvement, floodplain preservation, green space preservation, and wildlife habitat restoration.

LFUCG constructed a stream restoration project within Coldstream Park and adjacent to the Legacy Trail in 2019 to address many of these objectives. The project created a permanent greenway, reconstructed and stabilized eroded stream banks, installed native plant buffers, restored habitat, and constructed adjacent green infrastructure to treat stormwater runoff before it reaches the creek. The project will be monitored for five years, from 2019 through 2023, to evaluate project success.

c. BAE Cane Run Watershed Based Plan Implementation and Other Management Efforts

Stream restoration, stormwater improvements, conservation efforts, and water quality grants are ongoing in the Cane Run watershed. Numerous projects have been implemented as part of the BAE Cane Run Watershed Based Plan development, LFUCG stormwater program, LFUCG stormwater incentive grants, and other efforts of interested stakeholders. A list and description of known projects is included in Appendix E.

Implemented BMPs have been clustered on LexMark, University of Kentucky farms, and Kentucky Horse Park, but BMPs have been implemented in other areas as well. LexMark has conducted a wide range of practices including stream restoration, impervious surface removal, sanitary sewer repairs, and trash cleanups. The University of Kentucky's implementation efforts include expanding the riparian zones of most streams on their farm properties, horse and cattle exclusions, installation of hardened stream crossings, nutrient management plan development, streams restoration, and other efforts. The Kentucky

Horse Park has repaired sewers, expanded riparian buffers, installed porous asphalt, and constructed a bioretention area among other efforts. LFUCG has completed several stormwater projects, is conducting stream restoration on Cane Run at Coldstream Park, and has awarded numerous grants for green infrastructure in the watershed. Information on the implemented BMPs is primarily compiled from the previous Cane Run Watershed Based Plan (UK BAE, 2011) and records from the LFUCG Stormwater Incentive Grant program.

Other BMP programs (not location specific) ongoing in the Lexington area include LFUCG's Lily Program and the Bluegrass Rain Garden Alliance. Under its Lily Program, the LFUCG, on a supply-limited basis, provides a program that allows residents to save water, prevent stormwater runoff, and improve water quality by installing a Lily Raintainer (or rain barrel). The Bluegrass Rain Garden Alliance is an initiative towards building a better Bluegrass by supporting the construction of rain gardens.

M. Status of Waterways

Kentucky assigns designated uses to each of its waterways, such as primary and secondary contact recreation, aquatic habitat, and drinking water. For each use, certain chemical or descriptive ("narrative") criteria apply to determine if the waters meet their designated uses. The criteria are used to determine whether a stream is listed as "impaired" (KDOW, 2015) and what action needs to be taken to restore water quality. This may include the development of a WBP or a TMDL with load allocations. **Exhibit 19** (Appendix A) shows the regulatory status of waterways in the Cane Run watershed.

I. Designated Uses

The designated uses of Cane Run and its tributaries within Fayette County include warm water aquatic habitat (WAH), primary contact recreation (PCR), and secondary contact recreation (SCR). The WAH criteria are in place to protect in-stream aquatic life. PCR criteria are in-place to protect people recreating in a way that likely will result in full body immersion in the water body, such as swimming. SCR designated use criteria are in place to protect those recreational activities that are likely to result in incidental contact with water, such as boating, fishing and wading.

In Scott County, Royal Spring, which has a karst drainage basin that extends to Fayette County, has been assessed for drinking water use. Fish consumption is not a designated use in Kentucky water quality standards, but the use is implied in 401 KAR 10:031 Section 2 and through human health criteria in Section 6. The fish consumption use is based on water body specific monitoring and comparing the fish tissue body burden results for specific pollutants (e.g., mercury, PCB, chlordane) in applicable water quality standards.

2. Designated Use Impairment Status

Section 305(b) of the Clean Water Act requires Kentucky and other states to assess and report water quality conditions to EPA every two years. Streams are assessed to determine

whether they support their designated uses. Based on assessment results, each stream receives one of three classifications to denote relative level of designated use support: fully supporting (good to excellent water quality); partially supporting (fair water quality, does not fully meet designated use); and non-supporting (poor water quality, does not meet designated use).

Kentucky assigns reporting categories to surface waters based on the results of assessments. Category I waters are fully supporting all designated uses. Category 2 waters are fully supporting assessed designated uses, but not all uses have been assessed (2), the water is proposed to EPA for delisting but not yet approved (2b), or the waterbody has an EPA approved or established TMDL for the following use(s) now attaining Full Support (2c). Category 3 waters have not yet been assessed. Category 4 waters have been found to be not supporting with an approved TMDL (4a), an approved alternative pollution control plan (4b), or the impairment is not attributable to a pollutant (4c). Category 4a waters are impaired but have an EPA approved TMDL. Categories 4b and 4c streams are impaired but do not have a TMDL developed at this time. Category 5 waters have been found to be not supporting and require a TMDL (5) or insufficient data is available to support a specific listing determination (5b). Although streams in categories 4, 4b, 4c, 5, or 5b are impaired due to either partially supporting or non-supporting their designated uses, only streams in category 5 or 5b are on the 303(d) list of impaired surface waters of Kentucky.

According to the 2014 305(b) and 303(d) lists (KDOW, 2015), Cane Run is impaired from river mile 0.0 to 3.0 in Scott County for WAH (non-support), PCR (non-support), SCR (partial support); impaired from mile 3.0 to 9.6 in Scott and Fayette Counties for WAH (non-support) and PCR (non-support); and impaired from mile 9.6 to 17.6 in Fayette County for WAH (non-support), PCR (non-support), and SCR (non-support).

From river mile 0.0 to 3.0, three pollutants are listed as impairing Cane Run: fecal coliform, nutrient/eutrophication biological indicators, and sedimentation/siltation. Suspected sources are listed as livestock, managed pasture grazing, package plant or other permitted small flow discharges, unspecified urban stormwater, and non-irrigated crop production. From river mile 3.0 to 9.6, three pollutants are listed as impairing Cane Run: fecal coliform, sedimentation/siltation, nutrient/eutrophication biological indicators, and specific conductance. Suspected sources are livestock, managed pasture grazing, package plant or other permitted small flow discharges, highways, roads, bridges, infrastructure, and landfills. From mile 9.6 to 17.4, three pollutants are listed as impairing Cane Run: fecal coliform, nutrient/eutrophication biological indicators, and organic enrichment (sewage) biological indicators. Suspected sources are livestock and unspecified urban stormwater.

Four unnamed tributaries, located at Cane Run river miles 6.13, 10.8, 12.9, and 15.7, have impairments. All are impaired for PCR (non-support), and the tributaries at 6.13, 10.8, and 12.9 are also impaired for WAH (non-support). The tributary at mile 6.13 in Scott County is impaired from mile 0.0 to 3.5. The tributaries at mile 10.8, 12.9, and 15.7 in Fayette County are impaired for 2.4 miles, 2.1 miles, and 0.9 miles respectively. Three pollutants were listed for these tributaries: fecal coliform, nitrogen, and phosphorus. Suspected sources are livestock, managed pasture grazing, non-irrigated crop production, unspecified urban stormwater, and package plant or other permitted small flow discharges.

Royal Spring in Scott County, which has groundwater basin within the Cane Run watershed area, is listed as impaired for WAH (nonsupport) due to nitrogen and phosphorus pollutants from 0.0 to 0.7 miles. Suspected sources of pollution include managed pasture grazing, non-irrigated crop production, and unspecified urban stormwater. Royal Spring also has a drinking water designated use, which it is fully supporting.

3. Total Maximum Daily Load

In a Total Maximum Daily Load (TMDL) report, you will find TMDL calculation(s) establishing the maximum allowable amount of a specific pollutant that an impaired waterbody can receive while still meeting water quality standards for each designated use. A TMDL calculation determines a pollutant reduction target and allocates load reductions necessary to the source(s) of the pollutant. Pollutant sources are characterized as either point sources that receive a wasteload allocation (WLA), or nonpoint sources that receive a load allocation (LA). While a TMDL is not a regulation, the development of a TMDL for every impaired water on that remains on 303(d) list is required under Section 303(d) of the CWA. Currently Cane Run has one approved TMDL for pathogens, approved by the US EPA on August 26, 2013.

a. Nutrients (Phosphorus)

Initial work on the nutrient TMDL for the Cane Run watershed began in May 2002 with additional sampling conducted by KDOW in 2006 and 2007 to support the effort. The proposed in-stream total phosphorus target for WAH was set by KDOW at 0.3 mg/L. However, almost half of the samples collected exceed this limit. A draft nutrient TMDL was submitted by KWRRI to KDOW in 2011 (Albritton et al., 2011) using this proposed target. To meet the proposed TMDL, a load reduction ranging from 10% to 55% of the existing load is proposed.

Because KDOW has not yet approved the draft nutrient TMDL, this target concentration and reductions can be considered only as a non-regulatory reference point, which may be subject to future change.

b. Pathogens

A pathogen TMDL was developed for the Cane Run watershed based on data collected in 2002. The approved "Final Total Maximum Daily Load for Fecal Coliform 7 Stream Segments within the Cane Run watershed, Fayette, and Scott Counties, Kentucky" (Ormsbee et al., 2013), assigns loads to wasteload allocation (WLA; KPDES point sources, MS4 sources from developed lands, and a future growth allocation) and load allocation (LA; MS4 sources from non-developed lands and non-MS4 sources, including both developed and non-developed sources). A margin of safety was applied through the adoption of conservative modeling assumptions. The difference between the allowable load and the initial conditions is the reduction required. The calculated loads are summarized in **Table 13** (page 43).

The document proposes a 50% reduction in the existing Fecal Coliform wasteload in the upper catchments and a 70% reduction in the lower catchments to meet the TMDL.

TABLE 13 CANE RUN FECAL COLIFORM TMDL LOAD ALLOCATIONS

		Sanitary Wastewater System-		MS4-	Future Growth-		
Sub-	TMDL	WLA	MS4	WLA	WLA	LA	
watershed	(CFU/day)	(CFU/day)	Permittee	(CFU/day)	(CFU/day)	(CFU/day)	
Cane Run			Georgetown				
0.0 to 3.0	2.17E+12	0	/ KYTC	2.83E+08	4.35E+10	2.12E+12	
			Lexington /				
Cane Run			Georgetown				
3.0 to 9.6	4.91E+12	0	/ KYTC	1.98E+09	1. 4 8E+11	4.76E+12	
UT to Cane							
Run at 6.13 RM							
0.0 to 3.5	1.36E+12	5.68E+08	None	0.00E+00	4.08E+10	1.32E+12	
Cane Run			Lexington /				
9.6 to 17.4	2.23E+12	0	KYTC	1.29E+10	1.11E+11	2.10E+12	
UT to Cane							
Run at 10.8 RM			Lexington /				
0.0 to 2.4	1.19E+12	0	KYTC	6.43E+07	2.38E+10	1.17E+12	
UT to Cane							
Run at 12.9 RM			Lexington /				
0.0 to 2.1	4.79E+11	0	KYTC	1.58E+09	2.40E+10	4.53E+11	
UT to Cane							
Run at 15.7 RM			Lexington /				
0.0 to 0.9	1.40E+11	0	KYTC	7.01E+09	7.00E+09	1.26E+11	

4. Other Analysis

A draft TMDL analysis report for nutrients in Cane Run was started in May 2002 with additional sampling conducted by KDOW in 2006 and 2007 to support the effort. The report proposed instream total phosphorus target for WAH at 0.3 mg/L. Almost half of the samples collected exceed this limit. To meet the proposed target, a load reduction ranging from 10% to 55% of the existing load is proposed, though it should be considered a non-regulatory objective.

N. Summary and Conclusions

The streams within the watershed area are impacted for recreation and WAH. The characterization of the watershed has revealed contributing factors to these impairments.

I. Recreation Impairment

Cane Run and its tributaries are impaired for recreational uses due to levels of fecal indicator bacteria, such as fecal coliform or *E. coli* exceeding regulatory limits. The characterization of the watershed indicates that the following factors may be contributing to this impairment:

- a. Public Sanitary Sewer System Overflows and Exfiltration: According to the LFUCG Consent Decree, 19 reoccurring SSO locations are in this watershed. Sixteen remedial measure plans have been approved to prevent these SSOs and are scheduled to be completed between 2017 and 2022. Numerous defects in the LFUCG public system have been identified by assessments, many of which have already been repaired through ongoing efforts by LFUCG. However, exfiltration from the sanitary sewer system into the storm system and stream is a contributor to the recreational impairments to the streams.
- b. Failing Sanitary Package Plants: Three sanitary package plants are permitted to discharge to the unnamed tributary of Cane Run at RM 6.13, and each plant is routinely out of compliance due to significant exceedances of the permit limits, including high *E. coli* concentrations in discharges. These violations have occurred over an extended period of time, indicating that significant changes to the systems are required to reduce these contributions to the recreational impairment.
- c. Aged Private Sanitary Service Lateral Lines: Neighborhoods constructed in the 1970s and prior often have private lateral lines made of Orangeburg or clay pipe. Several neighborhoods within the Cane Run watershed have lateral lines constructed of such material. Neighborhood rehabilitation projects will be necessary to address exfiltration from these sources by repair or replacement of these lines.
- **d.** <u>Septic systems</u>: Numerous septic systems are located throughout the watershed and some are poorly maintained or in need of repair. These septic systems may be nonpoint source contributors to the recreational impairment.
- e. <u>Livestock Manure</u>: Horse and cattle operations are abundant in the watershed. Cattle access to streams, runoff from fecal deposits during grazing, and manure spreading can all be sources of fecal input to the streams. Likewise, runoff can be contaminated with horse fecal bacteria, especially in areas where horses and their waste/bedding is concentrated.
- f. Pet Waste: Dog ownership is common throughout the watershed and national estimates indicate than many owners do not pick up dog waste. Runoff from neighborhoods with outdoor pets can be a source of fecal bacteria.
- **g.** Waterfowl: Numerous retention ponds are in Cane Run, particularly in the LUFCG Urban Service Area. Many of these ponds have abundant populations of geese or ducks that, in some cases, are present year-round. Waterfowl fecal contributions can be sources of fecal bacteria in the watershed.

2. Warmwater Aquatic Habitat Impairment

Cane Run and its tributaries are impaired for WAH use. The characterization of the watershed indicates several contributors to the impairment of habitat for fishes, aquatic insects, and other aquatic organisms including the following:

- **a.** <u>Karst geology</u>: Upstream of its crossing of I-75 in Scott County, Cane Run typically does not have flowing water during dry weather conditions, except in a few spring or tributary-fed reaches. Numerous sinks or karst windows transport the waters into the groundwater system and the Royal Springs Aquifer. The lack of water during dry weather conditions makes the stream uninhabitable for most aquatic life during much of the year.
- b. Geomorphic stream conditions: Much of the degradation to the aquatic and riparian ecosystem of streams in this region are attributed to geomorphic processes of channel evolution (trying to regain a stable stream system in disturbed conditions), including increases in-stream sediment due to bank erosion, limited in-stream habitat due to exposure of bedrock in channels when streams downcut, and disconnection of streams from a floodplain. Stream restoration, including bank stabilization, reducing the impacts of stream downcutting (i.e., restore stream at higher elevation than it is now, which can restore groundwater), and creating in-stream and riparian habitat will be necessary to reverse this degradation
- c. <u>Lack of riparian zone</u>: Only 7% of the streams in the Cane Run watershed have wide riparian zones providing water quality benefits. Most streams (61%) have a riparian zone of less than 10 feet on either side of the stream. Riparian zones are notably narrow in agricultural areas. Education of property owners and planting projects will be necessary to help restore these habitat features.
- d. Impervious surfaces: Impervious surfaces, which account for 11% of the Cane Run watershed area, can cause streams to have abnormally high flows during storm events, leading to erosion and sedimentation, and impacts to aquatic organisms. A general rule of thumb is that streams become impaired where impervious surfaces covers over 10% of the watershed area. In the headwaters of the Cane Run watershed, where impervious surfaces comprise a larger percentage of the drainage area, impacts are expected to be more pronounced. Best management practices to promote infiltration of stormwater should be used to mitigate larger percentages of impervious surfaces.
- e. <u>Nutrient Pollution Sources</u>: All the contributors to impaired recreational use (namely human/animal waste) are also contributors to nutrients, particularly ammonia-nitrogen. Bank erosion can also contribute phosphorus (and nitrogen, to a lesser degree) to streams. Fertilizer, applied to residential yards as well as agricultural areas, is a source of nutrients to streams. Nutrient pollution sources should be evaluated based on the results of the monitoring studies.

3. People

At least two vastly different communities are located in the Cane Run watershed. Large property owners, typically of horse or cattle farms, own the majority of the watershed area and comprise a distinct community. Numerous small residential neighborhoods comprise another large community of citizens with different management needs and issues. Outreach will need to be tailored to these differing audiences during planning and implementation.

III. MONITORING

A. Evaluation Criteria and Benchmarks

To evaluate the nature and extent of impairments in the Cane Run watershed, habitat, biology, and water quality results were compared to applicable criteria and benchmarks. These criteria and benchmarks also allow for comparisons between previous studies and monitoring performed for this WBP. For water quality, both regulatory benchmarks and non-regulatory (scientific) reference levels are used for data evaluation as detailed in sections below.

I. Habitat and Biological Criteria

To analyze habitat, macroinvertebrate, and fish data, the criteria utilized by KDOW to evaluate impairment was utilized. This includes the Rapid Bioassessment Protocol (RBP) for habitat, the Macroinvertebrate Bioassessment Index (MBI) score, and the Kentucky Index of Biotic Integrity (KIBI) for fish. These indices utilize community metrics to evaluate stream health based on biotic indicators and were developed by monitoring reference reach streams of excellent quality in different bioregions of the state and comparing with impacted streams in these regions. Criteria for the Bluegrass Bioregion were utilized for this effort (KDOW, 2011). The criteria are summarized in **Table 14**.

TABLE 14
BIOLOGICAL WARMWATER AQUATIC HABITAT CRITERIA

	HABITA	AT (RBP)	MACROINVEI (MB		
	DRAINA	GE AREA	DRAINAG	FISH	
RATING	> 5.0 mi ²	< 5.0 mi ²	> 5.0 mi ²	< 5.0 mi ²	(KIBI)
Excellent	N/A	N/A	≥ 70	≥ 58	≥ 52
Good	≥ 130	≥ 156	61-69	51-57	47-51
Fair	114-129	142-155	41-60	39-50	31-46
Poor	≤ 3	≤		19-38	16-30
Very Poor	N/A	N/A	≤ 20	≤ 18	≤ 15

The Rapid Bioassessment Protocol (RBP) evaluates 10 habitat parameters based on visual assessment. These parameters include 1) epifaunal substrate / available cover, 2) embeddedness, 3) velocity / depth regime, 4) sediment deposition, 5) channel flow status, 6) channel alteration, 7) frequency of riffles or bends, 8) bank stability, 9) vegetative protection, and 10) riparian vegetative zone width.

The Macroinvertebrate Bioassessment Index (MBI) utilizes 7 different benthic macroinvertebrate community metrics to assess stream health. These include I) the number of different taxa (genus-level), 2) the number of taxa (genus-level) of stoneflies, mayflies, and caddisflies, 3) the percentage of stoneflies, mayflies, and caddisflies, 4) the modified Hilsenhoff Biotic Index (an indicator for organic enrichment), 5) percentage of worms and midges, 6) percentage of clingers, and 7) percentage of mayflies. Each of these metrics are weighted to generate an overall community score and rating.

The Kentucky Index of Biotic Integrity (KIBI) utilizes 7 different fish community metrics to assess stream health. These include I) total number of native species, 2) the number of pollution sensitive darter, madtom, and sculpin species, 3) the number of pollution intolerant species, 4) the percentage pf simple lithophilic spawners (i.e., species that need clean gravel to lay eggs), 5) the percentage of insect-eating fish, 6) the percentage of pollution tolerant fish, and 7) the percentage of fish that are typically found in headwater streams. Each of these metrics are weighted to generate an overall community score and rating.

2. Regulatory Water Quality Standards

The regulatory statute for surface waters in Kentucky is found in 401 KAR 10:031. The statute provides minimum water quality standards for all surface waters as well as specific standards that apply to particular designated uses. Water quality standards for WAH designated use were utilized for pH, temperature, and dissolved oxygen. Recreational use standards (PCR and SCR) were utilized for *E. coli* and fecal coliform. These benchmarks are summarized in **Table 15** (page 49).

3. Non-Regulatory Water Quality Reference Points

For other parameters, such as nutrients, specific conductance (conductivity), and suspended solids, narrative (as opposed to numeric) water quality reference levels have been established due to the variable relationship between biological integrity and pollutant concentration levels in different streams. KDOW provided these reference levels based on reference reach data and previous watershed plans. It is important to note that exceeding these reference levels does not necessarily result in an impairment listing, nor does reducing to below those levels necessarily result in a delisting. The KDOW uses these reference points in concert with analysis of biology scores and other indicators of impairment to make decisions regarding the water's status.

Because of the difficulty in establishing thresholds for these pollutants independent of other variables impacting aquatic habitat, such as poor riparian and in-stream habitat and poor hydrology/ flow regime, water quality reference levels were set higher than reference

conditions since the reference levels may be well below the level necessary to restore support of the use. The goals should be reassessed through the watershed planning process on regular time intervals and lowered if the designated use does not become fully supported through the implementation plan efforts when target levels are achieved. Additional details on the support for these thresholds are included in Appendix F. The water quality reference levels are summarized in **Table 16** (page 50).

In this WBP the term "benchmark" or "thresholds" may be used to refer to both the numerically-based regulatory standards and the water quality reference levels.

TABLE 15 REGULATORY WATER QUALITY STANDARDS

Parameter	Unit	Standard	Source	Description
рН	SU	6.0 - 9.0	WAH	Not be less than 6.0 SU, more than 9.0 SU, nor fluctuate more than 1.0 SU over 24 hours
Temperature	°C (°F)	31.7 (89)	Instantaneous maximum shall not exeed 31.7 °C	
Dissolved Oxygen mg/L		4.0	WAH	Shall be above 5.0 mg/L as a 24-hour average; above 4.0 mg/L for instantaneous measurements
		200		Geometric mean based on ≥ 5 samples taken during a 30-day period.
Fecal coliform	MPN or	400	PCR ¹	Not to exceed in 20% or more of all samples taken during a 30-day period. If < 5 samples are taken in a month, this standard applies.
recai comorm	CFU	1,000		Geometric mean based on ≥ 5 samples taken during a 30-day period.
		2,000	SCR	Not to exceed in 20% or more of all samples taken during a 30-day period. If < 5 samples are taken in a month, this standard applies.
		130	200	Geometric mean based on ≥ 5 samples taken during a 30-day period.
E. coli	MPN or	240	PCR ¹	Not to exceed in 20% or more of all samples taken during a 30-day period. If < 5 samples are taken in a month, this standard applies.
L. COII	CFU	386 ²		Geometric mean based on ≥ 5 samples taken during a 30-day period.
		676²	SCR	Not to exceed in 20% or more of all samples taken during a 30-day period. If < 5 samples are taken in a month, this standard applies.

May I through October 31

Calculated relationship derived by Ormsbee and Akasapu. 2010. Relationship Between Fecal Coliform and Within the Kentucky River Basin. Kentucky Water Resources Research Institute. University of Kentucky. Lexington, Kentucky. Ecoli=1.44*FC^{0.8093}

TABLE 16 NON-REGULATORY REFERENCE POINTS

		Reference	
Parameter	Unit	Point	Description
Specific Conductance	μS/cm	650	50 th Percentile in Wolf Run Watershed
			Rowe, M., D. Essig, and B. Jessup. 2003.
			Guide to Selection of Sediment Targets for
Total Suspended Solids	mg/L	80	Use in Idaho TMDLs. IDEQ
-			75 th to 90 th Percentile for reference
Total Phosphorus	mg/L	0.35	reaches in the Inner Bluegrass
·			75 th to 90 th Percentile for reference
Total Nitrogen	mg/L	3.0	reaches in the Inner Bluegrass
_	-		75 th Percentile for the Wolf Run
Ammonia-Nitrogen	mg/L	0.1	Watershed

4. Water Quality Health Grades

To simplify water quality data for public audiences, the percentage of measured pollutant concentrations in exceedance of regulatory benchmark or non-regulatory reference points values was utilized to generate water quality health scores. These health scores, like report cards, assign letter grades to the frequency of exceedance at each site. Each parameter is "graded on a curve" such that letter scores for one parameter are similar to letter scores for other parameters. Letter grades for individual parameters are roughly based on KDOW's method for evaluating data for listing impairments or their TMDL Health Reports. The percent exceedance and the corresponding grade for each parameter are shown in **Table 17**, page 51.

B. Historic Biological and Water Quality Monitoring

To evaluate the water quality within the Cane Run watershed, data was gathered from all available sources including scientific studies, government, and volunteer sources. **Table 18** (page 51) provides an overview of the available data that was gathered by this collection effort. Generators of surface water quality data for the watershed within Cane Run include LFUCG, the City of Georgetown, University of Kentucky Environmental Research and Training Laboratory (UK ERTL), KWRRI, University of Kentucky College of Agriculture's Biosystems and Agricultural Engineering Department (UK BAE), KDOW, and Kentucky River Watershed Watch (KRWW). These studies were conducted at various locations throughout the watershed over multiple years and for different parameters. **Exhibit 20** (Appendix A), shows the locations of the monitoring sites from which the water quality data was collected.

TABLE 17 WATER QUALITY HEALTH GRADES

			% of Re	sults Exc	eeding	
Parameter	Benchmark	Α	В	C	D	F
E. coli – PCR (Swimming)	240	0-10%	11-20%	21-33%	34-66%	67-100%
E. coli – SCR (Wading)	676	0-10%	11-20%	21-33%	34-66%	67-100%
Fecal Coliform – PCR (Swimming)	400	0-10%	11-20%	21-33%	34-66%	67-100%
Fecal Coliform – SCR (Wading)	1,000	0-10%	11-20%	21-33%	34-66%	67-100%
pН	6-9	0-5%	6-10%	11-25%	26-66%	67-100%
Dissolved Oxygen	4	0-5%	6-10%	11-25%	26-66%	67-100%
Specific Conductance	650	0-10%	11-25%	25-50%	51-66%	67-100%
Total Dissolved Solids	373	0-10%	11-25%	25-50%	51-66%	67-100%
Temperature	31.7	0-10%	11-25%	25-50%	51-66%	67-100%
Total Suspended Solids	80	0-10%	11-25%	25-50%	51-66%	67-100%
Total Phosphorus	0.35	0-10%	11-25%	25-50%	51-66%	67-100%
Total Nitrogen	3.0	0-10%	11-25%	25-50%	51-66%	67-100%
Ammonia-Nitrogen	0.1	0-10%	11-25%	25-50%	51-66%	67-100%

TABLE 18 CANE RUN HISTORIC MONITORING SUMMARY

Sampled by	Monitoring Type	No of Stations	Years	Macro / Habitat	Fish	Fecal Coliform / E. coli	Physicochemical	Nutrients	Suspended Solids	Metals	Geomorphic
	MS4 Stormwater										
LFUCG	Permit Monitoring	8	1996-2016	X	Χ	Χ	Χ	Χ	X	Χ	
			2002-2005,								
GMWSS	Fecal coliform / E. coli	2	2015-2016			Χ					
	Habitat and		1998, 2000, 2007,								
KDOW	Macroinvertebrates	7	2009, 2014	X			Χ				
	Surface Water TMDL		2006-2007,								
KDOW	Sampling (Nutrients)	12	2013-2014				Χ	Χ	Χ		
KRWW	Volunteer Sampling	4	2000-2016			Х	X	X	Х		
KKYYYY	• •	Т	2000-2016			^	^	^	^		
KWRRI	Weekly PCR Fecal Coliform Sampling	8	2002			Х					
IXAAIXIXI	Watershed Based Plan	0	2002								
UK BAE	Monitoring	14	2008-2010			Х			Х		Х
OK BAL	Microbial Source	17	2000-2010			^			^		
UK ERTL	Tracking	8, 7, 4	2005-2006, 2012			Х					
OK EKTL	11 acking	0, /, +	2003-2006, 2012			^					

Because of the large amount of sampling data collected in the area as well as the numerous sampling locations, a cross reference of the site locations and names is summarized in **Exhibit 20** (Appendix A) and **Table 19** (page 53). Thirty-two sites have been sampled for a variety of parameters over various periods.

The results of these studies have been compiled and compared to the water quality benchmarks presented at the beginning of this chapter (**Tables I5** and **I6**, pages 49 and 50, respectively). The frequency of exceedance of recreational use is shown at each location in **Exhibit 21** (Appendix A) for primary contact recreation and **Exhibit 22** (Appendix A) for secondary contact recreation. Exceedances of nutrient benchmarks are shown in **Exhibit 23** (Appendix A) for ammonia-nitrogen, **Exhibit 24** (Appendix A) for total nitrogen, and **Exhibit 25** (Appendix A) for total phosphorus. Habitat and macroinvertebrate scores/ratings are shown in **Exhibit 26** (Appendix A). Composite grades for these parameters, as well as pH, dissolved oxygen, conductivity, and suspended solids are shown in **Table 20** (page 54).

The subsequent sections summarize the comparisons for each specific monitoring source.

TABLE 19
CANE RUN HISTORIC MONITORING SITES CROSS REFERENCE

Site	Description	Country	Stream /	River	Lat (NAD 02)	Lana (NAD 92)	LEUCC	606	KDOW	I/\A/DDI	DAE	EDTI	L/D)A/)A/
ID	Description Description	County	Waterway	Mile	Lat (NAD 83)	Long (NAD 83)	LFUCG	COG		KWRRI	BAE	ERTL VA/TD	KRWW
1	Royal Springs / Georgetown WTP	Scott	Spring	0.6	38.20833	-84.56222		DCI	8013	C6		Georgetown WTP	744
2	US 460 (Frankfort Road)	Scott	Cane Run	0.2	38.20976	-84.61083		DCI	8002				744
3	US 62 (Paynes Depot Road)	Scott	Cane Run	3.0	38.18931	-84.58888	CD CD		1008	C7			
4	US 25 (Lexington / Georgetown Road)	Scott	Cane Run	5.8	38.16887	-84.55493	CR-S3		8003	C5			
5	UT Near US 25 Below Spindletop MHP	Scott	UNT @6.1	0.1	38.16331	-84.54952			8004	64			
6	UT at Lisle Road near US 25	Scott	UNT @6.1	0.7	38.15630	-84.54520				C4			1001
/	Coleman Road at Landscape Alternatives	Scott	Cane Run	6.0	38.16783	-84.55409		UCI					1221
8	Grace Christian Church above UT	Scott	Cane Run	6.2	38.16663	-84.55164			8012				
9	Lisle Road	Scott	Cane Run	7.2	38.16712	-84.53897			8005	C3	CR12	_	
10	UT above Walt Robinson Road	Scott	UNT @ 7.7	0.3	38.16338	-84.52894						Barton Spr.	
11	Pristine Spring	Fayette	Spring	N/A	38.15826	-84.52534						Pristine Spr.	
12	UT Below Rolex Lane	Fayette	UNT @9.1	0.3	38.14998	-84.51770						Retention Pd	
13	Berea Road	Fayette	Cane Run	9.9	38.13880	-84.51703			8006	C2	CRII		
14	UT at Berea Road	Fayette	UNT @9.9	0.05	38.13885	-84.51772			8011				
15	Near Research Park Drive	Fayette	Cane Run	10.4	38.13340	-84.51209						Spindletop	
16	UT at Spindletop Way	Fayette	UNT @10.7	0.2	38.12885	-84.50654			8007		CR09		
17	UT at Agronomy Road	Fayette	UNT @10.7	1.1	38.12345	-84.49727					CR08		
18	UT at Equine Campus Road	Fayette	UNT @10.7	2.1	38.11555	-84.48566					CR07		
19	UK Farm Above UT near Legacy Trail	Fayette	Cane Run	10.9	38.12844	-84.51188					CR10		
20	Downstream of I-75	Fayette	Cane Run	12.9	38.10718	-84.49959	CR-S23						
21	Coldstream Park mouth of UT near I-75	Fayette	UNT @12.9	0.05	38.10579	-84.49858			8010				
22	Coldstream Park mouth of UT near I-75	Fayette	UNT @12.9	0.3	38.10355	-84.49509	CR-S22						
23	Coldstream Park UNT at Legacy Trail	Fayette	UNT @12.9	0.5	38.10150	-84.49182					CR05		3146
24	Upstream of I-75	Fayette	Cane Run	13.0	38.10587	-84.49908				CI	CR06	Newtown Ex.	
25	Citation Boulevard	Fayette	Cane Run	14.0	38.09227	-84.50144	CR-S2						
26	UT at Alice Drive	Fayette	UNT @14.1	0.1	38.09122	-84.50291					CR04	Highland Spr.	
27	Newtown Pike (KY 922)	Fayette	Cane Run	15.1	38.08008	-84.49252	CR-SI		8009	CO	CR03	IBM	
28	LexMark Shadygrove Park	Fayette	Cane Run	15.6	38.07618	-84.48698	CR-S20						
29	UT at LexMark Shadygrove Park Trail - Loudon	Fayette	UNT @15.6	0.1	38.07415	-84.48596					CR01		
30	UT at Loudon Avenue	Fayette	UNT @15.6	0.9	38.06418	-84.48743					CR13		
31	UT at LexMark Shadygrove Park - Green Acres	Fayette	UNT @15.7	0.05	38.07555	-84.48521					CR14		
32	LexMark Shadygrove Park	Fayette	Cane Run	15.8	38.07453	-84.48468					CR02		

TABLE 20
CANE RUN HISTORIC MONITORING RESULTS SUMMARY 1999 - 2016

Site ID	Description	E. coli / Fecal – PCR (Swimming)	E. coli / Fecal – SCR (Wading)	рН	Dissolved Oxygen	Conductivity	Suspended Solids	Total Phosphorus	Total Nitrogen	Ammonia- Nitrogen	Habitat	Macro
1	Royal Springs / Georgetown WTP	0% (10)	0% (10)	0% (9)	0% (9)	40% (10)	0% (11)	9% (11)	64% (11)	0% (11)	1145144	114610
2	US 460 (Frankfort Road)	64% (54)	33% (54)	3% (38)	16% (37)	0% (49)	0% (34)	22% (27)	36% (33)	15% (27)	123 (2)	49.2 (2)
3	US 62 (Paynes Depot Road)	80% (10)	30% (10)	0% (14)	7% (13)	20% (15)	0% (13)	8% (13)	54% (13)	46% (13)	83 (I)	67.4 (1)
4	US 25 (Lexington / Georgetown Road)	46% (24)	8% (24)	0% (14)			7% (14)	50% (14)	64% (14)	36% (14)	126 (6)	38.9 (9)
5	UT Near US 25 Below Spindletop MHP	, ,	, ,	0% (14)	0% (11)	21% (14)	0% (15)	87% (15)	73% (15)	80% (15)	84 (1)	23.5 (1)
6	UT at Lisle Road near US 25	90% (10)	40% (10)									
7	Coleman Road at Landscape Alternatives	88% (35)	65% (35)	5% (20)	21% (19)	18% (17)	0% (4)		50% (4)			
8	Grace Christian Church Above UT			0% (12)	0% (11)	0% (12)	0% (11)	27% (11)	18% (11)	18% (11)	89 (I)	
9	Lisle Road	58% (79)	44% (79)				22% (152)					
10	UT Above Walt Robinson Road	18% (11)	9 % (11)									
11	Pristine Spring	9% (11)	9 % (11)									
12	UT Below Rolex Lane	18% (11)	9 % (11)									
13	Berea Road	46% (26)	46% (26)				0% (13)					
14	UT at Berea Road			0% (1)	0% (1)	0% (1)						
15	Near Research Park Drive	9% (11)	0% (11)									
16	UT at Spindletop Way	55% (78)	36% (78)	0% (13)	9% (11)	0% (13)	0% (14)	23% (13)	54% (13)	8% (13)	90 (1)	33.8 (1)
17	UT at Agronomy Road	66% (88)	39% (88)				26% (220)					
18	UT at Equine Campus Road	77% (92)	53% (92)									
19	UK Farm Above UT near Legacy Trail	80% (20)	55% (20)									
20	Downstream of I-75	67% (3)		0% (3)	0% (3)	33% (3)	0% (3)	33% (3)	0% (3)	0% (3)		
21	Coldstream Park Mouth of UT Near I-75			0% (16)	0% (13)	25% (12)	0% (14)	0% (14)	0% (14)	0% (14)	103 (1)	46.7 (I)
22	Coldstream Park mouth of UT Near I-75	36% (11)	0% (11)	11% (9)	0% (9)	56% (9)	0% (9)	22% (9)	0% (9)	0% (9)		
23	Coldstream Park UT at Legacy Trail	56% (93)	38% (93)	0% (4)	50% (4)	25% (4)	5% (340)		0% (6)			
24	Upstream of I-75	70% (46)	59% (46)				15% (348)					
25	Citation Boulevard	73% (126)	62% (126)	0% (66)	0% (65)	65% (66)	7% (70)	46% (70)	51% (70)	23% (70)	123 (7)	24.0 (7)
26	UT at Alice Drive	96% (102)	92% (102)									
27	Newtown Pike (KY 922)	83% (68)	75% (68)	0% (14)	0% (10)	50% (12)	13% (597)	50% (16)	44% (16)	6% (16)	85 (I)	
28	LexMark Shadygrove Park	59% (17)	29% (17)	0% (9)	0% (9)	67% (9)	0% (9)	33% (9)	0% (9)	44% (9)		
29	UT at LexMark Shadygrove Park Trail – Loudon	93% (93)	67% (93)				18% (666)					
30	UT at Loudon Avenue	100% (68)	97% (68)									
31	UT at LexMark Shadygrove Park - Green Acres	79% (34)	65% (34)									
32	LexMark Shadygrove Park	95% (40)	88% (40)				18% (496)					

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 50): blue = A; green = B; yellow = C; orange = D; and red = F.

1. Lexington-Fayette Urban County Government Monitoring

The LFUCG conducts monitoring in conformance with its MS4 stormwater permit for each of the watersheds within the Urban Service Boundary. Three MS4 monitoring sites have been located in the Cane Run watershed since sampling began in 1996. CR-S1, the most upstream site, located just upstream of the Newtown Pike crossing, was briefly monitored in 1996, 2001, and 2002 for chemistry events. CR-S2, the current monitoring site located downstream of the Citation Boulevard overpass, was first monitored in 1996 and 1997 but was not monitored again until 2008. CR-S3, located in Scott County in order to capture all of the drainage of Fayette County, has been the most frequently sampled from 1998 to 2008. All data from 2016 and prior was analyzed for this plan. The count of samples, frequency of exceedance of the water quality benchmarks, and the grades for each parameter are summarized in **Table 21**, page 56.

Prior to 1999, the parameters sampled for chemical parameters varied from year to year. However, solids (total dissolved and suspended), fecal coliform, oil and grease, cadmium, copper, lead, zinc, hardness, phenols, phosphorus (dissolved and total), nitrogen (ammonia, total Kjeldahl, nitrate, nitrite), biochemical oxygen demand, chemical oxygen demand, specific conductance, dissolved oxygen, temperature, pH, and turbidity were routinely sampled from 1999 to 2016. Discharge and *E. coli* were added to this sampling list in the fall of 2008 when the chemical sampling frequency was increased to quarterly dry and wet weather sampling. In 2016, total dissolved solids, fecal coliform, oil and grease, cadmium, copper, lead, zinc, hardness, phenols, biochemical oxygen demand, chemical oxygen demand, and turbidity were dropped from quarterly sampling.

In addition to the MS4-permit-required monitoring, LFUCG conducted routine monitoring of three background water quality sampling sites in the Cane Run watershed from 2011 to 2013. These sites were typically sampled once per quarter under dry weather conditions if flow was present. CR-S20 is in the headwaters of the Cane Run watershed, behind Lexmark; CR-S22 is located on the tributary to Cane Run below Embassy Suites; and CR-23 is located downstream of I-75.

In addition to these monitoring sites, LFUCG Division of Water Quality Compliance and Monitoring conducted visual stream assessments in 2012 (Third Rock, 2012). The streams in the urban area were visually assessed according to the Center for Watershed Protection's Urban Sub-watershed Restoration Manual 10 – Unified Stream Assessments: A User's Manual Version 2.0 (Kitchell and Schueler, 2005). The assessment identified 174 stormwater outfalls, of which 16 had dry weather flow present. Ten severe erosion areas were identified, as well as 116 stream crossing locations. Forty-three utility crossings were noted. Thirty-five trash and debris locations were estimated to amount to an equivalent of 102 pickup truck loads of trash and debris. These locations are shown in **Exhibit 27** (Appendix A).

TABLE 21
LFUCG HISTORIC MS4-PERMIT MONITORING DATA SUMMARY

ID	27	25	4	28	22	20
Station	CR-SI	CR-S2	CR-S3	CR-S20	CR-S22	CR-S23
					Coldstream Park at	
	Newtown	Citation		L ex M ark	mouth of UNT	Downstream
Description	Pike	Blvd	US 25	Shadygrove Park	Near I-75	of I-75
Monitoring Years	2001-2002	2008-2016	1999-2008	2011-2013	2011-2013	2011-2013
E. coli						
PCR (Swimming)		74% (69)		56% (9)	40% (5)	67% (3)
Fecal Coliform						
PCR (Swimming)	100% (3)	72% (57)	36% (14)	63% (8)	33% (6)	0% (2)
E. coli						
SCR (Wading)		61% (69)		33% (9)	0% (5)	0% (0)
Fecal Coliform-						
SCR (Wading)	100% (3)	63% (57)	7% (14)	25% (8)	0% (6)	0% (2)
pН	0% (2)	0% (66)	0% (12)	0% (9)	11% (9)	0% (3)
Dissolved Oxygen		0% (65)		0% (9)	0% (9)	0% (3)
Conductivity		65% (66)		67% (9)	56% (9)	33% (3)
Total Dissolved Solids	67% (3)	60% (57)	25% (12)			
Total Suspended Solids	33% (3)	7% (70)	7% (14)	0% (9)	0% (9)	0% (3)
Total Phosphorus	100% (3)	46% (70)	50% (14)	33% (9)	22% (9)	33% (3)
Total Nitrogen	0% (3)	51% (70)	64% (14)	0% (9)	0% (9)	0% (3)
Ammonia-Nitrogen	0% (3)	23% (70)	36% (14)	44% (9)	0% (9)	0% (3)
Habitat		123 (7)	126 (6)			
Macroinvertebrate		24.0 (7)	38.9 (9)			

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 50): blue = A; green = B; yellow = C; orange = D; and red = F.

Habitat assessments were also performed at 41 reaches during the 2012 visual stream assessments. All sites were found to have "poor" habitat during this effort with a range of RBP scores from 63 to 138, with results shown in **Exhibit 27** (Appendix A). Riparian zone width was typically narrow contributing to lower habitat scores. Because numerous sites were dry due to karst sub-surface drainage, the velocity depth regime had a "marginal" score on average. Many streams also lacked epifaunal substrate or available cover for aquatic organisms.

The stormwater outfalls were again assessed by LFUCG in 2016 during dry weather conditions. During this assessment, all flowing outfalls were sampled for *E. coli*, total suspended solids, ammonia-nitrogen, detergents, chlorine, pH, conductivity, nitrate-nitrogen, and total phosphorus. Two hundred and ten outfalls were assessed, with 10 requiring follow up. Seventeen outfalls were flowing during the assessment with 8 outfalls with levels that initiated illicit discharge investigations: 3 due to high *E. coli*, 2 due to high conductivity, 2 due to low dissolved oxygen, and 1 due to high ammonia. The greatest pollution levels were measured at an outfall at 201 W. Loudon Ave., most likely due to sanitary sewer exfiltration from pipe scheduled to be addressed by the LexMark Trunk B remedial measures plan project.

Other large pollutant levels were found at outfalls at Walt Robinson Road (retention pond near Alltech Arena), and from industrial uses near upstream of the New Circle Road Eastbound On-Ramp at Newtown Pike.

2. Georgetown

According to results published in the Cane Run and Royal Spring Watershed Based Plan (UK BAE, 2011), the GMWSS has collected fecal coliform results regularly from river mile 6.0 (near site 4 on **Exhibit 20**, Appendix A). The annual fecal coliform geomean for 2002 was 237 CFU/100mls; 2003 was 468 CFU/100mls; and 2005 was 75 CFU/100mls.

City of Georgetown's MS4 program began collecting data for the total maximum daily load (TMDL) for Cane Run within Georgetown's MS4 boundary in 2015. For Cane Run, sampling entails five sample visits within a consecutive 30-day period at two locations for *E. coli*. Monitoring station "DC1" is located at US 460 (Frankfort Road) and station "UC1" is located at Coleman Road near Landscape Alternatives. The count of samples, frequency of exceedance of the water quality benchmarks, and the health grades for each parameter are summarized in **Table 22** (page 58).

TABLE 22
CITY OF GEORGETOWN HISTORIC MONITORING DATA SUMMARY

Site ID	2	7
Station	DCI	UCI
Description	US 460	Coleman Road
Monitoring Years	2015-2016	2015-2016
E. coli - PCR (Swimming)	80% (10)	100% (10)
E. coli – SCR (Wading)	0% (10)	80% (10)
E. coli Geomean	252 (2015)	1,626 (2015)
(MPN/100mLs)	438 (2016)	978 (2016)
Fecal Coliform – PCR		
(Swimming)	10% (10)	100% (10)
Fecal Coliform – SCR		
(Wading)	0% (10)	80% (10)
Fecal Coliform Geomean	196 (2015)	1,374 (2015)
(MPN/I00mLs)	291 (2016)	1,196 (2016)

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 50): blue = A; green = B; yellow = C; orange = D; and red = F.

3. Kentucky Division of Water Nutrient TMDL and Biological Monitoring

KDOW collected surface water samples from November 8, 2006 to October 4, 2007 in 12 events at 12 stations to provide data to support the development of a TMDL for nutrients. The sample parameters included ammonia-nitrogen, 5-day carbonaceous biochemical oxygen demand (CBOD-5), nitrate+nitrite-nitrogen, organic carbon, ortho-phosphorus as phosphorus, total phosphorus, total Kjeldahl nitrogen (TKN), total suspended solids, dissolved oxygen, pH, temperature, specific conductance, and discharge.

Macroinvertebrate surveys were performed at one site in 2007, four sites in 2009, and one site in 2014. Habitat assessments were conducted at one site in 2000, two sites in 2007, four sites in 2009, and one site in 2014.

The count of samples, frequency of exceedance of the water quality benchmarks, and the health grades for each parameter are summarized in **Table 23** (page 59).

4. KWRRI Weekly Fecal Coliform Sampling

KWRRI collected fecal coliform surface water grab samples on a weekly basis from June through September of 2002 to support a pathogen TMDL. The results are summarized in **Table 24** (page 60). No data was collected at site C2 because of the lack of flow at the site during the study. Sites C0 and C1, located in the upper regions of the watershed, had the highest geomean fecal coliform concentrations, but also were only flowing during wet weather conditions. All sites had averages above the regulatory fecal coliform standard for the primary contact recreation period.

TABLE 23
KDOW HISTORIC MONITORING DATA SUMMARY

Site ID	3	2	4	5	9	13	16	27	21	14	8	I
Station	1008	8002	8003	8004	8005	8006	8007	8009	8010	8011	8012	8013
	2006-	2006-		2006-			2000-	2006-	2006-		2006-	2006-
Monitoring Years	2009	2014	2006	2009	2006	2006	2009	2007	2007	2006	2009	2007
									Coldstream			
	Paynes								Park mouth	UT at	Grace	
	Depot			UT Along	Lisle	Berea	Spindleto	Newtown	of UNT	Berea	Christian	Royal
Description	Road	US 460	US 25	US 25	Road	Road	p Way	Pike	near I-75	Road	Church	Springs
	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
pH	(14)	(14)	(2)	(14)	(2)	(1)	(13)	(12)	(16)	(1)	(12)	(9)
	7%	0%	0%	0%	0%	0%	9%	0%	0%	0%	0%	0%
Dissolved Oxygen	(13)	(13)	(2)	(11)	(2)	(1)	(11)	(10)	(13)	(1)	(11)	(9)
	20%	0%	0%	21%	0%	0%	0%	50%	25%	0%	0%	40%
Conductivity	(15)	(28)	(2)	(14)	(2)	(1)	(13)	(12)	(12)	(1)	(12)	(10)
	0%	0%		0%			0%	8%	0%		0%	0%
Suspended Solids	(13)	(27)		(15)			(13)	(13)	(14)		(11)	(11)
	8%	22%		87%			23%	38%	0%		27%	9%
Total Phosphorus	(13)	(27)		(15)			(13)	(13)	(14)		(11)	(11)
	54%	44%		73%			54%	54%	0%		18%	64%
Total Nitrogen	(13)	(27)		(15)			(13)	(13)	(14)		(11)	(11)
Ammonia-	46%	15%		80%			8%	8%	0%		18%	0%
Nitrogen	(13)	(27)		(15)			(13)	(13)	(14)		(11)	(11)
	83	123		84			90	85	103		89	
Habitat	(1)	(2)		(1)			(1)	(1)	(1)		(1)	
	67.4	49.2		23.5			33.8		46.7			
Macro	(1)	(2)		(1)			(1)		(1)			

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 50): blue = A; green = B; yellow = C; orange = D; and red = F.

TABLE 24 KWRRI 2002 FECAL COLIFORM DATA SUMMARY

Site ID	27	24	13	9	6	4	2	3
Station	C0	CI	C2	C3	C4	C5	C6	C7
Monitoring Year	2002	2002	2002	2002	2002	2002	2002	2002
Description	Newtown Pike	Upstream of I-75	Berea Road	Lisle Road	Lisle Road	Lexington Road	Frankfort Road	Paynes Depot
Fecal Coliform PCR (Swimming)	100% (5)	100% (3)	0% (0)	60% (10)	90% (10)	60% (10)	80% (10)	80% (10)
Fecal Coliform SCR (Wading)	100% (5)	67% (3)	0% (0)	50% (10)	40% (10)	10% (10)	50% (10)	30% (10)
Geomean (MPN/I00mLs)	5,803	1,947	-	877	1923	510	989	724

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 50): blue = A; green = B; yellow = C; orange = D; and red = F.

5. UK BAE Watershed Based Plan Monitoring

The UK Department of Biosystems and Agricultural Engineering (BAE) collected fecal coliform and *E. coli* samples at 14 different monitoring sites from 2008 to 2010. Seven sites were also sampled for total suspended solids and turbidity via automated samplers and grab collections. Stage and rainfall data were collected at several sites and geomorphic measurements made on multiple reaches.

Results of the bacterial and suspended solids sampling are summarized in **Table 25** (page 62). Fecal coliform and *E. coli* frequently exceeded regulatory criteria at all locations. The PCR criterion was exceeded in a range of 46% to 100% of samples at different sites, while the SCR criterion was exceeded at frequencies ranging from 28% to 100%. The sites with the highest exceedance frequency include CR04 (26; near Lexington's Highlands neighborhood), CR06 (24) which is downstream, CR13 (30) at Loudon Avenue, CR01 (29), and CR02 (32) at LexMark Park which includes the urban upstream drainage area. Generally, the concentrations are highest in the most upstream locations and decrease moving downstream. Total suspended solids were found not to generally be a problem in the watershed, particularly since they were only sampled during wet weather. The watershed plan notes that concentrations tend to increase in the downstream direction and it is suggested that streambank and overland erosion are linked to agricultural activity which increases moving in the downstream direction.

6. UK ERTL Microbial Source Tracking Monitoring Efforts

Several microbial source tracking studies have been pursued by the UK Environmental Research Training Laboratory (ERTL) in conjunction with the city of Georgetown and research pursuits in an attempt to identify and rank potential sources of fecal contamination into the Royal Springs water supply. As microbial source tracking is still a developing area of research, multiple methods have been utilized in order to evaluate sources in the area.

In 2005, under a contract with the city of Georgetown, UK ERTL utilized pathogen indicator species including total and atypical coliforms, *E. coli* and F+coliphage (Brion, 2005). Eight sites were sampled weekly during the period of March 2 to May 11, 2005 during 11 events. The geometric means of the *E. coli* values for each site are shown in **Table 26** (page 62) as well as the rate of exceedance of benchmarks. The study indicated untreated human sewage sources at Highland Springs and IBM (now LexMark) and an unknown source of human sewage in the spring system.

In May to June 2006, UK ERTL conducted a follow up study at seven sites during six events and analyzed for the same parameters, as well as caffeine, coprostanol, and epicoprostanol, which were used as indicators of human fecal sources (Brion, 2006). The results of this study largely confirmed the results of the 2005 study.

TABLE 25 UK BAE HISTORIC MONITORING SUMMARY

ID	29	32	27	26	23	24	18	17	16	19	13	9	30	31
Station	CR01	CR02	CR03	CR04	CR05	CR06	CR07	CR08	CR09	CR10	CRII	CR12	CR13	CR14
	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-	2008-
Monitoring Years	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010	2010
E. coli	96%	95%	88%	100%	61%	88%	78%	70%	59%	80%	46%	60%	100%	82%
PCR (Swimming)	(46)	(20)	(25)	(46)	(46)	(16)	(46)	(44)	(39)	(10)	(13)	(35)	(34)	(17)
Fecal Coliform	89%	95%	83%	100%	52%	88%	76%	61%	51%	80%	46%	56%	100%	76%
PCR (Swimming)	(45)	(20)	(24)	(45)	(46)	(16)	(45)	(44)	(39)	(10)	(13)	(34)	(34)	(17)
E. coli	76%	90%	76%	100%	43%	81%	57%	48%	44%	70%	46%	51%		71%
SCR (Wading)	(46)	(20)	(25)	(46)	(46)	(16)	(46)	(44)	(39)	(10)	(13)	(35)	97% (34)	(17)
Fecal Coliform	60%	85%	63%	96%	33%	75%	49%	30%	28%	40%	46%	35%		59%
SCR (Wading)	(45)	(20)	(24)	(45)	(46)	(16)	(45)	(44)	(39)	(10)	(13)	(34)	97% (34)	(17)
	18%	18%	13%	0%	5%	15%	0%	26%	0%		0%	22%	0%	
Total Suspended Solids	(666)	(496)	(581)	(1)	(333)	(348)	(1)	(220)	(1)		(13)	(152)	(1)	

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 50): blue = A; green = B; yellow = C; orange = D; and red = F.

TABLE 26
UK ERTL 2005 MICROBIAL SOURCE TRACKING STUDY SUMMARY

ID	I	10	П	12	15	24	26	27
	Georgetown	Barton	Pristine	Retention		Newtown		
Station	WTP	Springs	Spring	Pond	Spindletop	Exchange	Highlands	IBM
Monitoring Year	2005	2005	2005	2005	2005	2005	2005	2005
E. coli	0%	18%	9%	18%	9%	9%	64%	55%
PCR (Swimming)	(10)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
E. coli	0%	9%	9%	9%	0%	0%	36%	55%
SCR (Wading)	(10)	(11)	(11)	(11)	(11)	(11)	(11)	(11)
E. coli Geomean*	30	243	13	18	20	20	454	243

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in Table 17 (page 50): blue = A; green = B; yellow = C; orange = D; and red = F. * MPN/100mLs

In 2012, six sampling events were conducted at four sites, three of which were previously sampled: Royal Spring (Georgetown water treatment plant), Highland Springs, and IBM (now Lexmark), and a groundwater site established by the Kentucky Geological Survey in the groundwater conduit for Royal Spring located at the Kentucky Horsepark, in a Master's thesis by Sam Lee conducted through UK ERTL (Lee, 2012). Samples were analyzed for total and atypical coliforms, *E. coli, Bacteroides* quantitative polymerase chain reaction markers for AllBac, and HF183, and flow. The study examined some of the divergent results obtained by various indicators and how to interpret these results. The thesis concluded that although a wet-weather, human-sewage source influencing Royal Spring after the Kentucky Horse Park is supported, it cannot be proven. Like previous studies, it concluded that human-sewage sources, likely aging, leaking sanitary infrastructure, were impacting the IBM and Highland Spring sites.

7. Kentucky River Watershed Watch

Kentucky River Watershed Watch (KRWW) is a non-profit organization for citizen monitoring efforts. Volunteers are trained to collect samples and typically three or four sampling events are held each year.

In the Cane Run watershed, four locations have been sampled since 2000. Station 744, located at US 460 near the mouth of Cane Run has been sampled during 33 events from 2000 to 2016. Station 1221, located on Coleman Lane near Landscape Alternatives has been sampled 23 times from 2007 to 2016. Four events have been sampled at Site 3146 at Coldstream Park from 2012 to 2014. Because only one sample has been collected at the KY Horse Park (Site 3147), this site was excluded from the comprehensive analyses.

Sampling parameters include *E. coli*, fecal coliform, pH, conductivity, dissolved oxygen, ammonianitrogen, nitrate-nitrogen, total Kjeldahl nitrogen, total suspended solids, ortho-phosphorus-phosphorus, turbidity, temperature, pesticides, metals, alkalinity, and other parameters. The results from Cane Run are summarized in **Table 27** (page 64).

TABLE 27
KRWW HISTORIC MONITORING DATA SUMMARY

ID	2	7	23	-
Station	744	1221	3146	3147
Dates	Dates 2000-2016		2012-2014	2014
Description	US 460	Coleman Lane	Coldstream Park	KY Horse Park
E. coli – PCR	89%	73%	0%	
(Swimming)	(19)	(15)	(1)	
Fecal Coliform -				
PCR (Swimming)	20% (5)			
E. coli – SCR	63%	47%	0%	
(Wading)	(19)	(15)	(1)	
Fecal Coliform-	20%			
SCR (Wading)	(5)			
	4%	5%	0%	0%
pH	(24)	(20)	(4)	(1)
	25%	21%	50%	0%
Dissolved Oxygen	(24)	(19)	(4)	(1)
	0%	18%	25%	0%
Conductivity	(21)	(17)	(4)	(1)
Total Suspended	0%	0%	0%	0%
Solids	(7)	(4)	(7)	(1)
	0%	50%	0%	100%
Total Nitrogen	(6)	(4)	(6)	(1)

Note: Count of samples in parentheses. The percentage of results that exceed the benchmark and health grade are provided. Colors indicate the health grade as defined in **Table 17** (page 51): blue = A; green = B; yellow = C; orange = D; and red = F. Site 3147 at the Horse Park was not included in comprehensive analysis because only one sample has been collected from the location.

C. Monitoring Needs and Plan

The Cane Run watershed has an abundance of environmental monitoring data collected by various entities. However, much of the data that was collected in 2008-2009 or prior and would benefit from updating due to the amount of BMP implementation that has occurred since that time. Additionally, monitoring gaps in Scott County and the urban headwaters of Lexington need to be fulfilled for this WBP to be comprehensive. To address these needs, two different monitoring plans have been separately sponsored by KDOW and LFUCG. These monitoring plans are summarized below.

I. Kentucky Division of Water WBP Monitoring

KDOW monitoring was performed under an approved quality assurance project plan (QAPP; Third Rock, 2016a) specifically for this WBP and included three major elements: water quality monitoring, biological monitoring, and a severe erosion survey. All monitoring was performed by Third Rock Consultants.

For water quality monitoring, 11 sites, shown in **Table 28**) and **Exhibit 28** (Appendix A) were sampled monthly for 12 events from June 2016 to May 2017. Monitoring included field chemistries, flow, bacteria, nutrients, sediment, and other parameters. A groundwater well at the Kentucky Horse Park was included in these sites. An additional five monitoring events were conducted in May 2017 for *E. coli* and field parameters. Microbial source tracking using quantitative polymerase chain reaction for DNA markers of human and ruminant fecal contributions was performed for select sites and events during the study to try to elucidate bacterial pollution sources.

TABLE 28
KDOW CANE RUN WBP MONITORING LOCATIONS

Site		Area		Macro/		
ID	Location	(mi²)	WQ	Habitat	Latitude	Longitude
I	Cane Run at US 460 Bridge	45.4	Х	Х	38.210260	-84.611020
2	Cane Run off SR 62	39.3	Х	Х	38.189400	-84.589200
3	UT to Cane Run off SR 62	2.02	Х	Х	38.186472	-84.591300
	UT to Cane Run on Horse					
4	Farm off Etter Lane	3.1	X	Χ	38.175357	-84.571630
	Cane Run at Landscape					
	Alternatives Nursery Bridge					
5	off US 25	31.8	X	Χ	38.168000	-84.554250
	UT to Cane Run in Field					
6	off US 25	5.0	Х	Χ	38.163590	-84.549770
7	Cane Run at Lisle Road	24.9	Х	Χ	38.167065	-84.538907
	Royal Springs Cave System at					
81	Horse Park	N/A	Х		38.165237	-84.531324
	UT to Cane Run at UK Ag					
9	Research Farm Road Bridge	7.4	X	Χ	38.128800	-84.507080
	Cane Run at Citation					
10 ²	Boulevard	5.5	Х		38.092322	-84.501381
	UT to Cane Run at					
113	Coldstream Farm	1.3	X		38.103658	-84.495021

Site 8 is a groundwater monitoring well site. Together with Site 9, these sites measure all pollutants from Fayette County portion of watershed – surface and groundwater

Biological monitoring consisted of macroinvertebrate collection and identification paired with habitat assessment at eight locations (**Table 28**; Exhibit **28**, Appendix A) in the summer of 2016 (wadeable sites) and spring of 2017 (headwater sites). These results were compared to KDOW metrics for the bioregion (described in the beginning of this chapter).

Severe streambank erosion areas were identified within the watershed in both Scott and Fayette counties (outside of LFUCG's Urban Service Area) by visual assessment (July 2016). Where access was granted, streams were walked, and where not granted, windshield surveys

Site 10 is same location as LFUCG Site CR-5 Site (same record coordinates)

³ Site 11 is same location as LFUCG Site CR-3 (though slightly different record coordinates)

or surveys using aerial mapping were performed to identify high priority areas for implementation of bank stabilization or stream restoration BMPs.

2. LFUCG Watershed-Focused Monitoring

The LFUCG Watershed-Focused Monitoring Program (WFMP) was developed as an MS4 permit requirement to facilitate the identification and remediation of sources of recreational and aquatic habitat impairments to streams in each of the seven major watersheds within the LFUCG Urban Service Area. In the Cane Run watershed, monitoring was performed from fall 2016 through fall 2017 under an approved quality assurance project plan (Third Rock, 2016b) and included five major elements: stream corridor characterization, stream biology, water quality monitoring, discharge prevention investigation, and priority area upland visual assessment.

Stream corridor characterizations were performed at 33 stream reaches by students at Bluegrass Community and Technical College in 2017 and included RBP habitat assessments, general streambed substrate characterizations, and macroinvertebrate screening.

For stream biology, Third Rock Consultants performed macroinvertebrate collection and identification paired with habitat assessments at three locations in the spring of 2017 (**Table 29** (page 67); **Exhibit 28**, Appendix A). These results were compared to KDOW metrics for the bioregion and are compiled within the LFUCG technical report as noted below as well as captured within the Biological and Habitat Monitoring Report (see reference in section D, below) produced for this watershed plan.

Water quality monitoring was performed in two phases. During Phase I, certified volunteers performed field screening at 12 stream sites and 53 major outfalls in dry weather conditions during 4 events between August 2016 and March 2017. During Phase 2, the 12 stream sites and 15 major outfalls that flowed during at least half of the screening events were sampled biweekly by trained volunteers for 10 events from May to October 2017. The 12 LFUCG-monitored stream sites are shown in **Table 29** (page 67) and **Exhibit 28** (Appendix A). Two of the sites are in overlapping locations with the KDOW-sponsored monitoring performed for this WBP: Site CR-3 is the same location as Site II and Site CR-5 is the same location as Site I0.

Discharge prevention / source investigation involved LFUCG Compliance and Monitoring staff tracing pollution levels above certain limits to an upstream source. Additionally, microbial source tracking (using human and bovine genetic markers) and optical brightener surveys (indicative of the presence of wash/wastewater) were performed to determine the source of bacterial pollution.

Neighborhoods and potential pollutant generators upstream of hot spots were also visually assessed during the priority area upland visual assessments to gain additional information on pollution sources.

TABLE 29 LFUCG CANE RUN WFMP MONITORING LOCATIONS

Site ID	Location	Area (mi²)	WQ	Macro/ Habitat	Latitude	Longitude
CR-I	Cane Run at I-75	7.6	X		38.106192	-84.499152
CR-2	Cane Run upstream of UNT at RM 12.9 near Lower Pump Station	6.1	X		38.104840	-84.498890
CR-3 ¹	UT to Cane Run at RM 12.9 at Coldstream Park Trail	1.3	X		38.103439	-84.494748
CR-4	UT to Cane Run at RM 12.9 at Coldstream Park downstream of Pisacano Drive	1.0		X	38.099624	-84.489882
CR-5 ²	Cane Run at Citation Blvd	5.5	Х	Х	38.092322	-84.501381
CR-6	Highlands Spring near Citation Blvd	0.16	Х		38.091330	-84.502946
CR-7	UT to Cane Run behind Eastern State Hospital	4.6	X		38.083768	-84.499531
CR-8	Cane Run at Newtown Pike	4.1	X	X	38.080168	-84.492654
CR-9	UT to Cane Run at 15.7 at LexMark	0.35	Х		38.075490	-84.485348
CR-10	Cane Run at LexMark	1.7	Х		38.074647	-84.484774
CR-11	UT to Cane Run at 15.6 at LexMark	1.8	Х		38.074091	-84.485870
CR-12	UT to Cane Run at 15.6 upstream of RJ Corman Railroad near Loudon	1.2	X		38.064229	-84.487479

¹ LFUCG Site CR-3 is same location as KDOW WBP Site 11 (though slightly different record coordinates)

D. Monitoring Implementation Overview

Details and results of each of the monitoring activities performed for this WBP are provided in the following technical reports:

KDOW WBP Monitoring

- Severe Erosion Survey Report (Third Rock, 2016c; Appendix G)
- Biological and Habitat Monitoring Report (Third Rock, 2017a; Appendix H)
- Combined Water Quality Monitoring and Quality Assurance Project Report (Third Rock, 2017b; Appendix I)

LFUCG WFMP

 Cane Run WFMP Stream Corridor Characterization Technical Memorandum (Third Rock, 2018a; Appendix J)

² LFUCG Site CR-5 is same location as KDOW WBP Site 10 (same record coordinates)

- Cane Run WFMP Stream Biology Technical Memorandum (Third Rock, 2018b; Appendix K)
- Cane Run WFMP Water Quality Technical Memorandum (Third Rock, 2018e; Appendix L)
- Cane Run WFMP Discharge Prevention / Source Investigation Technical Memorandum (Third Rock, 2018d; Appendix M)
- Cane Run WFMP Priority Area Upland Assessment Technical Memorandum (Third Rock, 2018c; Appendix N)

A summary of the monitoring results and analysis of the designated use impairment sources are detailed in the next chapter.

IV. ANALYSIS

Historic biological monitoring data summarized in **Chapter III** was analyzed to characterize the condition of the aquatic life, habitat, and water quality in the Cane Run watershed. The criteria utilized to analyze habitat, biological, and water quality data (using health grades) is described in **Chapter III**. When available, **Chapter IV** focuses on analysis of the data collected by KDOW and LFUCG specifically to fill gaps in the historic monitoring data.

A. Aquatic Community and Habitat

I. Fish

Historic biological monitoring data (summarized in Chapter III) was used to characterize the fish community in the Cane Run watershed. Nineteen species of fish have been collected by LFUCG at two monitoring stations in the Cane Run watershed from 2003 to 2016. The list includes stoneroller (Campostoma anomalum), striped shiner (Luxilus chrysocephalus), scarletfin shiner (Lythrurus fasciolaris), bluntnose minnow (Pimephales notatus), fathead minnow (P. promelas), white sucker (Catostomus commersoni), black bullhead (Ameiurus melas), brown bullhead (A. nebulosus), yellow bullhead (A. natalis), mosquitofish (Gambusia affinis), banded sculpin (Cottus carolinae), green sunfish (Lepomis cyanellus), warmouth (L. gulosus), bluegill (L. macrochirus), longear sunfish (L. megalotis), spotted bass (Micropterus punctulatus), largemouth bass (M. salmoides), fantail darter (Etheostoma flabellare), and orangethroat darter (E. spectabile). This community has been scored anywhere from "excellent" to "poor" according to KDOW index criteria narrative scores detailed in **Chapter III**). However, drawing conclusions from the fish community at the upstream station (CR-S2 = Site 11 for water quality data collected for this plan = Site CR-5 where water quality data was collected for this plan as part of LFUCG watershed-focused monitoring) is difficult due to the karst nature of Cane Run and the low number of individuals and species encountered at this station.

At the more downstream station near Berea Road, 14 to 15 species were collected each year, but at the more headwater site, which is more susceptible to drying, only four to six species were identified per year. Of the 19 total species, two (black and brown bullhead) were only collected during one year.

Small fish were collected from the groundwater monitoring well at the Kentucky Horse Park during the monitoring. This indicates that the fish species in the surface streams are being washed into the Royal Springs Karst Conduit and reside there.

2. Macroinvertebrates

Macroinvertebrate sampling was performed in 2016 and 2017 for this WBP. Macroinvertebrate Bioassessment Index (MBI) scores calculated for the 11 sampling stations in the Cane Run watershed (Third Rock, 2017a; Appendix H) resulted in classifications of "poor" at six sites, "fair" at four sites, and "excellent" at one site (per ratings for Bluegrass Bioregion detailed in **Chapter III**). A summary of this data is included in **Table 30**, page 70. All headwater streams (Sites 3, 4, 6, 10/CR-5, CR-4, and CR8) had "poor" ratings. Wadeable locations of Sites 2, 5, 7, and 9 all had "fair" ratings. Wadeable location of Site I (most downstream site) had an "excellent" rating. Compared to historic data for Site I (KDOW sample in 2009 rated "fair"), this site has improved. Generally, MBI scores increased from upstream site to downstream sites. For the headwater streams in particular, the karst influence causes streams to frequently go dry, thus impacting the diversity and viability of the macroinvertebrate community.

The low MBI scores observed in the Cane Run watershed are the result of several conditions, most of which are re-occurring at each of the sampling stations. All stations were low in the number of pollution intolerant EPT (ephemeroptera, plecoptera, and trichoptera, commonly known as mayflies, stoneflies, and caddisflies) taxa. Decreased EPT abundance is associated with the presence of poor water quality and/or poor habitat conditions. Stations were also relatively low in overall genus taxa richness, also indicative of decreasing water quality, habitat diversity, and habitat suitability. Abundance of generally pollution tolerant midges and oligochaeta was highest at Sites 5, 6, 7 and 10/CR-5, indicating decreasing water quality conditions at these locations. Site 1, with the "excellent" rating had the highest percentage of primary clinger abundance, indicating that more silt free substrates are present in this location.

Site 9 and much of its watershed is located within University of Kentucky farms and has had riparian restoration improvement occur upstream. Compared to historic sampling of this reach, it appears that the improvements in habitat have contributed to improvements to the macroinvertebrate community (historically rated "poor", now rates "fair"). Site CR-4 should see future improvements in macroinvertebrate ratings; a stream restoration project on Cane Run in proximity to this monitoring reach was constructed in 2018; as the riparian vegetation grows and the project stabilizes, the macroinvertebrate community at this site should also improve.

TABLE 30 MACROINVERTEBRATE SAMPLING RESULTS SUMMARY

	Site ID										
Metric		2	3	4	5	6	7	9	10 / CR-5 ¹	CR-4	CR-8
Date Sampled	6/17/16	6/17/16	3/21/17	3/21/17	6/16/16	3/21/17	8/25/16	6/16/16	4/28/17	2/23/17	2/23/17
Taxa Richness- genus level	50	58	8	13	47	23	43	35	23	35	13
EPT Richness- genus level	14	13	3	0	6	0	4	7	3	6	I
mHBI	5.02	5.70	7.84	7.83	5.84	5.42	7.82	5.50	5.72	5.82	7.05
% modified EPT	26.3	15.3	0.34	0	5.9	0	29.4	3.3	5.6	9.3	0.3
% Mayflies ²	-	-	0	0	-	0	-	-	0.3	1.9	0
% Midges & Worms	7.7	9.3	0.34	0	33.6	40.7	25.6	7.9	51.6	11.1	2.3
% Clingers	76.8	22.1	0.34	0	31.2	24.8	29.4	19.1	7.7	15.1	0.3
MBI Score	70.5	55.8	21.7	21.4	44.6	27.2	43.9	44.1	24.2	36.5	23.2
MBI Rating ³	Excellent	Fair	Poor	Poor	Fair	Poor	Fair	Fair	Poor	Poor	Poor

Site 10 (CR-5) drainage area is slightly greater (5.5. mi²) than the headwater designation (5 mi²) but is considered a headwater stream due to its karst nature. Metric %mayflies only used for headwater stream MBI calculations.

³ For headwater streams of the Bluegrass Bioregion, an MBI score of 0-18 is "very poor", 19-38 "poor", 39-50 "fair", 51-57 "good", 58 and greater "excellent". For wadeable streams of the Bluegrass Bioregion, an MBI score of 0-20 is "very poor", 21-40 "poor", 41-60 "fair", 61-69 "good", and greater than 69 "excellent".

In 2017, LFUCG used student volunteers to perform screening-level macroinvertebrate assessments using Kentucky Watershed Watch techniques as part of a Stream Corridor Characterization effort performed within the portion of the Cane Run watershed located within LFUCG's Urban Service Area (Third Rock, 2018a; Appendix J). Macroinvertebrates were rapidly assessed at 27 reaches spread across the LFUCG Urban Service Area; 21 reaches had a biotic rating of "poor"; six reaches had a biotic rating of "fair".

The recent results are consistent with historic macroinvertebrate assessments. Restoration efforts towards improving stream and riparian habitat in the watershed through riparian zone widening, stream restoration, streamside wetland creation, and other efforts should be a focus of the BMP implementation plan. BMPs that focus on increasing infiltration, reducing stormwater runoff, and increasing stream base flows could be beneficial for restoring a stream flow regime more conducive to supporting stream biology.

3. Habitat

Habitat assessments were performed in 2016 and 2017 for this WBP. Habitat assessments (RBP) were performed for the 11 sampling stations in the Cane Run watershed (Third Rock, 2017a; Appendix H) at the time of macroinvertebrate sampling. Habitat ratings were "poor" at six sites, "fair" at three sites, and "good" at two sites (per ratings for Bluegrass Bioregion detailed in **Chapter III**). All headwater streams (Sites 3, 4, 6, 10/CR-5, CR-4, and CR8) had "poor" ratings. Wadeable locations of Sites 1 and 9 had "good" ratings. A summary of this data is included in **Table 31**, page 72.

Most of the habitat parameters rated in the suboptimal or marginal categories, with narrow riparian vegetation zone being the most impacted habitat parameter contributing to the poor overall scores (median score in low part of marginal range). Epifaunal substrate/available cover and velocity/depth regime were the next most impacted habitat parameters across all sites.

In 2017, LFUCG used student volunteers to perform stream habitat assessments (RBP) as part of a Stream Corridor Characterization effort performed within the portion of the Cane Run watershed located within LFUCG's Urban Service Area (Third Rock, 2018a; Appendix J). RBP assessments were performed at 32 reaches spread across the Urban Service Area; 26 reaches had a habitat rating of "poor", three had a rating of "fair", and three had a rating of "good". Poor ratings were associated with lack of riparian zone width, indicators of channel instability, presence of features associated with erosion and sediment deposition, and overall lack of instream habitat/substrate/cover.

The recent results are consistent with historic habitat assessments. Restoration efforts towards improving stream and riparian habitat in the watershed through riparian zone widening, stream restoration, streamside wetland creation, and other efforts should be a focus of the BMP implementation plan. The aerial assessment of the riparian corridor in **Chapter I I** identified numerous areas in which the riparian corridor is impacted and could be expanded to improve stream habitat.

TABLE 31
HABITAT ASSESSMENT (RBP) RESULTS SUMMARY

	Site ID											
Parameter	I	2	3	4	5	6	7	9	10 / CR-5 ¹	CR-4	CR-5	CR-8
Date Sampled	6/17/16	6/17/16	3/21/17	3/21/17	6/16/16	3/21/17	8/25/16	6/16/16	4/28/17	2/23/17	4/28/17	2/23/17
Headwater (H) or Wadeable (W)	W	W	Н	Н	W	Н	W	W	Н	Н	Н	Н
Epifaunal Sub/Available Cover	14	П	8	7	10	16	13	12	5	П	5	7
Embeddedness	15	П	12	11	14	8	15	13	10	15	10	12
Velocity Depth Regime	12	11	4	6	12	13	8	10	П	12	П	6
Sediment Deposition	15	13	17	12	13	12	15	14	5	16	5	8
Channel Flow Status	15	16	11	12	14	16	12	16	12	13	12	6
Channel Alteration	15	14	5	12	14	13	16	16	15	15	15	14
Freq. of Riffles (or Bends)	16	5	5	8	8	П	9	16	13	13	13	14
Bank Stability	16	15	20	18	15	13	14	15	2	14	2	8
Vegetative Protection	12	14	8	6	П	16	13	17	2	12	2	4
Riparian Zone Width	6	8	2	2	5	6	6	9	0	16	0	5
RBP Score	136	118	92	94	116	124	121	138	75	137	75	84
RBP Rating ²	Good	Fair	Poor	Poor	Fair	Poor	Fair	Good	Poor	Poor	Poor	Poor

Site 10 drainage area is slightly greater (5.5. mi²) than the headwater designation (5 mi²) but is considered a headwater stream due to its karst nature.

RBP scoring criteria for wadeable streams of the Bluegrass Bioregion: 0-113 Poor, 114-129 Fair, 130-200 Good. For headwater streams of the Bluegrass Bioregion: 0-141 Poor, 142-155 Fair, 156-200 Good.

B. Pollutant Concentrations and Health Grades

Full compilation of pollutant concentration data for the KDOW WBP monitoring sites (Sites I through II) is included in the Combined Water Quality Monitoring and Quality Assurance Project Report (Third Rock, 2017b; Appendix I). Full compilation of pollutant concentration data for the LFUCG watershed-focused monitoring sites (Sites CR-II through CR-I2) is included in the Cane Run Watershed-Focused Monitoring Water Quality Technical Memorandum (Third Rock, 2018e; Appendix L). Within this chapter, some modifications were made to the analyses performed on the LFUCG data in the above-referenced technical memorandum so that the analyses matched those used for the KDOW WBP monitoring data. Specifically, the analyses performed in this chapter for the LFUCG data ensured that the same benchmarks were used for determining health grades in both datasets (LFUCG data was initially analyzed in the technical memorandum using different benchmarks for conductivity, ammonia-nitrogen, nitrate-nitrogen, and total phosphorus).

Relevant data from both efforts is summarized and included in the following sections. **Table 32** (page 74) summarizes average pollutant concentrations and health grades for *E. coli* and nutrients. Health grades for *E. coli* and nutrients are spatially depicted on **Exhibits 29** through **33** (Appendix A) by coloring the incremental drainage area of the site where the grade was assessed. Average concentrations and health grades are included in a subsequent section for *in-situ* water quality parameters.

I. Pathogens

Results indicate that all locations exceeded the PCR use levels for *E. coli* during the study periods, with Sites 2, 10/CR-5, CR-2, CR-6, CR-7, CR-8, CR-9, CR-10, CR-11, and CR-12 exceeding the PCR standard most frequently and receiving "F" health grades for the PCR use **Table 32** (page 74). Several sites also show impairment for the SCR use due to elevated *E. coli* concentrations, though to a lesser degree. The headwater sites closer to Lexington were most impaired for the SCR use, with sites 10/CR-5, CR-6, CR-7, CR-8, CR-9, CR-10, CR-11, and CR-12 receiving "F" health grades. Note, Site 10/CR-5 received "F" grades for both PCR and SCR per either dataset (the Site 10 data collected for this plan or the Site CR-5 data collected by LFUCG). For PCR, Site 11/CR-3 received a "D" grades per both datasets. However, considering the SCR benchmark, the dataset for CR-3 yielded an "A" grade, while the Site 11 dataset yielded a "B" grade. Generally, an "A" or "B" grade indicates that a location is fully supporting the designated use, while "C" grades indicate partially supporting the use, and "D" or "F" grades indicate the use is not supported.

In the samples for Sites I through II, the laboratory did not analyze sample dilutions for most events (budget constraints), thus this *E. coli* dataset is biased low (Third Rock, 2017b; Appendix I). Thus, the average of results for each site was utilized for pollutant load analysis (vs. geomean, which is commonly used to evaluate *E. coli* data). Though dilutions were performed during analysis of the LFUCG data, average *E. coli* concentrations were also evaluated for the LFUCG watershed-focused monitoring data.

TABLE 32 AVERAGE CONCENTRATIONS AND HEALTH GRADES FOR E. COLI AND NUTRIENTS

		(MPI	E. coli N/ 100mLs)		Amm Nitro (mg	gen	To Nitrog Nitr Nitro (mg	gen or ate- ogen ²	Total Phosphorus (mg/L)	
Site		PCR (Swimming)	SCR (Wading)	Avg.		Avg.		Avg.	*	Avg.
ID	Count	Grade	Grade	Conc.	Grade	Conc.		Conc.	Grade	Conc.
I	12 (17)	D	В	317	Α	0.00	С	2.23	В	0.27
2	12 (17)	F	С	753	В	0.03	В	2.12	В	0.30
3	5 (10)	В	Α	282	Α	0.00	С	4.06	Α	0.29
4	10 (15)	D	В	537	Α	0.00	Α	1.02	Α	0.25
5	12 (17)	D	C	678	D	0.22	F	3.25	F	0.51
6	12 (17)	F	D	907	F	1.31	F	4.18	F	0.63
7	9 (14)	В	A	130	A	0.00	В	1.51	В	0.20
8 ³	12 (17)	D	В	475	В	0.12	В	2.45	С	0.39
9	10 (15)	С	Α	261	С	0.11	В	1.79	С	0.30
104	10 (15)	F	F	1,327	Α	0.03	В	2.47	D	0.46
115	10 (15)	D	В	551	Α	0.00	Α	0.91	С	0.33
CR-I	6	D	D	682	Α	0.03	Α	1.62	С	0.36
CR-2	4	F	D	926	Α	0.02	С	2.77	С	0.37
CR-3 ⁵	10	D	Α	395	Α	0.02	Α	1.25	С	0.41
CR-5⁴	10	F	F	1,009	Α	0.02	D	3.16	C	0.34
CR-6	10	F	F	2,608	Α	0.02	F	3.44	C	0.34
CR-7	10	F	F	3,762	Α	0.02	Α	1.79	Α	0.32
CR-8	4	F	F	1,793	Α	0.03	C	3.08	Α	0.26
CR-9	I	F	F	1,596	Α	0.01	Α	2.16	Α	0.23
CR-10	2	F	F	1,660	Α	0.03	Α	2.69	Α	0.25
CR-11	10	F	F	1,212	Α	0.02	С	2.11	Α	0.24
CR-12	10	F	F	24,308	С	0.29	С	2.60	С	0.40

¹ Instances of reduced number of samples due to dry conditions during sampling event (12 max. sampling events plus 5 additional *E. coli* samples for Sites 1 through 11 stations; 10 max. events for Sites CR-1 through CR-12)

² Total nitrogen for KDOW sites, but for LFUCG sties data was not sufficient to calculate total nitrogen loads, thus data for nitrate-nitrogen (likely the predominate form of total nitrogen) is presented.

³ PCR, SCR, and WAH uses are not applicable for groundwater, however grades are presented for Site 8 for comparison with other sites

⁴ Site 10 is same location as Site CR-5

⁵ Site II is same location as Site CR-3

A summary table indicating the range (maximum and minimum) of *E. coli* values measured at each site for this plan, along with a comparison of average and geomean of *E. coli* values is included in **Table 33**.

TABLE 33
E. COLI CONCENTRATION DATA SUMMARY

Site ID	Count	Maximum	Minimum	Average	Geomean
I	17	1,203	41	317	227
2	17	2,420	17	753	390
3	10	1,753	26	282	119
4	15	2,420	11	537	198
5	17	2,420	54	678	402
6	17	2,420	56	907	532
7	14	579	3	130	54
8	17	2,420	10	475	145
9	15	1,643	14	261	133
101	15	2,420	210	1,327	1,071
112	15	2,420	23	551	250
CR-I	6	2,433	100	682	380
CR-2	4	2,133	202	926	660
CR-3 ²	10	1,211	50	395	271
CR-5 ¹	10	1,849	202	1,009	810
CR-6	10	14,209	100	2,608	1,171
CR-7	10	12,229	860	3,762	2,633
CR-8	4	3,592	852	1,793	1,489
CR-9	I	1,596	1,596	1,596	1,596
CR-10	2	2,109	1,211	1,660	1,598
CR-II	10	4,103	202	1,212	876
CR-12 ³	10	98,039	413	24,308	5,139

Site 10 is same location as Site CR-5

For Sites I through II, six *E. coli* samples were collected in May 2017 for specific evaluation of impairment of recreation use; for those six samples, the geomean was evaluated (Third Rock, 2017b; Appendix I). A summary of the results from this effort is included in **Table 34**, page 76. For PCR, when the PCR limit was exceeded, it was exceeded for both the 30-day geomean standard and the percent of exceedances standard. This was true for all sites, except for Site 9. For SCR, both the 30-day geomean and the percent of exceedances standards were over thresholds at Sites 5, 6, and 10. For SCR, the 30-day geomean was not exceeded at Site 4, though the site is indicated as impaired for the SCR based on the percent of exceedances.

² Site II is same location as Site CR-3

³ Geomean *E. coli* concentration was used in loading calculations for CR-12; average *E. coli* concentration was used in loading calculations for all other sites


TABLE 34 E. COLI GEOMEAN CONCENTRATIONS AND EXCEEDANCES FOR SIX EVENTS MAY 2017

	Compa	red to PCR (S	wimming)	Comp	pared to SCR (O,		
		Use Levels		Use Levels				
Site ID	Geomean	Count of Exceedances	Percent of Exceedances	Geomean	Count of Exceedances	Percent of Exceedances		
I	341	4	67%	341	I	17%		
2	277	4	67%	277	0	0%		
3	143	2	33%	143	1	17%		
4	343	3	50%	343	2	33%		
5	668	5	83%	668	3	50%		
6	956	5	83%	956	4	67%		
7	165	2	33%	165	0	0%		
8	520	3	50%	520	3	50%		
9	126	l l	17%	126	0	0%		
10	1,248	6	100%	1,248	5	83%		
П	405	4	67%	405	I	17%		

Note: Yellow shading indicates exceedance of PCR standard. Blue shading indicates exceedance of SCR standard. Grey shading indicates that PCR and SCR uses are not applicable for groundwater.

Data collected for this watershed-based plan, as well as historic data, indicate that the most significant pollutant causing impairment to Cane Run and its tributaries is pathogens (as indicated by elevated *E. coli* and fecal coliform). Measuring fecal-indicator bacteria concentrations can provide general information on the fecal contamination likely occurring at a given stream site; however, it does not identify the contamination source. Microbial source tracking was conducted at most sites to help determine the source of the fecal-indicator bacteria. Specific genetic markers are used to test for sources of fecal pollution using quantitative polymerase chain reaction. When a marker is detected in a water sample it is indicative of the presence of fecal waste from the given host, but if a marker is not detected the source is not necessarily absent. If enough copies of a marker are detected for a sample, the copies can be quantified and a value for "copies per sample volume", analogous to "marker concentration" can be reported for the sample. It should be noted that these are individual methods of quantification for each marker – quantified values of one marker cannot be compared to quantified values of another marker. But, comparisons of quantified values for a given marker can be made among sites.

For this plan, the laboratories, methods, and genetic markers were different for the KDOW WBP monitoring sites than those applied to the LFUCG watershed-focused monitoring sites. For Sites 2, 4, 5, 6, 8, 9, 10, and 11 (locations with recurring high *E. coli* levels during the study period), microbial source tracking analyses were performed by UK ERTL using a human marker and a ruminant marker (includes horses, cattle, and deer; Third Rock, 2017b;

Appendix I). For a stormwater outfall draining to CR-5, a stormwater outfall draining to CR-6, CR-7, a stormwater outfall draining to CR-10, stormwater outfalls draining to CR-11, and a stormwater outfall draining to CR-12 (also locations with recurring high E. coli levels during the study period) microbial source tracking analyses were performed by the laboratory of Dr. Alice Layton at the University of Tennessee (UT) using a human marker and a bovine (cattle) marker (Third Rock, 2017d; Appendix M). The human genetic marker used by UK ERTL was not the same human marker used by UT, though both are indicative of human-sources fecal contamination.

Of the KDOW sites evaluated and yielding satisfactory data, results indicated low levels of human markers were detected at Sites 5, 6, and 10 (no quantifiable difference between these three sites). Microbial source tracking indicated the presence of the ruminant (presumed cattle) marker at Site 2.

Of the LFUCG sites evaluated, the sites deemed to have the greatest human fecal contamination were a stormwater outfall (15506) draining to CR-6, a stormwater outfall (15008) draining to CR-5, a stormwater outfall (15027) draining to CR-12, CR-7, and stormwater outfalls (15019, 15021) draining to CR-11; these locations are listed in order of the quantity of marker copies detected from greatest to least, such that the highest number of human marker copies was quantified for the outfall draining to CR-6 and the lowest number of human marker copies was quantified for outfall 15021, draining to CR-11.

Table 35 (page 78) summarizes the detections of microbial source tracking markers for all sites. Microbial source tracking results confirm human sources of pathogens, likely due to sanitary sewer infrastructure problems. As mentioned previously, LFUCG has a robust program to address SSOs and pollution from the public system; significant improvements to the sanitary sewer infrastructure are ongoing or planned under the LFUCG remedial measures plans. Rehabilitation of the sanitary sewer network in particular neighborhoods, including private lateral lines, beyond what is addressed by the remedial measure plans may be required. Several neighborhoods within the Cane Run watershed were constructed prior to the 1970s, and many houses still have Orangeburg or clay lateral lines which need replacement.

TABLE 35 MICROBIAL SOURCE TRACKING RESULTS SUMMARY

Site ID	Marker Detections	Suspected Fecal Source
I	No MST performed	Unknown
2	Cattle Detections; No Human Detections	Cattle
3	No MST performed	Unknown
4	No Cattle Detections; No Human Detections	Unknown
5	No Cattle Detections; Human Detection	Human
6	No Cattle Detections; Human Detection	Human
7	No MST performed	Unknown
8	No Cattle Detection; No Human Detection	Unknown
9	No Cattle Detection; No Human Detection	Unknown
101	No Cattle Detections; Human Detections	Human
²	No Cattle Detections; No Human Detections	Unknown
CR-I	No MST performed	Unknown
CR-2	No MST performed	Unknown
CR-3 ²	No MST performed	Unknown
CR-5 ¹	Human Detections at stormwater outfall draining to this site	Human
CR-6 CR-7	Human Detections and weak positive detection of optical brightener at stormwater outfall draining to this site; Bovine Detection at stormwater outfall draining to this site Human Detection at this site	Human; Cattle (low) Human
CR-8	No MST performed	Unknown
CR-9	No MST performed	Unknown
CR-10	MST performed at stormwater outfall draining to this site, but detection was below threshold to indicate Human Detection Human Detections at stormwater outfalls draining to this	Unknown
CR-11	site	Human
CR-12	Human Detections and weak positive detection of optical brightener at stormwater outfall draining to this site	Human

¹ Site 10 is same location as Site CR-5

 $^{^{2}}$ Site II is same location as Site CR-3

2. Nitrogen

Nitrogen is a critical nutrient used by plants but is not characteristically present at high levels in streams, unless received from a leaky or poorly functioning sewer infrastructure or septic systems, discharged by a wastewater treatment plant, or applied to adjacent lands as fertilizer or organic waste in amounts higher than can be incorporated into lawns/crops/pastures or lost to the atmosphere through volatilization or denitrification.

Nitrate is generally the dominant form of nitrogen when in-stream nitrogen is elevated, which was generally true for the data collected for this plan at Sites I through II. Nitrate concentrations ranged from <0.025 mg/L to 5.70 mg/L for Sites I through II. For those sites, sufficient data was produced to calculate total nitrogen (total nitrogen = nitrate-nitrogen + nitrite-nitrogen + TKN. At most sites (with the exception of Site 9 where the average ratio was only 46% and Site 6 where the average ratio was only 55%), the ratio of nitrate-nitrogen concentration to total nitrogen was 70 to 80%, indicating that most of the time, the total nitrogen at each site is in the more reactive, inorganic form. Sites 6 and 9 had larger contributions from organic nitrogen (TKN + ammonia-nitrogen). Total nitrogen concentrations were routinely above the 3.0 mg/L benchmark at Sites I, 3, 5, and 6, with Sites 5 and 6 receiving a "F" health grade (**Table 32**, page 74).

For LFUCG sites (CR-I through CR-I2) data was not sufficient to calculate total nitrogen loads (only nitrate-nitrogen and ammonia-nitrogen were measured) so for these sites nitrate-nitrogen was compared to the benchmark value (3 mg/L) and was used to define the health grades included in **Table 32** (page 74). Nitrate-nitrogen concentrations ranged from 0.48 mg/L to 4.67 mg/L for Sites CR-I through CR-I2. Nitrate-nitrogen concentrations were routinely above the 3.0 mg/L benchmark at Sites CR-2, CR-5, CR-6, CR-8, CR-II, and CR-I2, with Site CR-5 receiving a "D" health grade and Site CR-6 receiving a "F" grade. Considering the nitrogen benchmark, both the dataset for Site II and CR-3 yielded an "A" grade, however the dataset for Site I0 yielded an "B" grade, while the CR-5 dataset yielded a "D" grade. Nitrate is commonly associated with runoff from areas where fertilizer has been applied.

For ammonia-nitrogen, most sites received "A" health grades. Note, both Site 10/CR-5 and 11/CR-3 received "A" grades for ammonia-nitrogen per either dataset. Ammonia-nitrogen was not detected at Sites 1, 3, 4, 7, 11 during sampling. However, sites 5, 6, 9, and CR-12 had exceedances of ammonia-nitrogen over the benchmark level that resulted in grades of "D", "F", "C", and "C", respectively. By far the highest concentrations were measured at Site 6, where the average ammonia-nitrogen was 1.31 mg/L. Ammonia-nitrogen was still elevated at site 5 (average was 0.22 mg/L), located on Cane Run downstream of site 6. These sites are located downstream of three failing package wastewater treatment plants, in addition to a large dump, a landscaping business, and multiple horse farms. Site CR-12 is a headwater site draining older Lexington residential and developed areas. Ammonia-nitrogen is typically elevated near sources of human (or animal) waste discharge.

Ammonia-nitrogen represents the total of ammonia in both its ionized (NH_4^+) and un-ionized (NH_3) forms. Ammonia-nitrogen can be converted to nitrate- and nitrite-nitrogen by bacteria and then used by plants. The unionized form of ammonia-nitrogen is more toxic to fish and other aquatic life; the percentage of the unionized form is related to temperature and pH.

Higher temperature and/or pH increases the conversion of ammonia to the unionized form and in-stream toxicity increases. The fraction of total ammonia-nitrogen in the unionized form (mg/L) was calculated for sampling events where ammonia-nitrogen (mg/L), pH (SU), and temperature (°C) were available for a site using the following equations.

Equation 1.
$$pKa = 0.0902 + \left[\frac{2730}{273.2 + Temp}\right]$$

and

Equation 2. Unionized Ammonia =
$$1.2 \left[\frac{Ammonia N \text{ as } N}{(1+10^{pKa-pH})} \right]$$

The water quality standard for WAH designated uses was also reviewed for the fraction of unionized ammonia-nitrogen present. Unionized ammonia-nitrogen should be less than 0.05 mg/L to protect aquatic life from toxicity. No instances of unionized ammonia-nitrogen in excess of the standard were observed at any of the 22 sites (all were generally very low).

3. Phosphorus

Phosphorus is also a critical nutrient used by plants but should not be present at high levels in streams. Phosphorus can be contributed to streams through runoff, agricultural or sanitary wastes, fertilizers, and soil erosion. In freshwater systems, phosphorus is the limiting nutrient for algal/aquatic plant growth. When it is in excess, it can cause eutrophication, the excessive growth of algae/aquatic plants. This overgrowth ultimately leads to periods of low dissolved oxygen, which can cause the demise of aquatic organisms.

For Sites I through II total phosphorus and ortho-phosphorus (as phosphorus) were analyzed. Ortho-phosphorus is the dissolved form of phosphorus that is bioavailable for algae and plant growth. Total phosphorus includes particulate-bound phosphorus and other forms of phosphorus. With phosphorus-rich limestone geology in Central Kentucky, phosphorus levels are normally higher here than in surrounding regions. Still, even small increases in instream phosphorus can negatively affect water quality and biological conditions. For Sites I through II, most of the measured phosphorus (around 80% on average) is ortho-phosphorus, the more reactive form. However, Sites 8, 9, and 10 did have a lower percentage of phosphorus in the ortho-phosphorus form, compared to the remaining sites. Ortho-phosphorus concentrations ranged from 0.014 to 1.10 mg/L, while total phosphorus ranged from 0.0051 to 1.4 mg/L.

For LFUCG sites (CR-I through CR-I2), samples were only analyzed for total phosphorus, with total phosphorus ranging from 0.19 mg/L to 1.07 mg/L. It is likely that much of this phosphorus is in the more reactive form of ortho-phosphorus as seen in the other samples.

Like for ammonia-nitrogen and total nitrogen, high total phosphorus concentrations and frequent exceedances of the benchmark were observed at Sites 5 and 6, resulting in "F" health grades at those two sites for total phosphorus (**Table 32**, page 74). Site 10 received a "D"

health grade and Sites II, CR-I, CR-2, CR-3, CR-5, and CR-6 received "C" health grades. Considering the phosphorus benchmark, both the dataset for Site II and CR-3 yielded an "A" grade, however the dataset for Site I0 yielded an "B" grade, while the CR-5 dataset yielded a "D" grade.

4. In-Situ Water Quality Data

Measured pH levels ranged from 6.3 to 8.8 SU during the monitoring period, all within the regulatory criteria (considers all 22 sites). The average of all sites was 7.6 SU, indicating slightly basic stream conditions typical of limestone geology. Average concentration and health grades per sites are not tabulated for pH since it was not found to be negatively impacting the WAH use.

Temperature results were within the desired range during all measurements. Averages and health grades per sites are not tabulated for temperature since it was not found to be negatively impacting the WAH use.

Specific conductance, or conductivity, levels ranged from 88 to 1480 µS/cm during the monitoring period (considers all 22 sites). Sites I, 3, 4, 7, 9, CR-I, and CR-9 (only I measurement obtained at CR-9) never exceeded 650 µS/cm. Sites 2, 5, 6, 8, CR-2, CR-3, and CR-6 each regularly exceeded the benchmark, but average conditions were below the 650 µS/cm level. Conductivity at Sites I0, I1, CR-6, CR-7, CR-8, CR-10, CR-I1, and CR-I2 averaged conductivity levels in excess of the benchmark for the monitoring period. Sites I0, CR-7, CR-I1, CR-I2 all had conductivity values more than I,000 µS/cm during at least one event. Sites I1, CR-2, CR-5, CR-6, CR-7, CR-8, CR-10, CR-I1, and CR-I2 all received an "F" health grade related to conductivity (as it relates to WAH). Considering the conductivity benchmark, the dataset for Site I0 yielded a "D" grade, while the CR-5 dataset yielded a "B" grade. The dataset for Site I1 yielded a "F" grade, while the CR-3 dataset yielded a "B" grade.

Conductivity measurements are highest for stations draining the developed Lexington area. Conductivity is a measure of the ability an electrical current to flow through a solution (stream water) and is increased in our region by geologic conditions. Conductivity in water is also affected by the presence of inorganic dissolved solids such as chloride, nitrate, sulfate, and phosphate anions (ions that carry a negative charge) or sodium, magnesium, calcium, iron, and aluminum cations (ions that carry a positive charge) that may not be from natural sources. Thus, high conductivity values could be related to runoff from impervious surfaces in the urban environment carrying road salts and other dissolved ions into waterways. However, many high readings occurred during summer months (not during periods when salt is applied to roads) and are potentially related to illicit discharges, urban pollutants, or failing sewer infrastructure. The average conductivity measured for each site and health grade for conductivity are included in **Table 36** (page 83).

Dissolved oxygen measurements were above the WAH instantaneous requirement of 4.0 mg/L for all sampling events at all sites, except for Site 6, located on the tributary along US 25, and Site 9, located on a University of Kentucky research farm, and Site CR-I2, the headwater tributary draining downtown Lexington near Louden Avenue. Site 6 had low dissolved oxygen

levels on July 18, 2016 (2.5 mg/L) which was also the date of the lowest flow conditions measured at the site. These low flow conditions paired with high ammonia, nitrogen, and phosphorus concentrations and the presence of algae downstream indicate that aquatic life may be negatively impacted based on pollutant concentrations at this site. It is expected that continuous dissolved oxygen monitoring at Site 6 would detect additional impacts. At Site 9, dissolved oxygen levels were less than 4.0 mg/L on July 18 and August 24, 2016 (3.3 and 3.8 mg/L, respectively). The site is located just downstream of an impoundment, a likely cause of the low dissolved oxygen. Site CR-12 had a dissolved oxygen measurement of 3.2 mg/L on July 18, 2017, but other readings at this location during the study were above the benchmark. In generally, low dissolved oxygen was not found to be a problem during most of the study and the majoring of sites; the average dissolved oxygen for all sites was 8.6 mg/L. The average concentration measured for each site and health grade for dissolved oxygen are included in **Table 36**, page 83.

For the KDOW sites (Sites I through II), in-situ turbidity was measured. Turbidity measurements were typically less than 5 NTU at all of these sites. The groundwater well (Site 8) regularly had turbid waters with an average turbidity of 8.7 NTU. This indicates that the groundwater system is regularly transporting low levels of surface sediment through the conduit. During wet weather events, the most turbid waters were found at Site I0 (same location as CR-5) at Citation Boulevard, reaching as high as I50 NTU (average turbidity at this site was 20.4 NTU. Average turbidity at the other KDOW sites ranged from I.9 to 6.6 NTU during the sampling period.

5. Suspended Solids

Most sampling for Sites I through II was conducted during dry weather, thus total suspended solids were low during most measurements. Site I0 showed a large total suspended solids concentration (199 mg/L) associated with the February 7, 2016 wet weather event. Sampling at LFUCG sites was not targeted to specific antecedent weather/flow conditions, but since sampling was performed with trained volunteers, sampling was never performed in especially high flow conditions. Total suspended solids concentrations were low for all LFUCG sites as well. Except for the one elevated sample at Site I0, all other total suspended solids results were below 50 mg/L. The Severe Erosion Survey Report produced for this WBP provides better focus areas for prioritizing sources of sediment in the Cane Run watershed (Third Rock, 2016c; Appendix G).

C. Pollutant Loads and Target Reductions

Pollutant load is the mass (i.e., pound) of given pollutant moving past a given point (i.e., monitoring site) per unit of time (i.e., year). For this WBP, pollutant loads and target reductions needed for pathogens and nutrients were computed for each of the 22 sites (KDOW and LFUCG). For each pollutant considered, the average pollutant concentration was multiplied by a predicted average annual flow value along with appropriate conversions to compute an annual load at each site.

Equation 3.

Annual Load = Average Measured Concentration X Average Annual Flow X Conversion Factors

TABLE 36 AVERAGE CONCENTRATIONS AND HEALTH GRADES FOR IN-SITU WATER QUALITY PARAMETERS

			nductivity u S /cm)		lved Oxygen (mg/L)
Site ID	Count ¹	Grade	Avg. Concentration	Grade	Avg. Concentration
I	12	Α	558	Α	10.3
2	12	C	611	Α	9.9
3	5	Α	427	Α	9.0
4	10	Α	449	Α	9.0
5	12	C	598	Α	10.6
6	12	С	577	В	8.1
7	9	Α	512	Α	10.1
81	12	C	545	Α	7.2
9	10	Α	371	С	8.5
10 ²	10	D	75 I	Α	8.8
113	10	F	691	Α	8.5
CR-I	6	Α	574	Α	8.1
CR-2	4	F	615	Α	8.3
CR-3 ³	10	В	618	Α	6.9
CR-5 ²	10	H	665	Α	8.2
CR-6	10	F	630	Α	7.2
CR-7	10	F	850	Α	7.6
CR-8	4	F	760	Α	8.0
CR-9	I	Α	580	Α	10.3
CR-10	2	L.	675	Α	9.1
CR-11	10	F	939	Α	9.3
CR-12	10	F	776	В	6.4

¹ WAH use not applicable for groundwater, however grades are presented for Site 8 for comparison with other sites

² Site 10 is same location as Site CR-5

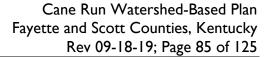
³ Site II is same location as Site CR-3

On exception is that for Site CR-12, the geomean concentration of *E. coli* was used instead of the average concentration (both values are included for comparison in **Table 33**, page 75). As mentioned previously, for the samples from Sites I through II, the laboratory did not analyze sample dilutions for most events (budget constraints), thus *E. coli* values in this dataset are biased low (Third Rock, 2017b; Appendix I). To offset the low bias, the average of results for each site was utilized for pollutant load analysis (vs. geomean, which is commonly used to evaluate *E. coli* data). Though dilutions were performed during analysis of the LFUCG data, average *E. coli* concentrations were also used to compute loads for the LFUCG watershed-focused monitoring data. As seen in **Table 33**, page 75, average and geomean *E. coli* values are similar, however, using the average *E. coli* value does result in higher estimations of pollutant loads. Because the range of *E. coli* values at Site CR-12 was so large and the average value at that site was uncharacteristically high compared to other sites, the geomean was used for the loading calculations at that site.

To calculate the target or benchmark load for each site and pollutant, the same process was utilized, substituting the benchmark pollutant concentration for the average measured concentration.

Equation 4.

Benchmark Load = Benchmark Concentration X Average Annual Flow X Conversion Factors


Pollutant reductions needed to reach benchmark levels were then calculated by subtracting the benchmark loads from the existing annual loads. The percent reduction is the load reduction needed divided by the existing annual load for a given site. These reductions were then further divided into the incremental sub-drainages by subtracting reductions focused in upstream areas from downstream areas.

Available USGS data within the Cane Run watershed was considered when determining a flow estimate for each monitoring site for load calculation. Historic data indicates that because of the heavy interaction between surface and groundwater, strict area-weighted scaling of a USGS gage flow would not produce accurate flow measurements for the individual monitoring stations. Therefore, drainage areas of each monitoring site were adjusted, based on previously mapped sink points, to determine the land area typically contributing to routine stream flows.

Comparing measured flows during sampling events with the USGS gages located in the watershed showed that the sampling events represented all flow levels, but with some bias toward lower flows. Therefore, median flow from a long-term USGS record was chosen to compute annual loads.

The median flow (1.4 cfs) was computed from the long-term flow record at the USGS gage on the tributary to Cane Run at Newtown Pike (site 03288190). This gage is in an area of the watershed where few karst sinks have been mapped, therefore most drainage is through surface flow. This flow was then scaled for each sampling site based on dry weather drainage area (considering karst drainage patterns); this produced a predicted median flow for each site used to compute pollutant loads.

One exception was Site 10/CR-5 at Citation Boulevard. There is a USGS gage on Cane Run at this location (site 03288180), so for Site 10/CR-5 the median flow was computed from the long-term flow record (1.6 cfs) and used directly for this site's load calculations. The flow at this location is primarily

fed from a spring-fed tributary downstream of a large neighborhood and is not representative of non-spring fed streams/locations.

Another exception in determining flow for loading calculations was Site 8. For Site 8, the groundwater well at the Kentucky Horse Park, a water depth data logger installed by KGS was utilized to estimate the average flow of groundwater being transported from Fayette County sources to Royal Springs (11 cfs was used for load calculations).

The estimated median flow for each site used in pollutant loading calculations is included in tables of loads for each evaluated pollutant that follow.

I. Pathogens

The annual loads calculated for *E. coli* are summarized in **Table 37**, page 86, along with target loads for both the PCR and SCR benchmarks (per water quality standards) and the reductions required to meet those targets. All sites except Site 7 require *E. coli* reductions to meet the PCR target load, and 13 of the 22 sites require load reductions to meet the SCR target. Considering total load needed to reach the benchmark level (not % or incremental), Sites 2 and CR-12 require the largest *E. coli* reductions to meet safe conditions for swimming and wading (45 and 46.7 trillion/year, respectively). On a percentage basis, the sites draining Lexington (10/CR-5, CR-6, CR-7, CR-8, CR-9, CR-10, CR-11, and CR-12) require the largest *E. coli* reductions. Pollutant yield (existing annual pollutant load per unit dry weather drainage area), was tabulated for each site to see the drainage areas contributing the most pollutant. Reviewing the data based on yield indicates that Sites CR-6, CR-7, and CR-12 are contributing the most *E. coli* on a unit area basis. Considering incremental reductions to meet benchmarks, Sites 2, 6, 10, CR-10, CR-12 need focus.

Exhibits 29 and **30** (Appendix A) illustrate the health grade (based on concentration data) for both PCR and SCR uses, load reduction needed to achieve both uses, and potential sources of fecal-related bacteria based on the microbial source tracking results.

TABLE 37
ANNUAL E. COLI LOADS AND REDUCTIONS NEEDED

	Dry				Annual Loa (trillion/yea	· -	to Reach Benchmark (%)			to Reach B	tion Needed Benchmark n/year)	Incremental Load Reduction Needed to Reach Benchmark (trillion/year)	
Site ID	Weather Drainage Area (mi²)	Average Concentration (mg/L)	Estimated Median Flow (cfs)	Existing	PCR Benchmark (240/100 mLs)	SCR Benchmark (676/100 mLs)	Annual Pollutant Yield (trillion/yr/mi²)	PCR Benchmark (240/100 mLs)	SCR Benchmark (676/100 mLs)	PCR Benchmark (240/100 mLs)	SCR Benchmark (676/100 mLs)	PCR Benchmark (240/100 mLs)	SCR Benchmark (676/100 mLs)
I	13.05	317	12.4	35	27	75	2.7	23%	-	8	-	-	-
2	10.31	753	9.9	66	21	59	6.4	68%	11%	45.0	7	18	7
3	0.56	282	0.5	1.3	1.1	3.1	2.3	15%	-	0.2	-	0.2	-
4	0.52	537	0.5	2.3	I	2.9	4.4	57%	-	1.3	-	1.3	-
5	5.77	678	5.6	34	12	34	5.9	65%	-	22	-	-	-
6	4.40	907	4.4	35	9.3	26	8.0	73%	26%	26	9	26	9
7	0.17	130	0.2	0.18	0.34	0.96	1.1	-	-	-	-	-	-
8	19.90	475	11.0	46	23	66	2.3	50%	-	23	-	4	-
9	2.90	261	2.7	6.3	5.8	16	2.2	8%	-	0.5	-	0.5	-
10	1.50	1,327	1.6	19	3.4	9.6	12.7	82%	49%	15.6	9.4	15.6	9.4
- 11	1.30	55 I	1.2	6	2.6	7.3	4.6	57%	-	3.4	-	3.4	-
CR-I	1.50	682	1.4	8. 4	3.0	8.3	5.6	64%	1%	5.4	0.1	0.8	-
CR-2	0.54	926	0.5	4 . I	1.1	3.0	7.6	73%	27%	3.0	1.1	3.0	1.1
CR-3	1.30	395	1.2	4.2	2.6	7.3	3.2	38%	-	1.6	0.0	1.6	-
CR-5	1.50	1,009	1.6	14.0	3.4	9.6	9.3	76%	31%	10.6	4.4	-	-
CR-6	0.16	2,608	0.1	3.4	0.3	0.9	21.5	91%	74%	3.1	2.5	3.1	2.5
CR-7	0.39	3,762	0.4	12.0	0.8	2.2	30.9	94%	82%	11.2	9.8	11.2	9.8
CR-8	0.31	1,793	0.3	4.6	0.6	1.7	14.8	87%	63%	4.0	2.9	-	-
CR-9	0.35	1,596	0.3	4.6	0.7	1.9	13.3	85%	59%	3.9	2.7	3.9	2.7
CR-10	1.67	1,660	1.5	23.0	3.3	9.3	13.8	86%	60%	19.7	13.7	19.7	13.7
CR-II	1.75	1,212	1.6	18.0	3.5	9.8	10.3	81%	46%	14.5	8.2	-	-
CR-12	1.15	5,139	1.1	49.0	2.3	6.4	42.6	99%	97%	46.7	42.6	46.7	42.6

Note: Sites 10 and CR-5 are same location and Sites 11 and CR-3 are same location; For Site 10 incremental load shown here does not consider loads computed for the upstream LFUCG stations; For Site CR-5 incremental load does consider the upstream LFUCG stations; For Site CR-12 Geomean is listed in table instead of Average and Geomean is used to calculate *E. coli* load for this station

2. Nitrogen

The annual loads calculated for total nitrogen (for Sites I through II) and nitrate-nitrogen (Sites CR-I through CR-I2) are summarized in **Table 38**, page 88, along with the target loads for the benchmark to support WAH (same benchmark value of 3.0 mg/L was used for both total nitrogen and nitrate-nitrogen target loads) and the reductions required to meet those targets. Most sites meet the target loads for total (or nitrate) nitrogen. Only Sites 3, 5, 6, CR-5, and CR-6 need nitrogen reductions to meet the target loads aiming to protect instream aquatic life conditions, with Sites 3 and 6 requiring the largest reductions. Reviewing the data based on yield indicates that Sites 3 and 6 are contributing the most nitrogen on a unit area basis. **Exhibit 31** (Appendix A) illustrates the health grade (based on concentration data) and the incremental load reductions needed to achieve the benchmark.

For ammonia-nitrogen, the annual loads, target loads to support WAH, and reductions to meet targets are summarized in **Table 39**, page 89. Most sites meet the target loads for ammonia-nitrogen. Only Sites 5, 6, 8, 9, and CR-12 need ammonia-nitrogen reductions to meet the target loads aiming to protect in-stream aquatic life conditions, with Site 6 requiring the largest reduction. Reviewing the data based on yield indicates that Site 6 contributes the most ammonia-nitrogen by far on a unit area basis. **Exhibit 32** (Appendix A) illustrates the health grade (based on concentration data) and the incremental load reductions needed to achieve the ammonia-nitrogen benchmark.

3. Phosphorus

For total phosphorus, the annual loads, target loads to support WAH, and reductions to meet targets are summarized in **Table 40**, page 90. Most sites meet the target loads for total phosphorus, however, Sites 5, 6, 8, 9, CR-1, CR-2, CR-3, and CR-12 need phosphorus reductions to meet the target loads aiming to protect in-stream aquatic life conditions, with Site 6 requiring the largest reduction (same site requiring the largest total and ammonianitrogen reductions). Reviewing the data based on yield indicates that Site 6 contributes the most total phosphorus, followed by Site 10 on a unit area basis. **Exhibit 33** (Appendix A) illustrates the health grade (based on concentration data) and the incremental load reductions needed to achieve the total phosphorus benchmark.

TABLE 38
ANNUAL TOTAL NITROGEN OR NITRATE LOADS AND REDUCTIONS NEEDED

	Dur Woothou	A.v.	Estimated		ual Load s/year)	Existing Annual	Load Reduction	Load Reduction Needed to Reach	Incremental Load Reduction Needed to
Site ID	Dry Weather Drainage Area (mi²)	Average Concentration (mg/L)	Median Flow (cfs)	Existing	Benchmark (3.0 mg/L)	Existing Annual Pollutant Yield (lbs/yr/mi²)	Needed to Reach Benchmark (%)	Benchmark (lbs/year)	Reach Benchmark (lbs/year)
I	13.05	2.23	12.4	54,000	73,000	4,100	-	•	-
2	10.31	2.12	9.9	41,000	58,000	4,000	-	•	-
3	0.56	4.06	0.5	4,200	3,100	7,500	26%	1,100	1,100
4	0.52	1.02	0.5	980	2,900	1,900	-	-	-
5	5.77	3.25	5.6	36,000	33,000	6,200	8%	3,000	
6	4.40	4.18	4.4	36,000	26,000	8,200	28%	10,000	10,000
7	0.17	1.51	0.2	470	940	2,800	-	-	-
8	19.90	2.45	11.0	53,000	65,000	2,700	-	-	-
9	2.90	1.79	2.7	9,500	16,000	3,300	-	-	-
10	1.50	2.47	1.6	7,800	9,400	5,200	-	-	-
П	1.30	0.91	1.2	2,200	7,200	1,700	-	-	-
CR-I	1.50	1.62	1.39	4,400	8,200	2,900	-	-	-
CR-2	0.54	2.77	0.50	2,700	2,900	5,000	-	-	-
CR-3	1.30	1.25	1.20	3,000	7,200	2,300	-	-	-
CR-5	1.50	3.16	1.60	9,900	9,400	6,600	5%	500	370
CR-6	0.16	3.44	0.15	990	860	6,300	13%	130	130
CR-7	0.39	1.79	0.36	1,300	2,100	3,300	-	-	-
CR-8	0.31	3.08	0.29	1,700	1,700	5,500	-	-	-
CR-9	0.35	2.16	0.32	1,400	1,900	4,000	-	-	-
CR-10	1.67	2.69	1.55	8,200	9,100	4,900	-	-	-
CR-11	1.75	2.11	1.62	6,700	9,600	3,800	-	-	-
CR-12	1.15	2.60	1.07	5,400	6,300	4,700	-	-	-

Note: Total nitrogen loads presented for KDOW Sites I – II; for LFUCG sites, data was not sufficient to calculate total nitrogen loads, thus nitrate-nitrogen loads (likely the predominate form of total nitrogen based on KDOW dataset) is presented; Sites I0 and CR-5 are same location and Sites II and CR-3 are same location; For Site I0 incremental load shown here does not consider loads computed for the upstream LFUCG stations; For Site CR-5 incremental load does consider the upstream LFUCG stations

TABLE 39 ANNUAL AMMONIA-NITROGEN LOADS AND REDUCTIONS NEEDED

Site ID	Dry Weather Drainage Area (mi²)	Average Concentration (mg/L)	Estimated Median Flow (cfs)	Annual Lo	bad (lbs/year) Benchmark (0.1 mg/L)	Existing Annual Pollutant Yield (lbs/yr/mi²)	Load Reduction Needed to Reach Benchmark (%)	Load Reduction Needed to Reach Benchmark (lbs/year)	Incremental Load Reduction Needed to Reach Benchmark (lbs/year)
I	13.05	0.00	12.4	-	2,400	-	-	-	-
2	10.31	0.03	9.9	570	1,900	55	-	-	-
3	0.56	0.00	0.5	-	100	-	-	-	-
4	0.52	0.00	0.5	-	95	-	-	-	-
5	5.77	0.22	5.6	2,500	1,100	430	56%	1,400	-
6	4.40	1.31	4.4	11,000	860	2,500	92%	10,140	10,140
7	0.17	0.00	0.2	-	31	-	-	•	-
8	19.90	0.12	11.0	2,600	2,200	130	15%	400	400
9	2.90	0.11	2.7	560	530	190	5%	30	30
10	1.50	0.03	1.6	79	310	53	-	•	-
П	1.30	0.00	1.2	-	240	-	-	-	-
CR-I	1.50	0.03	1.4	77	270	51	-	-	-
CR-2	0.54	0.02	0.5	15	98	28	-	-	-
CR-3	1.30	0.02	1.2	54	240	42	-	-	-
CR-5	1.50	0.02	1.6	51	310	34	-	-	-
CR-6	0.16	0.02	0.1	6	29	41	-	-	-
CR-7	0.39	0.02	0.4	16	71	41	-	-	-
CR-8	0.31	0.03	0.3	15	57	48	-	-	-
CR-9	0.35	0.01	0.3	5	63	14	-	<u>-</u>	-
CR-10	1.67	0.03	1.5	99	300	59	-	-	-
CR-11	1.75	0.02	1.6	58	320	33	-	-	-
CR-12	1.15	0.29	1.1	600	210	520	65%	390	390

Note: Sites 10 and CR-5 are same location and Sites 11 and CR-3 are same location; for sites 10 and 11 incremental loads did not consider loads computed for the upstream LFUCG stations; For Site 10 incremental load shown here does not consider loads computed for the upstream LFUCG stations; For Site CR-5 incremental load does consider the upstream LFUCG stations

TABLE 40 ANNUAL TOTAL PHOSPHORUS LOADS AND REDUCTIONS NEEDED

			Estimated	Annual Lo	ad (lbs/year)			Load Reduction	Incremental Load
Site ID	Dry Weather Drainage Area (mi²)	Average Concentration (mg/L)	Median Flow (cfs)	Existing	Benchmark (0.35 mg/L)	Existing Annual Pollutant Yield (lbs/yr/mi²)	Load Reduction Needed to Reach Benchmark (%)	Needed to Reach Benchmark (lbs/year)	Reduction Needed to Reach Benchmark (lbs/year)
I	13.05	0.27	12.4	6,500	8,600	500	-	-	-
2	10.31	0.30	9.9	5,700	6,800	550	-	-	-
3	0.56	0.29	0.5	300	360	540	-	-	-
4	0.52	0.25	0.5	240	330	460	-	-	-
5	5.77	0.51	5.6	5,700	3,900	990	32%	1,800	-
6	4.40	0.63	4.4	5, 4 00	3,000	1,200	44%	2,400	2,400
7	0.17	0.20	0.2	61	110	360	-	-	-
8	19.90	0.39	11.0	8, 4 00	7,600	420	10%	800	400
9	2.90	0.30	2.7	1,600	1,900	550	-	-	-
10	1.50	0.46	1.6	1,500	1,100	1,000	27%	400	400
П	1.30	0.33	1.2	780	840	600	-	-	-
CR-I	1.50	0.36	1.39	980	950	660	3%	30	-
CR-2	0.54	0.37	0.50	360	340	670	6%	20	20
CR-3	1.30	0.41	1.20	980	840	750	14%	140	140
CR-5	1.50	0.34	1.60	1,100	1,100	730	-	-	-
CR-6	0.16	0.34	0.15	98	100	620	-	-	-
CR-7	0.39	0.32	0.36	230	250	590	-	-	-
CR-8	0.31	0.26	0.29	150	200	480	-	-	-
CR-9	0.35	0.23	0.32	150	220	430	-	-	-
CR-10	1.67	0.25	1.55	770	1,100	460	-	-	-
CR-11	1.75	0.24	1.62	770	1,100	440	-	-	-
CR-12	1.15	0.40	1.07	830	730	720	12%	100	100

Note: Sites 10 and CR-5 are same location and Sites 11 and CR-3 are same location; For Site 8, loads for upstream Sites 10 and 11 were deducted; For Site 10 incremental load shown here does not consider loads computed for the upstream LFUCG stations; For Site 8, loads for upstream Sites 10 and 11 were deducted; For Site 10 incremental load does consider the upstream LFUCG stations

4. Sub-watershed Prioritization

Table 41, pages 92 and 93, summarizes the water quality load reductions needed and potential sources of pollutants in need of reductions for each sub-watershed. BMPs should be prioritized in sub-watersheds needing incremental pollutant loads.

To achieve pollutant load reductions to meet E. coli water quality goals, significant remediation of sanitary sewer systems, including Lexington's public system and private laterals, private septic systems, and package treatment plants will be necessary. Some BMPs to address contributions from cattle and horses should also be considered. Generally, when BMPs are implemented to address *E. coli*, associated with waste, they will also reduce nutrients. However, in some sub-watersheds, residential and agricultural fertilizer application BMPs should be considered.

Based on MST results, human sources of *E. coli* are likely contributing to the *E. coli* exceedances in the Cane Run watershed, particularly as noted for locations in **Tables 35** (page 78) and **41** (pages 92 and 93). However, wildlife such as deer, racoons, birds and other animals could contribute to the fecal loading in the watershed. And detections of a cattle marker were made at two locations, thought at one location the detection was noted as low.

Quantification of sources of pollutants is refined in **Chapter V**, along with a summary of BMPs to achieve required pollutant reductions.

TABLE 41 INCREMENTAL LOAD REDUCTION PRIORITIES AND SOURCE SUMMARY

	E. coli Incremental Load Reduction Needed to Reach Benchmark (trillion/year) PCR SCR		Ammonia- Nitrogen Nitrogen Incremental Load Load Reduction Reduction		Total Phosphorus Incremental Load Reduction		
Site ID	PCR Benchmark (240/100 mLs)	SCR Benchmark (676/100 mLs)	Needed to Reach Benchmark (lbs/year)	Needed to Reach Benchmark (lbs/year)	Needed to Reach Benchmark (lbs/year)	General Comments on Sub-watershed	Potential Sources Where Incremental Reductions Required
ı	-	-	(ibs/year)	(ibs/year)	-	General Comments on Sub-watershed Generally rural area with some residential development off Ironworks Pike and US-460; agricultural areas, mainly pasture/horses, but some row cropping and cattle	incremental Neductions Nequired
2	18	7	-	-	-	Large amounts of residential development and businesses (north side of US-62 Bypass); Predominantly still agriculture on the south side of Bypass, including cattle farming; MST detected marker for cattle waste at this site	Cattle upstream of Payne's Depot Road
3	0.2			1,100	-	Generally rural area with horse farms; sparse residential development on large lots along Grayson Way	Two horse farms
4	1.3	-	-	-	-	Generally rural area with horse farms; sparse residential development on large lots along Etter Lane	Septic systems along Etter Lane; 3 horse farms
5	-	•	-	-	-	Generally rural area with farms/horse farms; small area of residential development at upstream sub-watershed boundary	Incremental reductions not found, but evidence of human fecal contamination found here (possible septic systems)
6	26	9	10,140	10,000	2,400	Generally rural area with farms/horse farms; business/development along US-25; large mobile home parks with package WWTPs; other septic systems; stockyard facility	Failing package WWTPs, septic systems, a large dump, landscaping company, horse farms; evidence of human fecal contamination found here
7	-	-	-	-	-	Kentucky Horse Park, some residential development and businesses, other horse farms.	
8	4	-	400	-	400	Kentucky Horse Park, some residential development and businesses, other horse farms.	Kentucky Horse Park, urban headwaters of Lexington, including some industry (excludes reductions specific to Sites 9 and 10 and LFUCG Sites)
9	0.5	-	30	-	-	Older residential neighborhoods in headwaters of Lexington; horse farms and businesses; other farms; Research farms and facilities	Farms, including a university research farm, and several horse-related farms and businesses
10	15.6	9.4	-	-	400	Developed headwaters of Lexington, including older residential neighborhoods	Primarily private sanitary laterals and sanitary sewer in a large neighborhood; other sources include tributary behind Eastern State Hospital and some from upstream of Newtown Pike; large businesses and factories also present; evidence of human fecal contamination found here
П	3.4	-	-	-	-	Small sub-watershed with mainly residential development and some commercial offices; small amount of undeveloped/farm land	Large neighborhoods, sanitary sewers with LFUCG remedial measures plans.

TABLE 41 INCREMENTAL LOAD REDUCTION PRIORITIES AND SOURCE SUMMARY CONTINUED

	E. coli Incremental Lo Reduction Needed (Reach Benchmark (trillion/year)		eduction Needed to Reach Benchmark (trillion/year) Nitrogen Incremental Load Load		Total Phosphorus Incremental Load Reduction		
Site ID	PCR Benchmark (240/100 mLs)	SCR Benchmark (676/100 mLs)	Reduction Needed to Reach Benchmark (lbs/year)	Reduction Needed to Reach Benchmark (lbs/year)	Needed to Reach Benchmark (lbs/year)	General Comments on Sub-watershed	Potential Sources Where Incremental Reductions Required
CR-I	0.8	-	-	-	-	Incrementally, only small area downstream of CR-3 and CR-2 that is predominantly research farm on the north side of I-64	Sanitary sewers with LFUCG remedial measures plans.
CR-2	3.0	1.1	-	-	20	Incrementally, only small area downstream of CR-5 that is predominantly research park and some research cropland	Pump station and sanitary sewers with LFUCG remedial measures plans.
CR-3	1.6	-	-	-	140	Same as Site 11; developed headwaters of Lexington, including older residential neighborhoods	Same as Site 11; sanitary sewers, known SSO locations, areas with LFUCG remedial measures plans and pipe/manhole repairs; golf course
CR-5	-	-	-	370	-	Same as Site 10; incrementally a small area downstream of CR-6, CR-7, and CR-8 that is predominantly research park/farm and older residential neighborhood of Lexington	Incremental <i>E. coli</i> reductions not needed here, but evidence of human fecal contamination found here; fertilizer on agricultural land and open space
CR-6	3.1	2.5	-	130	_	Older residential neighborhoods of Lexington; equine hospital facility with pasture	Sanitary sewers (old/failing lateral lines) associated with older residential neighborhoods; equine hospital; lawn fertilizer; evidence of human and cattle (low) fecal contamination found here
CR-7	11.2	9.8	-	-	-	Older residential neighborhood and developed headwaters of Lexington; mobile home park; commercial properties; greenhouse; park	Sanitary sewers (old/failing lateral lines) associated with older residential neighborhoods and mobile home park; evidence of human fecal contamination found here
CR-8	-	-	-	-	-	Incrementally this sub-watershed contains park/recreation facilities, a small amount of residential development, and other commercial development	
CR-9	3.9	2.7	-	-	-	Older residential neighborhoods of Lexington; neighborhood park; farm facility/pasture	Sanitary sewers (old/failing lateral lines) associated with older residential neighborhood
CR-10	19.7	13.7	-	-	-	Older residential neighborhoods of Lexington; neighborhood park; commercial development	Sanitary sewers with historic overflows; have LFUCG remedial measures plans and other repairs ongoing
CR-11	-	-	-	-	-	A large industry campus, other commercial development.	Incremental reductions not required here, but there are sanitary sewers with LFUCG remedial measures plans in this sub-watershed and there was evidence of human fecal contamination found here
CR-12 ²	46.7	42.6	390	-	100	Primarily older residential neighborhoods of Lexington.	Sanitary sewers with historic overflows; have LFUCG remedial measures plans and other repairs ongoing; older residential neighborhoods, including a mobile home park; evidence of human fecal contamination found here

For Sites 1 through 11 this is Total Nitrogen, for Sites CR-1 through CR-12 this is Nitrate-Nitrogen

² For Site CR-12 E. coli Geomean was used instead of Average to calculate E. coli load

V. POLLUTANT SOURCES AND BMP IMPLEMENTATION

Pollutant load reductions needed to achieve the target loads for *E. coli*, total nitrogen, ammonianitrogen, and total phosphorus were performed in **Chapter IV** on a sub-watershed basis to lay the groundwork for identifying the sources of pollutants on this spatial scale as well. The sources of pollution in the Cane Run watershed were identified based on the watershed inventory and water quality data presented in previous chapters, along with knowledge of project stakeholders, The predominant sources of bacterial and nutrient pollutants in the Cane Run watershed are considered to be wastewater contributed by failing sewer infrastructure; agriculture hay pasture land that contains cattle and horses, including areas where horse muck is managed; and developed land, including pet waste contributions. The following sections give information on the potential *E. coli*, total nitrogen, ammonia-nitrogen, and total phosphorus reductions that can be achieved by addressing the considered pollution sources.

A. Wastewater-Associated E. coli and Nutrient Reductions

Based on MST results, human sources of *E. coli* are likely contributing to the *E. coli* exceedances in the Cane Run watershed, particularly as noted for locations in **Tables 35** (page 78) and **41** (pages 92 and 93). To achieve pollutant load reductions to meet *E. coli* water quality goals, significant remediation of sanitary sewer systems, including Lexington's public system and private laterals, private septic systems, and package treatment plants will be necessary. Likewise, portions of the nitrogen and phosphors loadings are associated with wastewater and will be addressed with the these planned remediations.

The nutrient and *E. coli* load reductions achieved by any particular sanitary sewer project in the upper Cane Run watershed of Lexington (line replacement, wet weather storage tank construction, pump station addition/improvement, or other rehabilitation) is difficult to quantify as the bacterial load reduction depends on numerous factors that can vary over time, including the degree of exfiltration, the amount of flow in a given line, and the concentration of *E. coli* in the wastewater. A list of LFUCG remedial measures plan projects within the Cane Run watershed was provided in **Chapter II, Table 8** (page 30) and mapped along with other repairs on **Exhibit II** (Appendix A). **Table 42** (page 95) indicates the subcatchment where the remedial measure activity is located, and thus where an *E. coli* and related nutrient load reductions are likely to be achieved.

An iterative approach of implementation of sanitary sewer upgrades followed by post-construction monitoring will be required to determine the reductions achieved for projects. Depending on follow-up monitoring, additional source identification and treatment may be required.

In the middle Cane Run Watershed (sub-watershed to Site 6), decommissioning package sewage treatment plants and providing sanitary sewer infrastructure to mobile home parks is key to meeting *E. coli* and nutrient water quality goals. Based on reviews of historic discharge and permit-required monitoring for the Spindletop, Georgetown Estates, and Maple Grove MHPs (through EPA's ECHO database), as well as literature estimates of pollution from municipal sewage (and partially treated sewage), the following estimates were made for specific allocation of pollutants to these failing facilities (**Table 43**, page 95; EPA, 1999; EPA, 2002).

TABLE 42 LFUCG CANE RUN REMEDIAL MEASURES PLAN SCHEDULE

RMP Project Name	Subcatchment
Lower Cane Run Wet Weather Storage Tank	CR-2
Expansion Area 3 Pump Station	CR-1, CR-3, Site 9
Expansion Area 3 Force Main	CR-1, CR-3, Site 9
Expansion Area 3 Trunk	Site 9
Shandon Park Trunk	Upstream of Site 9, but in karst basin that leaves Cane Run watershed
Winburn Trunk	Upstream of Site 9, but in karst basin that leaves Cane Run watershed
Thoroughbred Acres Trunk	Upstream of Site 9, but in karst basin that leaves Cane Run watershed
Sharon Village Pump Station and Force Main	Upstream of Site 9, but in karst basin that leaves Cane Run watershed
Lower Griffin Gate Trunk	CR-3
Upper Cane Run Wet Weather Storage Tank	CR-8
Cane Run Trunk	CR-8, downstream end of CR-11
LexMark Trunk A	CR-11
LexMark Trunk B	CR-12
New Circle Trunk A	CR-10
New Circle Trunk B	CR-11
Griffin Gate Rehabilitation	CR-3

Georgetown Estates is not listed separately because its wastewater flow has now been routed to the failing Spindletop MHP package treatment plant, so loading related to both Spindletop and Georgetown Estates MHPs is captured by the Spindletop values. **Table 44** (page 96) indicates the annual load reductions in *E. coli*, ammonia-nitrogen, total nitrogen, and total phosphorus to Site 6 that can be achieved when these plants are no longer contributing pollution to the watershed.

TABLE 43
CONCENTRATIONS AND DISCHARGE FOR MHP PACKAGE
TREATMENT PLANT POLLUTANT SOURCES

Sources	E. coli (MPN/100mLs)	Ammonia- Nitrogen (mg/L)	Total Nitrogen (mg/L)	Total Phosphorus (mg/L)	Discharge (cfs)
Spindletop MHP	650,000	15.0	30.0	12.0	0.1479
Maple Grove MHP	650,000	15.0	30.0	12.0	0.0294

TABLE 44 MHP PACKAGE TREATMENT PLANT POLLUTANT SOURCE LOADS

Sources	E. coli (trillion/year)	Ammonia- Nitrogen (lbs/year)	Total Nitrogen (lbs/year)	Total Phosphorus (lbs/year)	
Spindletop MHP	858	4,365	8,730	3,492	
Maple Grove MHP	171	868	1,735	694	
	1,029	5,233	10,465	4,186	

B. E. coli Reductions

I. Human Sources

In addition to the potential *E. coli* from the known failing package wastewater treatment plants, other sources of *E. coli* were estimated (spatially for each sub-watershed) to help provide targeted BMP solutions. Since *E. coli* reductions associated with new municipal sanitary sewer infrastructure in the headwaters of the Cane Run watershed are difficult to quantify (as indicated in the above section), an equivalent number of homes with failing septic treatment that would equal the incremental *E. coli* load reduction needed to meet PCR goals was computed per sub-watershed. This was performed across the entire watershed. Some failing onsite septic treatment systems may be present the middle and lower portions of the watershed, but identifying the failing septic systems is difficult. So, to give perspective to the magnitude of the *E. coli* problem, this same approach was used to calculate an equivalent number of homes representing the needed reduction is presented.

To make the computation of the *E. coli* contribution represented by a failing household septic system, the inputs listed below were utilized (Horsley and Whitten, 1996; KDOW 2015) along with appropriate conversion factors.

- 70 gallons/day of effluent produced per person
- 6.5 E+05 CFU/100mL concentration of *E. coli* in septic effluent
- The above values yield the E. coli loading rate of 1.72 E+09 CFU/person/day
- 2.5 people per household

Table 45, page 97, tabulates the estimate of total number of homes with failing septic treatment that is equivalent to the incremental annual *E. coli* reduction needed for each subwatershed where an incremental *E. coli* load reduction is indicated.

TABLE 45 POTENTIAL E. COLI LOAD REDUCTIONS PER POLLUTANT SOURCE

	Incremental Human Sources				Grazing Cattle and Horse Sources							Developed Land Sources	
Site ID	Load Reduction Needed to Reach PCR Benchmark (trillion/year)	Estimated No. of Septic Sources to Remove to Meet Required Reduction	Potential E. coli Reduction from Septic Sources (trillion/year)	Potential E. coli Reduction from MHP WWTPs (trillion/year)	Hay / Pasture Land Use (ac)	Estimated Total No. of Cattle	Estimated Total No. of Horses	No. of Cattle with Waste Eliminated	Potential E. coli Reduction from Cattle Sources (trillion/year)	No. of Horses with Waste Eliminated	Potential E. coli Reduction from Horse Sources (trillion/year)	Developed Land Use (ac)	Potential E. coli Reduction (trillion/year)
1	-	-	-	-	2,045	-	-	-	-	-	-	174	0.33
2	18	12	19	-	1,384	306	112	22	18	112	10	871	1.64
3	0.2	I	1.6	-	1,200	265	97	I	0.8	2	0.2	5	0.01
4	1.3	I	1.6	-	1,841	406	149	2	1.3	14	1.3	40	0.08
5	-	-	-	-	768	-	-	-	-	-	-	71	0.13
6	26	17	27	1,029	2,415	533	196	32	26	196	18	290	0.55
7	-	-	-	-	3,834	-	-	-	-	-	-	708	1.33
9	0.5	I	1.6	-	3,179	702	258	I	0.8	5	0.5	835	1.57
CR-I	0.8	I	1.6	-	92	-	-	-	-	7		19	0.04
CR-2	3.0	2	3.1	-	233	-	-	-	-	-	-	49	0.09
CR-3	1.6	I	1.6	-	191	-	-	-	-	-	-	369	0.70
CR-5	-	-	-	-	85	-	-	-	-	-	-	237	0.45
CR-6	3.1	2	3.1	-	5	I	0	I	0.8	I	0.1	102	0.19
CR-7	11.2	8	12.6	-	-	-	-	-	-	-	-	219	0.41
CR-8	-	3	-	-	58	-	-	-	-	-	-	113	0.21
CR-9	3.9	3	4.7	-	45	-	-	-	-	-	-	101	0.19
CR-10	19.7	13	20.4	-	П	-	-	-	-	-	-	824	1.55
CR-11	-	-	-	-	-	-	-	-	-	-	-	316	0.60
CR-12	46.7	30	47. I	-	-	-	-	-	-	-	-	617	1.16

Note: Site 8 (groundwater well) not shown since sources to be addressed in contributing sub-watersheds; Sites 10 and 11, not shown since CR-5 and CR-3 are in same locations and data for those stations is being used for required incremental load reductions; shading indicates that full required reduction cannot be met by just eliminating cattle or horse waste from the area; Potential reduction due to each potential source not calculated if an incremental load reduction not needed in that sub-watershed; For cattle/horse, potential reduction also not calculated if presence of cattle/horses unlikely even though some hay/pasture land exists.

2. Bovine and Equine Sources

Based on MST results, detections of a cattle marker were made at two locations, thought at one location the detection was noted as low. MST was not performed using a horse marker, however many horse farms and supporting facilities are present in the watershed. Similar to the above effort for household septic sources, estimates for potential load reductions from cattle and horses were evaluated, where an estimate was made for the number of animals whose waste would have to be eliminated to achieve the total incremental *E. coli* reduction needed for a given site (not in excess of the total number of cattle or horses estimated for a given sub-watershed).

The number of cattle and horses was estimated for the entire Cane Run watershed using USDA statistics (**Table II**, page 36). This estimate of cattle and horses was distributed to each sub-watershed based on the known amount of hay/pasture land use within that sub-watershed (**Exhibit 12**, Appendix A). In Cane Run watershed, cattle and horses do not generally occur within the same farm or pasture, however for this effort they were distributed based on the acreage of hay/pasture land per sub-watershed without knowledge of whether the land is horse farm or cattle farm (this can be a fluctuating situation or hard to identify without additional efforts). Additionally, this does not accurately identify and represent the potential modified distribution of *E. coli* load if a large horse facility collects and centralizes storage/holding of muck from its facilities (for later spreading on pasture or removal from farm). Generally, horses in the Cane Run watershed are not given stream access for watering the way cattle are. Regardless of the limitations associated with this analysis, it does help give guidance on the magnitude of reductions available per potential source.

An *E. coli* rate (see below; Ormsbee *et al.*, 2013) for cattle or horses was multiplied by the number of each animal in each sub-watershed to calculate either (1) the number of cattle or horses whose waste would be equivalent to the <u>total</u> incremental annual *E. coli* reduction needed per sub-watershed or (2) the maximum potential *E. coli* load associated with cattle or horses within each sub-watershed (when the maximum potential load reduction does not reach the full load reduction needed).

- Cattle E. coli loading rate = 2.25 E+09 CFU/animal/day (Ormsbee et al., 2013)
- Horse E. coli loading rate = 2.51 E+08 CFU/animal/day (Ormsbee et al., 2013)

Table 45, page 97, tabulates the estimates of acreage of hay/pasture, number of cattle and horses, and estimated number of animals whose waste can or needs to be eliminated to meet PCR goals.

3. Developed Land / Pet Sources

Developed land, generally from pet waste, can contribute bacterial loading. The potential for *E. coli* loading from developed areas in the Cane Run watershed was estimated by considering the known amount of developed land within each sub-watershed (**Exhibit 12**, Appendix A) and applying an *E. coli* loading rate estimated for developed lands. The loading rate used

represents the average *E. coli* loading rate for commercial, mixed development, residential, and transportation/utility land uses (Ormsbee et al., 2013).

• Developed land E. coli loading rate = 5.16 E+06 CFU/acre/day (Ormsbee et al., 2013)

Table 45, page 97, tabulates the estimated acreage of developed land (sum of low, medium, and high intensity development) and potential *E. coli* load associated with that land per subwatershed. Unlike for the evaluation of wastewater and cattle/horse sources, this estimate represents the maximum potential *E. coli* load reduction that could be realized if BMPs primarily to address pet waste are implemented.

C. Nutrient Reductions

I. Human Sources

In areas of the Cane Run watershed where wastewater is a source of bacterial pollution, the wastewater is also contributing to the nutrient load. Where the equivalent number of homes with failing septic treatment that would equal the incremental *E. coli* load reduction needed to meet PCR goals was computed, an estimate of potential nutrient load attributable to those sources was also computed (for locations where an incremental nutrient reduction is needed to support WAH). The same nutrient loading rates used to estimate loads from the failing package wastewater treatment plants were used (**Table 43**, page 95) along with the inputs listed below and appropriate conversion factors.

- Number of homes with failing septic systems that would produce annual *E. coli* load equivalent to incremental *E. coli* reduction needed per sub-watershed.
- 70 gallons/day of effluent produced per person
- 2.5 people per household

Tables 46, 47, and 48, pages 100, 101, and 102 tabulate the potential total nitrogen, ammonia-nitrogen, and total phosphorus loads attributed to these septic sources, respectively.

2. Hay / Pasture Agricultural Land

For *E. coli*, potential reductions were tied directly to estimates of cattle and horses within each sub-watershed; however, the nutrient reductions associated with hay/pasture agricultural land were calculated based on the area of that land use in each sub-watershed (**Exhibit 12**, Appendix A) and an estimate of nutrient loading rate from literature (see below). No ammonia-nitrogen load reduction was estimated based on land use.

- Pasture land total nitrogen loading rate = 3.74 lbs/acre/year (EPA, 1999)
- Pasture land total phosphorus loading rate = 0.12 lbs/acre/year (EPA, 1999)

Tables 46, 47, and 48, pages 100, 101, and 102 tabulate the potential total nitrogen and total phosphorus loads contributed by areas of hay/pasture.

TABLE 46 POTENTIAL TOTAL NITROGEN LOAD REDUCTIONS PER POLLUTANT SOURCE

	Human Sources		Human Sources			d Horse Sources	Develope	d Land Sources		
Site ID	Incremental Load Reduction Needed to Reach Benchmark (lbs/year)	Estimated No. of Septic Sources to Remove to Meet Required E. coli Reductions	Potential Total Nitrogen Reduction from Septic Sources (lbs/year)	Potential Human Sources of Total Nitrogen Reduction from MHP WWTPs	Hay / Pasture Land Use (ac)	Potential Total Nitrogen Reduction from Hay / Pasture (lbs/year)	Developed Land Use (ac)	Potential Total Nitrogen Reduction from Developed Land (lbs/year)	Sum of Potential Total Nitrogen Reductions from All Sources Evaluated (lbs/year)	Incremental Reduction to Meet Benchmark – Calculated Total Nitrogen Reductions from All Sources (lbs/year)
I	-	-	-	-	2,045	-	174	712	-	-
2	-	-	-	-	1,384	-	871	3,564	-	-
3	1,100	I	16	-	1,200	4,488	5	22	4,526	(3,426)
4	-	I	16	-	1,841	6,886	40	163	-	-
5	-	-	-	-	768	2,873	71	293	-	-
6	10,000	17	272	10,465	2,415	9,031	290	1,189	20,957	(10,957)
7	-	-	-	-	3,834	14,338	708	2,897	-	-
9	-	I	16	-	3,179	11,888	835	3,420	-	-
CR-I	-	I	-	-	92	343	19	77	-	-
CR-2	-	2	32	-	233	870	49	201	-	-
CR-3	-	1	16	-	191	714	369	1,512	-	-
CR-5	370	-		-	85	319	237	969	1,288	(918)
CR-6	130	2	32	-	5	19	102	416	468	(338)
CR-7	-	8	128	-			219	898	-	-
CR-8	-	-		-	58	217	113	462	-	-
CR-9	-	3	48	-	45	167	101	416	-	-
CR-10	-	13	208	-	П	42	824	3,373	-	-
CR-11	-	-		-			316	1,294	-	-
CR-12	-	30	480	-			617	2,526	-	-

Note: Existing data was not sufficient to calculate total nitrogen load reductions needed for CR-I through CR-I2, thus nitrate-nitrogen load reductions needed (likely the predominate form of total nitrogen based on KDOW dataset) are presented for those sites; Site 8 (groundwater well) not shown since sources to be addressed in contributing sub-watersheds; Sites 10 and 11, not shown since CR-5 and CR-3 are in same locations and data for those stations is being used for required incremental load reductions; negative values in column for "Incremental Reduction to Meet Benchmark - Calculated Total Nitrogen Reductions from All Sources" indicate reductions in excess of what is required to meet benchmark incremental loading may be achieved if all potential sources are addressed.

TABLE 47 POTENTIAL AMMONIA-NITROGEN LOAD REDUCTIONS PER POLLUTANT SOURCE

		Human Sources Estimate	ed as Homes/Septic Sources			Incremental Reduction to	
Site ID	Incremental Load Reduction Needed to Reach Benchmark (lbs/year)	Estimated No. of Septic Sources to Remove to Meet Required E. coli Reductions	Potential Ammonia- Nitrogen Reduction from Septic Sources (lbs/year)	Potential Human Sources of Ammonia- Nitrogen Reduction from MHP WWTPs	Sum of Potential Ammonia- Nitrogen Reductions from All Sources Evaluated (lbs/year)	Meet Benchmark – Calculated Ammonia- Nitrogen Reductions from All Sources (lbs/year)	
I	-	-	-	-	-	-	
2	-	12	96	-	-	-	
3	-	l	8	-	-	-	
4	-	l	8	-	-	-	
5	-	-	-	-	-	-	
6	10,140	17	136	5,233	5,369	4,771	
7	-	-	-	-	-	-	
9	30	I	8	-	8	22	
CR-I	-	I	8	-	-	-	
CR-2	-	2	16	-	-	-	
CR-3	-	I	8	-	-	-	
CR-5	-	-	<u>-</u>	-	-	-	
CR-6	-	2	16	-	-	-	
CR-7	-	8	64	-	-	-	
CR-8	-	-	-	-	-	-	
CR-9	-	3	24	-	-	-	
CR-10	-	13	104	-	-	-	
CR-11	-	-	-	-	-	-	
CR-12	390	30	240	-	240	150	

Note: Site 8 (groundwater well) not shown since sources to be addressed in contributing sub-watersheds; Sites 10 and 11, not shown since CR-5 and CR-3 are in same locations and data for those stations is being used for required incremental load reductions; positive values in column for "Incremental Reduction to Meet Benchmark - Calculated Ammonia-Nitrogen Reductions from All Sources" indicate reductions required to meet benchmark incremental loading not achieved by potential sources considered (human only).

TABLE 48 POTENTIAL TOTAL PHOSPHORUS LOAD REDUCTIONS PER POLLUTANT SOURCE

		Human Sources Homes/Sept			_	tle and Horse irces	Sum of Potential	Incremental Reduction
Site ID	Incremental Load Reduction Needed to Reach Benchmark (lbs/year)	Estimated No. of Septic Sources (Homes) to Remove to Meet Required E. coli Reductions	Potential Total Phosphorus Reduction from Septic Sources (lbs/year)	Potential Human Sources of Total Phosphorus Reduction from MHP WWTPs	Hay / Pasture Land Use (ac)	Potential Total Phosphorus Reduction from Hay / Pasture (lbs/year)	Total Phosphorus Reductions from All Sources Evaluated (lbs/year)	to Meet Benchmark – Calculated Total Phosphorus Reductions from All Sources (lbs/year)
I	-	-	-	-	2,045	245	-	-
2	-	12.0	77	-	1,384	166	-	-
3	-	1.0	6	-	1,200	144	-	-
4	-	1.0	6	-	1,841	221	-	-
5	-	-	-	-	768	92	-	-
6	2,400	17.0	109	4,186	2,415	290	4,781	(2,381)
7	-	-	-	-	3,834	460	-	-
9	-	1.0	6	-	3,179	381	-	-
CR-I	-	1.0	6	-	92	П	-	-
CR-2	20	2.0	13	-	233	28	74	(54)
CR-3	140	1.0	6	-	191	23	279	(139)
CR-5	-	-	-	-	85	10	-	-
CR-6	-	2.0	13	-	5	I	-	-
CR-7	-	8.0	51	-	-	-	-	-
CR-8	-	-	-	-	58	7	-	-
CR-9	-	3.0	19	-	45	5	-	-
CR-10	-	13.0	83	-	11	I	-	-
CR-11	-	-	-	-	-	-	-	-
CR-12	100	30.0	192	-	-	-	610	(510)

Note: Site 8 (groundwater well) not shown since sources to be addressed in contributing sub-watersheds; Sites 10 and 11, not shown since CR-5 and CR-3 are in same locations and data for those stations is being used for required incremental load reductions; negative values in column for "Incremental Reduction to Meet Benchmark - Calculated Total Phosphorus Reductions from All Sources" indicate reductions in excess of what is required to meet benchmark incremental loading may be achieved if all potential sources are addressed.

3. Developed Land

Like for hay/pasture land, nutrient reductions associated with developed land were calculated based on the area of that land use in each sub-watershed (**Exhibit 12**, Appendix A) and an estimate of nutrient loading rate from literature (see below). No ammonia-nitrogen load reduction was estimated based on land use due to the perception that its predominant source is wastewater-related.

- Average total nitrogen loading rate for commercial, residential, and transportation/utility land uses = 4.09 lbs/acre/year (EPA, 1999)
- Average total phosphorus loading rate for commercial, residential, and transportation/utility land uses = 0.676 lbs/acre/year (EPA, 1999)

D. WBP Goals and Objectives

In addition to extensive data compilation and analysis public meetings, technical advisory meetings, small group meetings, urban outreach activities, and other efforts contributed to development of this WBP. An online survey was performed to give interested citizens and watershed stakeholders the opportunity to provide feedback on their perceived water quality concerns and their interest in becoming involved in the watershed planning and remediation process. Ninety-three surveys were completed and some of results are illustrated on **Figures 5** and **6** (page 104). Results indicated that most respondents were primarily interested in neighborhood/community and environmental issues. Responses indicated that those completing the survey were most concerned about drinking water source pollution, sanitary sewer leaks, bacteria/viruses, and trash/debris. Additional survey responses indicated that there are interested stakeholders willing to do things that can help to improve water quality, such as pick up pet waste, clean up trash/debris, create a rain garden, inspect/maintain their septic system, plant trees, or volunteer for water sampling.

Goals identified as a result of the efforts associated with the development of this WBP, including interactions with stakeholders, are as follows:

- 1. decrease bacterial levels to allow for safe recreational use;
- 2. reduce nutrient concentrations (nitrogen and phosphorus) to healthy levels;
- 3. improve the stream and riparian habitat to support a healthy aquatic ecosystem, including stream restoration/stabilization to reduce bank erosion;
- 4. decrease velocity and volume of stormwater to Cane Run and tributaries in developed areas;
- 5. remove trash from waterways and riparian zones;
- 6. educate the community on the importance of water resources and how they can help improve water quality.

For each goal, the pollutant source or cause, measurable indicator of success, and objectives are identified and summarized in **Table 49**, pages 105 - 106. The reduction in bacteria levels in the watershed was considered the greatest priority due to the risk of human illness during recreation use and water quality data indicated that the majority of sites received a "D" or "F" health grade for not supporting the PCR use. Measurable indicators of success were selected for regulatory standards for comparison (such as *E. coli*) or impairments indicated in the monitoring data. Other parameters may be utilized, as appropriate, to gage overall success in reducing pollutant loading.

FIGURE 5 - STAKEHOLDER INTERESTS

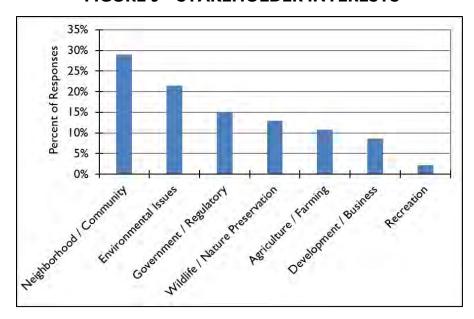
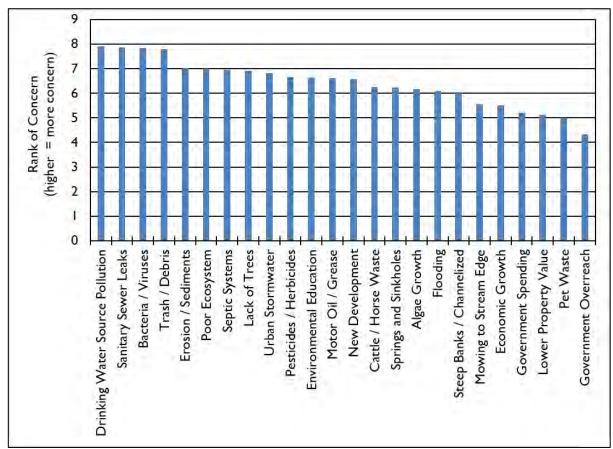



FIGURE 6 – STAKEHOLDER CONCERNS

TABLE 49 CANE RUN WBP GOALS AND OBJECTIVES

Goal	Source / Cause Considered for Remediation	Measurable Indicator	Objectives
GI. Decrease in-stream bacteria levels to allow for safe recreational use	 Sanitary sewer system: exfiltration from private lateral lines and public sewer including sewer overflows Failing MHP package wastewater treatment facilities Failing home or business septic systems Grazing horses and/or equine facilities Residential pet waste 	• E. coli	 Repair, place, rehabilitate public sanitary sewer infrastructure to prevent exflow and exfiltration Reduce stormwater inflow to private sanitary sewer system via sump pumps, downspouts, and broken lateral lines. Implement a septic system evaluation/maintenance/repair program; utilize municipal systems as they become available (i.e. Scott County sewer line extension) Decommission failing package wastewater treatment facilities as municipal sewer systems become available Remove cattle and horse waste from streams (may be achieved by providing exclusion fencing/alternative watering sources for cattle, updating/improving agricultural water quality and nutrient management plans, and providing adequate waste storage/handling) Implement a residential pet waste educational program; consider providing pet waste stations in high-risk locations
G2. Reduce in-stream nutrients (nitrogen and phosphorus) and sediment to healthy levels	 Same as sources for GI (bacteria) Stream bank erosion 	 Total nitrogen Ammonia-nitrogen Total phosphorus Visual assessment of in-stream sediment deposition 	Same as objectives for GI (bacteria) Implement stream restoration/stabilization and buffer establishment/protection
G3. Improve stream habitat to support a healthy aquatic ecosystem	Narrow riparian widthUnstable banks / Erosion	MacroinvertebratesRBP habitatVisual bank assessment	 Implement stream restoration/stabilization and buffer establishment/protection to remedy eroding stream banks Improve the quality and width of riparian buffer zones

TABLE 49 CANE RUN WBP GOALS AND OBJECTIVES

	Goal	Source / Cause Considered for Remediation	Measurable Indicator	Objectives
G4.	Decrease velocity and volume of stormwater runoff to Cane Run and tributaries in developed (or developing) areas	 Increased impervious areas leads to elevated runoff volumes and velocities Channel alteration, including straightening, channelization, and lining. 	 Impervious acreage Streamflow response to rainfall (flashiness = indicative of reduced infiltration due to increased impervious areas) 	 Reduce the amount of impervious surface in the watershed Increase stormwater infiltration through green infrastructure and other BMPs Restore altered stream channels to have appropriate dimensions, pattern, and profile
G5.	Remove trash and debris from waterways and riparian areas	• Trash and litter	Estimated trash removed	 Document routine locations of trash accumulation Organize groups to remove trash from watershed on a routine basis Implement in-stream trash collection systems, where feasible
G6.	Educate the community about the importance of water resources and how they can help to improve water quality	 Lack of education Continuation of practices that cause or facilitate impairment 	 Number of interactions Educational materials distributed 	 Increase public knowledge about water quality impairments Develop targeted educational materials for each problem area Reach targeted audience about opportunities for implementation on their property Reach targeted audience about opportunities to raise expectations on public officials, developers, etc. in order to improve water quality Perform ongoing monitoring of stream health conditions

E. BMP Implementation Plan

The watershed goals and objectives were used as a framework to develop a list of BMP projects and opportunities necessary to restore the designated sues to the watershed's streams and achieve the plan goals and objectives. The list of BMPs includes projects in various stages of development and execution – some are planned and funded, while others are opportunities at the conceptual stage.

The BMP Implementation plan is intended to guide watershed remediation efforts and represent the type and scope of projects that will be required to meet watershed goals. For each BMP, information for project implementation is summarized, as best as currently possible, including possible stakeholders and funding sources. Alternative approaches may be acceptable. The BMP Implementation Plan for the Cane Run watershed is summarized in **Table 50**, pages 109 through 114.

Each BMP is given a priority ranking of high, medium, or low. High priority BMPs include areas or audiences which are considered necessary to achieve watershed goals, are believed to provide the greatest benefit to the watershed, and which have stakeholder cooperation and support, and may have secured funding as well. Medium priority BMPs typically target areas or audiences where BMPs are needed, but it is unknown if stakeholders are willing to pursue implementation. BMPs may also be of medium priority if implementation is evaluated to be less effective. Low priority BMPs would be beneficial in improving conditions in the watershed but are in areas where pollutant loading reductions are not required or the implementation is less feasible /effective.

Five (5) categories of BMPs have been identified in the implementation plan: Bacterial, Education and Outreach, Stream/Riparian, Green Infrastructure, and General.

I. Bacterial

Bacterial BMPs include proposed sanitary sewer remedial measures plans and other sanitary sewer related projects/programs; replacement of failing package WWTPs (and private septic, where applicable) with municipal sewer access; projects to address cattle and horse waste; and projects to address pet waste to reduce the *E. coli* loading in the watershed. For the proposed remedial measures plan projects, the schedules and milestones are dictated by an agreement between the US EPA, KDOW, and LFUCG. Thus, other BMPS in related areas should be coordinated with the schedules of the remedial measures projects such that projects are implemented in a complementary way that minimizes construction disturbances.

2. Education and Outreach

The Education and Outreach BMPs are intended to educate businesses, homeowners, and other stakeholders to increase awareness of water quality, what's is contributing to stream impairments, and how stakeholders can help improve the watershed.

3. Stream / Riparian

Stream/Riparian BMPs include stream restoration/stabilization and buffer protection/ establishment/maintenance with the intention of achieving water quality treatment and reducing streambank instability/erosion (and thus in-stream sediment contribution).

4. Green Infrastructure

Green Infrastructure BMPs are intended to address the pollutant loads from runoff from developed or developing areas. Green infrastructure can be targeted to reduce runoff volume and provide pollutant treatment.

5. General

General BMPs include projects related to in-stream trash collection systems, supporting existing/ongoing environmentally-focused events, and supporting regulatory measures that promote environmental responsibility.

			1									Milestones	
ВМР					Impairment / Pollutant			Estimated Load	Funding Source(s) /	Technical Assistance	Short Term	Mid-Term	Long-Term
No.	Туре	Target Audience or Area	BMP Description and Action Items	Priority	Addressed	Responsible Parties	Estimated Cost	Reduction	Program(s)	Needed	(0-5 Years)	(5-10 Years)	(10+ Years)
	Bacterial	8		,		1					, ,	,	,
	(Sanitary		Upper Cane Run Wet Weather Storage Tank - Remedial		PCR, SCR /		\$500,000 Design; \$3,980,000			Design engineers, construction			
	Sewer)	CR-8	Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	Planned for 2021 construction	None	None
	Bacterial				,	-			,				
	(Sanitary	CR-9 (but in karst basin that	Sharon Village Pump Station and Force Main - Remedial		PCR, SCR /		\$220,000 Design; \$1,900,000			Design engineers, construction	Planned for 2019-2020		
2	Sewer)	leaves watershed)	Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	construction	None	None
	Bacterial			-									
	(Sanitary		Cane Run Trunk - New Circle Rd. to Nandino Blvd Remedial		PCR, SCR /		\$180,000 Design; \$1,700,000			Design engineers, construction			
3	Sewer)	CR-8, CR-11	Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	Planned for 2019 construction	None	None
	Bacterial												
	(Sanitary		LexMark Trunk A - Between W. Louden Ave. and New Circle		PCR, SCR /		\$160,000 Design; \$1,480,000			Design engineers, construction			
4	Sewer)	CR-II	Rd Remedial Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	Planned for 2020 construction	None	None
	Bacterial												
	(Sanitary		LexMark Trunk B- Between W. Louden Ave. and New Circle		PCR, SCR /		\$110,000 Design; \$960,000			Design engineers, construction			
5	Sewer)	CR-12	Rd Remedial Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	Planned for 2020 construction	None	None
	Bacterial												
	(Sanitary		New Circle Trunk A - New Circle Rd. toward Russell Cave Rd		PCR, SCR /		\$390,000 Design; \$3,920,000			Design engineers, construction			
6	Sewer)	CR-10	Remedial Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	Planned for 2021 construction	None	None
	Bacterial											<u> </u>	
	(Sanitary		New Circle Trunk B - Along N. Broadway, East of New Circle		PCR, SCR /		\$280,000 Design; \$2,700,000			Design engineers, construction			
7	Sewer)	CR-II	Rd Remedial Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	Construction	Unknown	Sanitary Sewer Fees	contractors	Planned for 2022 construction	None	None
	Bacterial												
	(Sanitary		Griffin Gate Rehabilitation - Southwest of I-75 / Newtown Pike		PCR, SCR /		Funded through LFUCG's annual			Design engineers, construction			
8	Sewer)	CR-3	Interchange - Remedial Measures Plan	High	E. coli, Fecal coliform	LFUCG DWQ	rehabiliation program	Unknown	Sanitary Sewer Fees	contractors	Planned for 2020 construction	None	None
			Replacement of deteriorated sewer line laterals which are										
	Bacterial		exfiltrating sewage within LFUCG's MS4 using the "Cane Run								Development of line		
	(Sanitary	CR-10, CR-11 Aging Residential	Private Lateral Pilot Program in the Highlands Neighborhood" as		PCR, SCR /				319 grant, dedicated municipal funding,	Design engineers, construction	replacement projects, design,		
9	Sewer)	Neighborhoods	guidance.	High	E. coli, Fecal coliform	LFUCG DWQ	Dependent upon extent of projects	Unknown	private funding	contractors	and construction	Ongoing monitoring a	and maintenance
			Eliminate improper or unauthorized discharges to the sanitary						Supplemental fee and other fines will				
			sewer system through the Private Infiltration and Inflow						be charged upon refusal of inspection				
			Elimination Program (PIIEP). This program allows for the						or compliance. LFUCG has a cost				
			inspection and enforced removal of discharges sump pumps,						sharing reimbursement program up to				
	Bacterial		downspouts, foundation drains, outside stairwells, and driveway						\$3,000 for work completed by a				
	(Sanitary		drains to the sanitary sewer system under the new ordinance		PCR, SCR /				licensed plumber and issued a Notice				
10	Sewer)	Lexington	(Ch 16, Art XI, 16-111-115)	High	E. coli, Fecal coliform	LFUCG DWQ, Property Owners	Dependent upon requests	Unknown	of Compliance.	Inspectors, licensed plumbers	Ongoing inspect	ion, compliance, and enforce	ement
			Implement the Fats, Oil, and Grease (FOG) Program to reduce										
			the sanitary sewer overflows. The program requires all food										
	Bacterial		service facilities to have a permit or waiver, sets requirements										
	(Sanitary		for grease and oil interceptors and maintenance, inspects these		PCR, SCR /	LFUCG DWQ, CMOM Program				Education, inspection,			
П	Sewer)	Lexington	facilities and enforces the existing ordinance.	High	E. coli, Fecal coliform	Managers	LFUCG City Program	Unknown	LFUCG budget	maintenance, enforcement	Ongoing educat	tion, inspection, and enforce	ment
			Utilize the Gravity Line Preventative Maintenance Program										
			(GLPMP) to help maintain the capacity of the sanitary sewer										
			system by hydraulic cleaning, mechanical cleaning, and root										
	Bacterial		control. The program identifies areas needing increased										
	(Sanitary		frequency of cleaning, provides consistent maintenance, and		PCR, SCR /	LFUCG DWQ, CMOM Program				Maintenance, repair and			
12	Sewer)	Lexington	identifies repair / rehabilitation locations.	High	E. coli, Fecal coliform	Managers	LFUCG City Program	Unknown	LFUCG budget	rehabilitation	Ongoing cleaning, m	aintenance, and repair / reha	abilitation
			Use the Sanitary Sewer Survey and Rehabilitation (General, Find										
			and Fix Program) to reduce Infiltration / Inflow (I/I), identify										
			exfiltration sources, and correct problems. If stormwater										
			outfalls or illicit discharges are detected and testing indicates the										
			potential sewage sources, Sewer Line Maintenance will evaluate										
			the issue. If Sewer Line Maintenance does not take action, then										
			the issue will be forwarded to I/I Program for repair. Sewer Line			LFUCG DWQ, Compliance and							
	Bacterial	I	Maintenance or I/I will update Stormwater on actions taken to		1	Monitoring, Sewer Line	1				1		
	(Sanitary Sewer)	Lexington	allow for follow up monitoring to confirm the problem was addressed.	High	PCR, SCR / E. coli, Fecal coliform	Maintenance, I/I Program, CMOM Program Managers	\$5,000,000 Annually for Repairs Countywide	Unknown	Sanitary sewer fees	Monitoring and repair		nitoring, evaluation, and repa	

												Milestones	
ВМР					Impairment / Pollutant			Estimated Load	Funding Source(s) /	Technical Assistance	Short Term	Mid-Term	Long-Term
No.	Туре	Target Audience or Area	BMP Description and Action Items	Priority	Addressed	Responsible Parties	Estimated Cost	Reduction	Program(s)	Needed	(0-5 Years)	(5-10 Years)	(10+ Years)
	- / -			,	1 1000 00000				Private WWTP Owner/Operator;	1100000	(* * * * * * * * * * * * * * * * * * *	(()
	Bacterial	CR-6, Package WWTP for	Elimination of package WWTP facilities; replace with access to			Private WWTP Owner/Operator;			Georgetown Municipal Water and		Municipal sewer extension		
	(Sanitary	Spindletop and Georgetown	municipal sewer created by Georgetown/Scott County South		PCR, SCR /	Georgetown Municipal Water and		See load reductions for	Sewer Service; Kentucky Infrastructure	Design engineers, construction	planned for 2020 construction;		
14	Sewer)	Estates MHPs	Sewer Extension	High	E. coli, Fecal coliform	Sewer Service	\$12.4 M Design and Construction	sources table in plan	Authority	contractors	follow-up monitoring	Ongoing monitoring	None
	·												
			Replacement of deteriorated sewer line laterals from MHP units										
			to access municipal sewer created by Georgetown/Scott County			319 Grants, Private WWTP			319 grants; Private WWTP				
	Bacterial	CR-6, Package WWTP for	South Sewer Extension (including tee conncetion to main line,		PCR, SCR /	Owner/Operator; MHP Site			Owner/Operator; Georgetown				
	(Sanitary	Spindletop and Georgetown	lateral to a clean out on the easement line, and lateral from the		E. coli, Fecal coliform, N,	Owners; Georgetown Municipal		See load reductions for	Municipal Water and Sewer Service;	Design engineers, construction	Planned for 2020 construction;		
15	Sewer)	Estates MHPs	clean out to each MH site)	High	and P	Water and Sewer Service	>\$750,000 Contruction	sources table in plan	Kentucky Infrastructure Authority	contractors	follow-up monitoring	Ongoing monitoring	None
											Municipal sewer extension		
											planned for 2020 construction;		
	Bacterial		Elimination of package WWTP facilities; replace with access to			•	Some costs associated with BMP #		Georgetown Municipal Water and		project needs to be		
	(Sanitary		municipal sewer created by Georgetown/Scott County South		E. coli, Fecal coliform, N,	LFUCG, Georgetown Municipal	14 and costs to run additional line	See load reductions for	Sewer Service; Kentucky Infrastructure	Design engineers, construction	i i		
16	Sewer)	Grove MHP	Sewer Extension	High	and P	Water and Sewer Service	to the South Sewer Extension	sources table in plan	Authority; LFUCG	contractors	this extension	Ongoing monitoring	None
											Municipal sewer extension		
											planned for 2020 construction;		
	Bacterial		Replacement of deteriorated sewer line laterals from MHP units		PCR, SCR /	319 Grants, Private WWTP					project needs to be		
	(Sanitary		to access municipal sewer created LFUCG to connect to		E. coli, Fecal coliform, N,	Owner/Operator; MHP Site		See load reductions for	319 grants; Private WWTP		planned/performed to hook to	_	
17	Sewer)	Grove MHP	Georgetown/Scott County South Sewer Extension	High	and P	Owners; LFUCG	Dependent on number of systems	sources table in plan	Owner/Operator; LFUCG	contractors	this extension	Ongoing monitoring	None
	Passavial		Reduce septic system contributions to the fecal load. Work with local health departments to evaluate the number landowners, including business and groups of landowners, on septic systems within the watershed. Develop program to provide assistance for pumpouts, maintenance, replacement, or obtaining services from municipal sanitary sewer provider (especially with future expansion of GMWSS service area). Note potential entitites to convert to future municipal sanitary sewer		DCD SCD (WEDCO District/Scott County Health Department, Fayette			Disasurad assa lada assa sasa	GIS processing of septic locations, proper septic system care information, terminal and			
	Bacterial		include 1812- 1840 Lexington Road, 1782 Lexington Road, and		PCR, SCR /	County Health Department;			Discounted rates, landowner system	construction assistance to			
18	(Septic)	Watershed; CR-6	1791 Lexington Road (all in Scott County).	High	E. coli, Fecal coliform	GMWSS	Dependent on number of systems	Unknown	maintenance cost	convert to municipal sewer	Evaluate in Sho	rt Term With Ongoing Mainten	ance
19	Bacterial (Agricultural)	Cane Run (Site 2)	Continue to communicate with private property owner to promote and determine feasibility of agricultural BMPs targeting livestock (cattle) at 1530 Paynes Depot Rd. In addition to establishing a riparian buffer along Cane Run within the property, the stream would benefit from livestock exclusion fencing and alternative watering systems. Minimally, the stream would benefit from limiting cattle access to specific, armoured locations. These BMPs would aid in reducing E. coli and nutrient loads and protect/provide stream and riparin habitat. However, the landuse of this parcel is very likely to be converted to residential development in coming years. Thus, the E. coli loading from cattle will be replaced by other stressors (increased runoff, nutrients) and low impact, conservation-minded development that includes green infrastructure and stream buffering should be promoted.	High	PCR, SCR / E. coli, Fecal coliform, WAH / Habitat Improvement, N, P	Private landowners, NRCS, UK Ag. Extension, Consultants, Contractors	Buffer Establishment: \$800,000 for buffer design and construction; other BMP costs dependant on those selected as feasible	Stream Buffer: 0.0035 lbs /fr P, 0.02 lbs /ft N annually	319 Grant, designated county or state ft funding, NRCS agricultural cost share programs, private funding		Phase I: I) Meet with landowner to evaluate support, 2) Secure funding, 3) Project Design	Phase II: I) Conduct pre- and post construction monitoring, 2) Construction	Ongoing monitoring and maintenance
										Furthering of anticipation of the			
	Ractonial		training centers, and related equine facilities, particulary located		DCD CCD /		Dopondont on number suite:			Evaluation of existing practices			
20	Bacterial (Agricultural)	Watershed; Site 9	in the headwaters of an UT to Cane Run between Newtown Pike and Russell Cave Roads.	Levi	PCR, SCR / E. coli, Fecal coliform	Private owners, UK Ag. Extension	Dependent on number existing conditions and needs	Unknown	319 Grant, private funding	implementation	Development of BMP projects, design, and construction	Ongoineitemic	d maintanar
20	(mgi icuitul al)	**acersneu, Site 7	rinc and Nussell Cave NOdus.	Low	L. COII, I ECAI COIIIOI III	TITTALE OTTINES, OK Ag. EXCENSION	Conditions and needs	OHKHOWH	517 Static, private fullding	LFUCG existing educational	design, and constituction	Ongoing monitoring an	ч нашенансе
21	Bacterial (Developed)	UT to Cane Run (CR-3)	Implement education and outreach for pet waste pick up at Coldstream Park Dog Park (or any other future dog park). Determine appropriateness of implementing pet waste stations; implement if appropriate. Monitor to evaluate effectiveness.	Med	PCR, SCR / E. coli, Fecal coliform	LFUCG and City of Georgetown Parks	\$600 - \$800 / station	Unknown	319 Grant, designated city or state funding, private funding	materials/programs; Supplier/Installer for waste station; maintenance of waste station	Perform education and outreach; initial implementation of waste station(s)	Ongoing monitoring an	d maintenance
	Education 2		Develop and within a Core Bur W. a. L. L. C It is		Education & Outreach;				220 Court desire 1 1 1	lab danalaran i	Develop job position and hire		
	Education &	\\/accush - J \\/ 2 J -	Develop and utilize a Cane Run Watershed Coordinator	110.1	Plan implementation to	Cone Bun Metalist Con 1	¢40,000 / · · · · ·	I lake even	320 Grant, designated city or county	1.		Ongoing implemation, seeking	
	Outreach	Watershed-Wide	position.	High	address all pollutants	Cane Run Watershed Council	\$40,000 / year	Unknown	funding, private funding	to oversee the role	plan implementation	monitoring, and revision of w	ratershed-based plan

		T	I			I	T T				T	Mari d	
DMD					I			Fatiment of Land	For the Comments (Tarketal Arristan	Shaut Taum	Milestones	Lana Tama
BMP	_		DMD D 1 11 LA 11 L	.	Impairment / Pollutant			Estimated Load	Funding Source(s) /	Technical Assistance	Short Term	Mid-Term	Long-Term
No.	Туре	Target Audience or Area	BMP Description and Action Items	Priority	Addressed	Responsible Parties	Estimated Cost	Reduction	Program(s)	Needed	(0-5 Years)	(5-10 Years)	(10+ Years)
						LELICC City of Cooperation							
						LFUCG, City of Georgetown,							
						University of Kentucky Research							
			Develop appropriate watershed signage and place at key			Facilities, Friends of Cane Run,							
	Fd 0		locations to increase public awareness. Signs could mark buffer			Kentucky Horse Park, Bluegrass	#F0 #1 F00 / size			Cien davida mant and	2010 2020 1		
22	Education & Outreach	General	zone areas, watershed boundaries, no-mow areas, and key stream crossings.	Med	Education & Outreach	Stockyards, other public and private entities	\$50 - \$1,500 / sign Dependent upon size and quantity.	None	Grants	Sign development and installation	2019 -2029 and ongoing placeme		
22	Outreach	General	Rate the relative strength of neighborhood associations and	Med	Education & Outreach		Dependent upon size and quantity.	None	Grants	installation	along key tr	avel paths or public access are	as.
	Education &		prioritize the educational presentation and implementation plans			Fayette County Neighborhood Council; Individual neighborhood							
22	Outreach	Neighborhood Associations	in these respective areas.	Med	Education & Outreach	associations	None	N/A	N/A	Watershed mapping	Rank and prioritize in 2020	None	None
	Oddreach	THEIGHDOTHOOD ASSOCIATIONS	in these respective areas.	ried	Education & Outreach	LFUCG, City of Georgetown,	None	IN/A	IN/A	LFUCG and Georgetown to	Natik and prioritize in 2020	None	None
						Fayette County Neighborhood				provide the content to be			
	Education &		Provide "content" (articles / tips / factoids / event information)			Council; Individual neighborhood				distributed by the	Ongoing: develop content or	nd make available to the FCNC	and Scott County
24	Outreach	Neighborhood Associations	for Neighborhood newsletters.	Med	Education & Outreach	associations	None	N/A	N/A	neighborhood associations		ood associations for distributio	•
24	Odtreach	Neighborhood Associations	for Neighborhood newsletters.	ried	Education & Outreach	associations	None	IN/A	IN/A	Heighborhood associations	neignborno	ood associations for distributio	n
			General Landowner Educational Package for Neighborhood										
			Association BMP Program:										
			Compile or develop educational materials on what residents										
			can do to reduce water pollution on their property including: the										
			impacts of private contributions to sanitary sewer overflows,										
			non-point sources of pollution, proper lawn care practices, pet										
			waste clean-up, litter, stormwater runoff and impervious										
			surfaces.										
			Compile or develop educational material on installation and										
			benefits of street trees, rain barrels, rain gardens and green										
			infrastructure such as permeable pavers and bioswales.										
			Develop educational material that summarizes the relevant										
			information in the watershed plan for local landowners.										
			Publicize grant programs available to install "green										
			infrastructure" such as the Neighborhood Sustainability Grant										
			and Stormwater Quality Incentive Grant programs.										
			5. Distribute information through workshops, social media,										
			webpages, and other means to garden clubs and neighborhood										
			associations.			LFUCG DEP, LFUCG DWQ, City	Dependent on type of presentation		City of Georgetown, LFUCG DEP	Development of technical			
			6. Identify or develop a demonstration project and workshop			of Georgetown, Bluegrass	/ materials presented and number		Budget, 319 Grants, LFUCG Water	material for problems and	Educational package		
	Education &		illustrating rain barrel and rain garden installation in each			Greensource, Friends of Cane	of workshops and demonstration		Quality Incentive Grants,LFUCG	BMPs, technical presenters,	development and initial		
25	Outreach	Neighborhood Associations	neighborhood area.	Med	Education & Outreach	Run, UK Ag. Extension	projects implemented	Unknown	Sustainable Environmenal Grants,	implementation of BMPs	implementation	Ongoing Implen	nentation
							. , .			'		- 6- 6 7-	
			Streamside Landowner Educational Package for Neighborhood										
			Association BMP Program:										
			Compile or develop educational material on backyard erosion										
			problems, stream stewardship and values / functions of riparian										
			areas										
			Compile or develop educational material on solutions for										
			streamside owners including riparian buffer zones, green										
			engineering for ephemeral streams and stormwater conveyances,										
			and opportunities to fund such projects (i.e., UK Ag. Extension										
			Publication "Living Along a Kentucky Stream"). The material										
			should cover technical information such as the types, sources,										
			costs, and planting techniques for riparian restoration to train										
			participants for implementation.										
			Distribute information through workshops, social media,										
1			webpages, and other means to garden clubs and neighborhood			LFUCG DEP, LFUCG DWQ, City							
			associations.			•	Dependent on type of presentation		City of Georgetown, LFUCG DEP	Development of technical			
			Identify or develop a demonstration project and workshop			Check Program, Bluegrass	/ materials presented and number		Budget, 319 Grants, LFUCG Water	material for problems and	Educational Package		
	Education &		illustrating buffer zone restoration or other green engineering in			Greensource, Friends of Cane	of workshops and demonstration		Quality Incentive Grants, LFUCG	BMPs, Technical Presenters,	Development and initial		
26	Outreach	Streamside Landowners	each neighborhood area.	Med	Education & Outreach	Run, UK Ag. Extension	projects implemented	Unknown	Sustainable Environmenal Grants,	implementation of BMPs	implementation	Ongoing Implen	nentation
		1	<u> </u>		1	. ,	h -1			r	F	5858picii	

ВМР												Milestones	
					Impairment / Pollutant			Estimated Load	Funding Source(s) /	Technical Assistance	Short Term	Mid-Term	Long-Term
	T	T	DMD Description and Astion Items	Dutanten	Addressed	Responsible Parties	Estimated Cost	Reduction	Funding Source(s) /	Needed	(0-5 Years)	(5-10 Years)	(10+ Years)
NO.	Туре	Target Audience or Area	BMP Description and Action Items	Priority	Addressed	Responsible Farties	Estimated Cost	Reduction	Program(s)	Needed	(0-3 Tears)	(3-10 Tears)	(10. Tears)
			Commercial and Institutional Green Infrastructure										
			Implementation and Outreach Program:										
			Conduct outreach to businesses/residents to increase										
			awareness of the problem associated with increased stormwater										
			runoff and what can be done to reduce it.										
			Publicize grant programs available to neighborhoods /										
			- , -										
			businesses to install "green infrastructure" such as the										
			Neighborhood Sustainability Grant and Stormwater Quality										
			Incentive Grant programs.										
			3. Develop a demonstration project / workshop for stormwater										
			runoff reduction.										
			4. Approach businesses and other non-residential organizations										
			identified in the watershed based plan about conducting a green			LFUCG DEP, LFUCG DWQ, City							
			infrastructure feasibility study on their property.			of Georgetown, LFUCG Green	Dependent on type of presentation		City of Georgetown, LFUCG DEP	Development of technical			
		Businesses, Neighborhood	5. Conduct a feasibility study to determine the best locations			Check Program, Bluegrass	/ materials presented and number		Budget, 319 Grants, LFUCG Water	material for problems and	Educational package		
Er	ducation &	Associations, Development	and types of green infrastructure to install in a given area.			Greensource, Friends of Cane	of workshops and demonstration		Quality Incentive Grants,LFUCG	BMPs, technical presenters,	development and initial		
	Outreach	Community	6. Apply for financial assistance to implement these practices.	Med	Education & Outreach	Run, UK Ag. Extension	projects implemented	Unknown	Sustainable Environmenal Grants,	implementation of BMPs	implementation	Ongoing impleme	entation
			Add watershed maps and watershed plan documents to the			, &	projects impremises					Ongoing impleme	
	ducation &		Friends of Cane Run, LFUCG, and City of Georgetown web			Friends of Cane Run, LFUCG,					Post after plan finalization and		
	Outreach	General	, -	Mad	Education & Outreach	· · · · ·	Nana	None	N/A	Webmaster	approval by KDOW	None	None
		General	sites.	Med	Education & Outreach	City of Georgetown	None	None	IN/A	vvebmaster	approval by NDOVV	None	None
	ducation &	•				B							
29 C	Outreach	General	Establish stream access points within restored buffer zone areas.	Low	Education & Outreach	Riparian buffer restoration teams	None	N/A	N/A	None	Ongoing effort associated with r	iparian restoration activities a	and sign installation
			Educate homeowners on septic system maintenance. Identify			Fayette County Health Dept.,							
			septic system owners and distribute "A Kentucky Homeowner's			WEDCO District/Scott County							
Eď	ducation &		Guide to Septic Systems" available from the Kentucky Onsite			Health Department, Friends of					Identify owners and distribute		
30 C	Outreach	Septic system homeowners	Wastewater Association, Inc.	Low	Education & Outreach	Cane Run	None	Unknown	None	Homeowner's guide	information	None	None
									319 Grant, LFUCG Water Quality				
									Incentive Grant, Neighborhood				
		Upper (CR-12, CR-11, CR-3,				LFUCG, City of Georgetown /	\$100 - \$250 / rain barrel,		Sustainability Grant, KAWC Grant,	BMP design and installation	Educational Package		
Er	ducation &	Site 9) and Lower Cane Run	Neighborhood Association BMP Program. Provide education		WAH / Water Quantity,	Scott County, Bluegrass	\$500 - \$2,500 / rain garden,	Dependent on BMPs	Designated city or state funding,	assistance, planting supplies,	Development and initial		
	Outreach	Watershed (Sites 1, 2, 3)	and funding for implementation of residential BMPs.	Low	N, P	Greensource, UK Extension	\$20 - \$40 / linear ft riparian buffer	implemented	private funding	education	implementation	Ongoing impleme	entation
		(2,000,000,000,000,000,000,000,000,000,0	Develop appropriate bank stabilization and riparian buffer	2011	.,,.		, , , , , , , , , , , , , , , , , , ,		Friend range	Design expertise, materials,		Ongoing impleme	circutori
	Stream /		projects at sites identified in the Severe Erosion Survey (within		WAH / Habitat			Improved habitat, stream	319 or other grants, discretionary	maintenance supplies,	Ongoing review and support of inc	rancing stable streambanks an	ad functioning vinavian
	Riparian	Watershed-Wide	this plan).	High	Improvement	Friends of Cane Run	Dependent on area implemented	shading, TSS reduction	city/county funds, in-kind match	volunteer support	Ongoing review and support of inc	-	id functioning riparian
32	Riparian	vvatersned-vvide	. ,	ngn	improvement	Friends of Carle Rull	Dependent on area implemented	shading, 133 reduction	city/county lunds, in-kind match	volunteer support	ļ	areas.	
			Develop appropriate bank stabilization on Cane Run at Citation										
			Blvd. crossing; Develop riparian buffer project where possible;										
			Severe bank erosion has been observed in the vicinity of the										
			bridge crossing; this is located upstream of Coldstream Cane			KYTC, University of Kentucky	Design costs; construction costs	Improved habitat, stream					
'	Stream /	Cane Run	Run Stream Restoration, thus important effort to protect the		WAH / Habitat	Coldstream Research Farm,	dependent on solution	shading, in-stream sediment	KYTC, University of Kentucky		Development of project design		
33	Riparian	(Site 10/CR-5, CR-2)	completed restoration.	High	Improvement	LFUCG	implemented	reduction	Coldstream Research Farm, LFUCG	Design expertise, construction	and construction	Ongoing mainte	enance
	•	. , ,					·		,	<u> </u>		- 6- 6	
			Kentucky Horse Park Riparian Stream Buffer Stewardship:										
			riparian protection and estabilishment has occurred along Cane							Ecologist/biologist to develop			
			Run within the Horse Park, but needs signage and development			Kentucky Horse Park, University	Dependent on number and type of			signage and produce/obtain	Signage and materials		
	C+ /	Cons. Dom			\A/A / - -	· ·			Kantusku Hama Bark 310 arrast				
	Stream /	Cane Run	of education and outreach to promote benefits and improve		WAH / Habitat	of Kentucky Agricultural	signs and selected educational	l	Kentucky Horse Park, 319 or other	educational materials; Staff and	development and initial		
34	Riparian	(Site 7)	perceptions of natural buffers.	High	Improvement	Extension, Friends of Cane Run	outreach approach	Unknown	grants	equipment to install/implement	implementation	Ongoing implementatio	on/maintenance
			Kentucky Horse Park Riparian Stream Buffer Stewardship:										
			riparian protection and estabilishment has occurred along Cane										
			Run within the Horse Park, but development and										
			implementation of an operation and maintenance plan is needed			Kentucky Horse Park, University	\$10,000 for operation and			Ecologist/biologist to develop	Development of Buffer		
			·		\A/A / ah:eac	of Kentucky Agricultural	maintenance plan development plus		Kentusky Homo Park 319 an artis		•		
,	Stroom /	Cane D											
	Stream / Riparian	Cane Run (Site 7)	such that buffers are maintained appropriately while meeting goals/functions needed by Kentucky Horse Park	High	WAH / Habitat Improvement	Extension, Friends of Cane Run	annual cost to implement	Unknown	Kentucky Horse Park, 319 or other grants	plan; Staff and equipment to implement	Operation and Maintenance Plan and initial implementation	Ongoing implementatio	

												Milestones	
вмр					Impairment / Pollutant			Estimated Load	Funding Source(s) /	Technical Assistance	Short Term	Mid-Term	Long-Term
No.	Туре	Target Audience or Area	BMP Description and Action Items	Priority	Addressed	Responsible Parties	Estimated Cost	Reduction	Program(s)	Needed	(0-5 Years)	(5-10 Years)	(10+ Years)
	- / -	8		,	1			1100000000			(1.1.1.1)	(1 1 1 1 7	(: ::::)
			Stream Restoration: about 2,100 ft of UT to Cane Run stream in										
			need of restoration. Currently in private ownership (1976										
			Lexington Rd., Georgetown; zoned Commercial), but could be										
			- ,										
			purchased by Georgetown, Scott County, etc. and turned into										
			green space/greenway area. Could be potential to connect to Legacy Trail. The reach is straightened and there is area										
			available for remeandering within the parcel. Erosion is										
			occurring in this area and the downstream end of this tributary								Phase I:		
			is where MHP package wastewater treatment plant discharges.								Neet with landowners or	Phase II:	
			Establishing a riparian buffer would aid in reducing nutrient loads			Private landowners, Potential	Stream Restoration: \$1M for full	Stream Restoration: 0.0035			potential proprty owners to	Conduct pre- and post	
	Stream /	UT Cane Run	and provide habitat. If stream restoration is unfeasible, riparian		WAH / Habitat	public entities to take ownership;	stream restoration design and	lbs /ft P, 0.02 lbs /ft N	319 Grant, Designated city, county, or	Consultants, designers,	evaluate support, 2) Secure	construction monitoring, 2)	Ongoing monitoring
36	Riparian	(Site 6)	buffer restoration would still be very beneficial.	Med	Improvement, N, P	Consultants, Contractors	construction	annually	state funding, private funding	contractors, monitoring	funding, 3) Project Design	Construction	and maintenance
30	Парапап	(Site 0)	Stream Restoration: about 1,500 ft of UT to Cane Run and 2,250	ried	improvement, 14, 1	Constitutions, Contractors	construction	aimuany	state fullding, private fullding	contractors, monitoring	runding, 3) Troject Design	Construction	and maintenance
			ft of Cane Run in need of restoration. Currently in private										
			ownership (Grace Christian Church, 1648 Lexington Rd.,										
			Georgetown). Both reaches could be re-meandered within the								Phase I: 1) Meet with		
			property. Establishing a riparian buffer would aid in reducing					Stream Restoration: 0.0035			landowners to evaluate support,		
			nutrient loads and provide habitat. If stream restoration is				Stream Restoration: \$2M for full	lbs /ft P, 0.02 lbs /ft N			Secure funding, 3) Project	Phase II: I) Conduct pre- and	,
	Stream /	UT Cane Run and Cane Run	unfeasible, riparian buffer restoration would still be very		WAH / Habitat	Private landowner, Consultants,	stream restoration design and	annually	319 Grant, designated county, or	Consultants, designers,	Design	post construction monitoring,	
37	Riparian	(Site 5)	beneficial on both streams.	Med	Improvement, N, P	Contractors	construction	amidany	state funding, private funding	contractors, monitoring	Design	2) Construction	and maintenance
	Тарапап	(0.65 5)	Series and	rica	improvement, 14,1	Contractor 5	construction		State randing, private randing	2011. 4220.3, 1110.1120.11.8	Phase I: I) Meet with	2) 0011001 000011	and maniconance
			Riparian Buffer: about 15,000 ft of Cane Run in need of riparian								landowners to evaluate support,		
			buffer establishment. Currently in private ownership of several			Private landowners, NRCS, UK		Stream Buffer: 0.0035 lbs /ft	319 Grant, designated county or state		Secure funding, 3) Project	Phase II: I) Conduct pre- and	1
	Stream /		large landholders. Establishing a riparian buffer would aid in		WAH / Habitat	Ag. Extension, Consultants,	Buffer Establishment: \$3M for	P, 0.02 lbs /ft N annually	funding, NRCS agricultural cost share	Consultants, designers,	Design	post construction monitoring,	
38	Riparian	Cane Run (Site 2)	reducing nutrient loads and provide habitat.	Med	Improvement, N, P	Contractors	buffer design and construction	, , , , , , , , , , , , , , , , , , , ,	programs, private funding	contractors, monitoring	_ 55.6.	2) Construction	and maintenance
			Continue to enhance and maintain stream stabilization and						F8. a, F				
			riparian buffer: within Lexington's Shadybrook Park. Some grant-										
			funded projects have already been completed there, but may be										
			additional opportunites to increase buffers or buffer								Identification of needs;		
	Stream /	Cane Run and Tributaries (CR-	effectiveness or provide additional eductaion and outreach		WAH / Habitat		Dependent on type and extent of	Stream Buffer: 0.0035 lbs /ft	319 Grant, LFUCG Stormwater	Consultants, designers,	development and		
39	Riparian	8)	opportunites.	Med	Improvement, N, P	LFUCG, Consultants, Contractors	needs	P, 0.02 lbs /ft N annually	Incentive Grant	contractors, monitoring	implementation of plans	Ongoing project identification	n and implementation
		,	Riparian Buffer: potential to establish/enhance riparian buffer on					,		<u>~</u>		0 01 7	Ι .
			up to approximately 6,000 feet of tributary within a single farm								Phase I:	Phase II:	
		Dixie Tributary and UT to Cane	property (4025 Georgetwon Road, Lexington). Establishing a			Private landowner, NRCS, UK Ag.			319 Grant, Designated county or state		I) Meet with landowners to	I) Conduct pre- and post	
	Stream /	Run	riparian buffer would aid in reducing nutrient loads and provide		WAH / Habitat	Extension, Consultants,	Buffer Establishment: \$IM for	Stream Buffer: 0.0035 lbs /ft	funding, NRCS agricultural cost share	Consultants, designers,	evaluate support, 2) Secure	construction monitoring, 2)	Ongoing monitoring
40	Riparian	(Site 6)	habitat.	Med	Improvement, N, P	Contractors	buffer design and construction	P, 0.02 lbs /ft N annually	programs, private funding	contractors, monitoring	funding, 3) Project Design	Construction	and maintenance
													•
			Runoff-reducing / infiltration-increasing BMPs such as										
		Developed Areas of Watershed	bioretention areas, stormwater wetlands, bioswales, permeable			LFUCG , City of Georgetown,							
	Green	(i.e., CR-I through CR-I2 and	pavements, green roofs, etc. should be promoted and installed in		WAH / Water Quantity,	Bluegrass Greensource, Friends of	Dependent on number and type of		319 grant, LFUCG Stormwater Quality	Consultants, designers,	Development and installation of	:	
41	Infrastructure	portions of Site 2)	already developed portions of the watershed.	Med	N, P	Cane Run, UK Ag. Extension	projects implemented	Dependent on action taken	Incentive Grant, private funding	contractors, monitoring	BMP projects	Ongoing maintenance/upkeep;	; additional installation
			Runoff-reducing / infiltration-increasing BMPs such as										
			bioretention areas, stormwater wetlands, bioswales, permeable										
			pavements, green roofs, etc. should be promoted and installed,										
			particulary in Scott County where conversion of large amounts			LFUCG , City of Georgetown,							
	Green	Developing Areas of Watershed	of agricultural lands to residential development is likely to occur		WAH / Water Quantity,	Bluegrass Greensource, Friends of	Dependent on number and type of		319 grant, LFUCG Stormwater Quality	Consultants, designers,	Development and installation of	1	
42	Infrastructure	(i.e., portions of Site 2)	in coming years.	High	N, P	Cane Run, UK Ag. Extension	projects implemented	Dependent on action taken	Incentive Grant, private funding	contractors, monitoring	BMP projects	Ongoing maintenance/upkeep;	; additional installations
			As green infrastructure BMPs are promoted, funded, and										
			installed, there is a growing need for the development and			LFUCG DWQ, City of			City of Georgetown, 319 Grants,		Identification of projects / types		
			implementation of site specific operation and maintenance plans			Georgetown, LFUCG, Bluegrass			LFUCG Water Quality Incentive		of projects in need of plans;		
	Green		such that BMPS are maintained appropriately to maximize			Greensource, Friends of Cane	Dependent on type and number of		Grants, LFUCG Sustainable	Development of technical	development and		
43	Infrastructure	BMP Owners, maintainers	goals/functions	Med	Education & Outreach	Run, UK Ag. Extension	plans	Unknown	Environmenal Grants,	material for plans	implementation of plans	Ongoing maintenance/upkeep;	; additional installations
												Phase II: I) Choose feasible	
			Evaluate potential for BMPs to capture runoff within Griffin Gate				Feasibility study and design:				Phase I: I) Contact property	BMPs to pursue, 2) Secure	
			Golf Club for nutrient treatment. Pockets of bioretention and				\$10,000 - \$20,000, Construction				owners to evaluate support, 2)	funding, 3) Conduct pre- and	
	Green	Cane Run	wetland could be utilized to treat nutrients Capturing and			Griffin Gate Golf Club,	Cost Dependent on BMPs	Dependent on BMPs	319 Grant, LFUCG Water Quality	Consultants, designers,	Secure funding. 3) Conduct	post construction monitoring,	, Ongoing monitoring
44	Infrastructure	(Site 10/CR-3)	storing stormwater runoff for irrigation should also be evaluated.	Low	N, P	Consultants	developed	developed	Incentive Grant, private funding	contractors		4) Implement BMPs.	and maintenance
		•			•						•	•	•

												Milestones	
BMP					Impairment / Pollutant			Estimated Load	Funding Source(s) /	Technical Assistance	Short Term	Mid-Term	Long-Term
No.	Туре	Target Audience or Area	BMP Description and Action Items	Priority	Addressed	Responsible Parties	Estimated Cost	Reduction	Program(s)	Needed	(0-5 Years)	(5-10 Years)	(10+ Years)
												Phase II:	
											Phase I:	I) Choose feasible BMPs to	
			Evaluate potential for BMPs to capture runoff within Kearney Hill				Feasibility study and design:				I) Contact property owners to	pursue, 2) Secure funding, 3)	
			Golf Links for nutrient treatment. Pockets of bioretention and				\$10,000 - \$20,000, Construction				evaluate support, 2) Secure	Conduct pre- and post	
	Green	Cane Run	wetland could be utilized to treat nutrients Capturing and			Kearney Hill Golf Links,	Cost Dependent on BMPs	Dependent on BMPs	319 Grant, LFUCG Water Quality	Consultants, designers,	funding, 3) Conduct feasibility	construction monitoring, 4)	Ongoing monitoring
45	Infrastructure	(Sites 6 and 7)	storing stormwater runoff for irrigation should also be evaluated.	Low	N, P	Consultants	developed	developed	Incentive Grant, private funding	contractors	study and design	Implement BMPs.	and maintenance
												Phase II:	
											Phase I:	I) Choose feasible BMPs to	
			Evaluate potential for BMPs to capture runoff within Canewood				Feasibility study and design:				I) Contact property owners to	pursue, 2) Secure funding, 3)	
			Golf Course for nutrient treatment. Pockets of bioretention				\$10,000 - \$20,000, Construction				evaluate support, 2) Secure	Conduct pre- and post	
	Green	Cane Run	and wetland could be utilized to treat nutrients Capturing and			Kearney Hill Golf Links,	Cost Dependent on BMPs	Dependent on BMPs		Consultants, designers,	funding, 3) Conduct feasibility	construction monitoring, 4)	Ongoing monitoring
46	Infrastructure	(Site I)	storing stormwater runoff for irrigation should also be evaluated.	Low	N, P	Consultants	developed	developed	319 Grant, private funding	contractors	study and design	Implement BMPs.	and maintenance
			In-stream floatable Trash and Debris collection system										•
			installation targeted to Lexmark and/or adjacent property; Some						319 grant, LFUCG Stormwater				
	General	Cane Run	pilot evaluation has been performed by Lexmark and University				Varies; requires a	Amount of trash removed	Incentive Grant, Lexmark, private	Technical input on design	Installation of system; frequent		
47	(Trash)	(CR-8)	of Kentucky BAE students	Med	WAH / Trash and Debris	Lexmark	maintence/upkeep cost.	varies	funding	selected	maintenance/upkeep	Ongoing maintenance/upkeep;	additional installations
			In-stream floatable Trash and Debris collection system										
			installation targeted to Coldstream Research Campus and/or						319 grant, LFUCG Stormwater				
	General	Cane Run	adjacent property; Some pilot evaluation has been performed by			University of Kentucky	Varies; requires a	Amount of trash removed	Incentive Grant, Coldstream Research	Technical input on design	Installation of system; frequent		
48	(Trash)	(CR-2)	Lexmark and University of Kentucky BAE students	Med	WAH / Trash and Debris	Coldstream Research Campus	maintence/upkeep cost.	varies	Campus, private funding	selected	maintenance/upkeep	Ongoing maintenance/upkeep;	additional installations
	, ,	,	, ,			LFUCG DEP Urban Forestry,						1 1	
			Support a "Reforest the Bluegrass" or similar event in the Cane			Reforest the Bluegrass, Scott							
			Run Watershed to increase the riparian zone width in areas		WAH / Habitat	County / Georgetown, Friends of			Local government funding and private				
49	General	General	identified in the plan.	Low	Improvement	Cane Run	Dependent on area planted	Dependent on area planted	sponsors	Planting supplies, organization	Conduct an event along on	e of the riparian areas identified	I for improvement
			Support regulatory measures to protect riparian buffers (Fayette										
			and Scott counties) including creation of an ordinance to		WAH / Habitat					Ordinance drafting, regulatory	,		
50	General	General	enhance protection and management of riparian buffers	Low	Improvement	Friends of Cane Run	None	Unknown	None	review		upport of protection / managem	ent measures
30	General	General	emance protection and management of riparian bullers	LOW	improvement	Therius of Carle Rull	INOTIE	Olikilowii	TAORE	I GAIGAA	Ongoing review and si	apport of protection / managem	ent measures

F. Funding Sources

Successful implementation of this WBP will require significant financial resources. Where possible, estimates of funding were included in the BMP Implementation Plan (**Table 50**, pages 109 through 114). Known funding sources included designated state or city budgets, sanitary sewer user fees, and various grant programs. Diverse funding sources will need to be sought for BMP implementation and resources leveraged where possible to extend the positive impacts of the acquired implementation funds. Sources of funding that are applicable to this plan will be sought as appropriate; known funding resources are listed below.

I. US EPA 319(h) Grants

The US EPA provides funding through Section 319(h) of the Clean Water Act to the Kentucky Nonpoint Source (NPS) Pollution Control Program. These funds can be used to pay for 60 percent of the total cost for qualifying projects, but require a 40 percent non-federal match. Grants are available for watershed-based implementation, and priority consideration will be given to projects for which implement a WBP, such as this one. Project proposal forms may be submitted to the Kentucky NPS Pollution Control Program at any time; however, deadlines apply to specific federal funding cycles. For more information on this grant program, see Kentucky Division of Water website: http://water.ky.gov.

2. LFUCG Stormwater Quality Projects Incentive Grant Program

The LFUCG Stormwater Quality Projects Incentive Grant Program provides financial assistance for projects in Lexington that improve water quality, address stormwater runoff, and educate the public about these issues. The annual program typically provides over \$1 million in funding. The LFUCG Division of Water Quality receives applications and makes recommendations for project selection to the Water Quality Fees Board, who makes the final selection on all grant awards. The grants are divided into three classes: Class A neighborhood grants, Class B infrastructure grants, and Class B education grants. Class A neighborhood grants are open to neighborhood, community, and homeowner associations incorporated with the Commonwealth of Kentucky that represent single family homeowners or farms. Class B infrastructure grants are open to owners and tenants of non-farm, non-single-family residential facilities including businesses, schools, churches, and non-profits located in Fayette County that pay the Water Quality Management Fee. Class B Education Grants are open to owners and tenants of non-farm, non-single-family residential facilities including businesses, schools, churches, and non-profits located in Fayette County that pay the Water Quality Management Fee. Additional information can be found online on the LFUCG website: http://www.lexingtonky.gov.

3. USDA-NRCS EQIP Program

The Environmental Quality Incentive Program (EQIP) provides financial and technical assistance to agricultural producers to address natural resource concerns and deliver environmental benefits such as improved water and air quality, conserved ground and surface water, reduced soil erosion and sedimentation or improved or created wildlife habitat. Eligible program participants that rank well can receive financial and technical assistance to

implement conservation practices that address natural resource concerns on their land. Visit your local USDA Service Center for more information or to apply. Additional details may be found at: www.nrcs.usda.gov/getstarted.

4. State Cost Share

The Kentucky Soil Erosion and Water Quality Cost Share Program and the Kentucky Soil Stewardship Program were created to help agricultural operations protect the soil and water resources of Kentucky and to implement their agriculture water quality plans. The program helps landowners address existing soil erosion, water quality and other environmental problems associated with their farming or woodland operation.

The 1994 Kentucky General Assembly established this financial and technical assistance program. Kentucky Revised Statute 146.115 establishes that funds be administered by local conservation districts and the Kentucky Soil and Water Conservation Commission with priority given to animal waste-related problems, agricultural district participants and to producers who have their Agriculture Water Quality plans on file with their local conservation districts. Funding comes from the Kentucky General Assembly through direct appropriations to the program from the Tobacco Settlement Funds and from funds provided by the Kentucky Department of Agriculture.

Practices eligible for cost share are agriculture and animal waste control facilities; streambank stabilization; animal waste utilization; vegetative filter strips; integrated crop management; pesticide containment; sinkhole protection; pasture and hay land forage quality; heavy use area protection; rotational grazing system establishment; water well protection; forest land and cropland erosion control systems; closure of agriculture waste impoundment; on-farm fallen animal composting; soil health management; precision nutrient management; strip intercropping system; livestock stream crossing and riparian area protection.

5. Kentucky American Water Environmental Grant Program

Kentucky American Water supports an annual American Water's Environmental Grant Program to offer funds for innovative, community-based environmental projects that improve, restore, or protect the watersheds, surface water and/or groundwater supplies in our local communities. Since launching the program in 2006, Kentucky American Water has awarded more than \$195,000 for environmental projects. Additional details may be found at KAWC's website: www.kentuckyamwater.com.

6. FEMA Hazard Mitigation Grant

FEMA's Hazard Mitigation Assistance grant programs provide funding for eligible mitigation activities that reduce disaster losses and protect life and property from future disaster damages including the Hazard Mitigation Grant Program, Pre-Disaster Mitigation, Flood Mitigation Assistance, Repetitive Flood Claims, and Severe Repetitive Loss. If a project will reduce or eliminate the risk of flood damage to the population or structures insured under the National Flood Insurance Program, it may be eligible for funding under one of these

programs. For additional details on eligibility requirements and grant details, visit the FEMA website: http://www.fema.gov.

7. Kentucky Department of Fish and Wildlife's Stream Team Program

The Stream Team offers landowners free repairs to eroding and unstable streams and wetlands. Their task is to identify and undertake stream restoration projects statewide. The Stream Team, which includes stream restoration specialists in the Kentucky Department of Fish and Wildlife Resources (KDFWR), works with private landowners and others to identify stream restoration projects. Projects are funded from the Mitigation Fund held in trust solely for repairing streams and wetlands. No state tax general funds or hunting/fishing license dollars are used.

Landowners must meet certain criteria to qualify including a minimum of 1,000 feet of stream with unstable, eroding banks and agreement to a permanent easement typically at least 50 feet wide on each side of the restored stream. In general, both sides of the stream must be available for work, and often several landowners may be involved to provide access to both banks and appropriate protection. Typical projects are on small streams ranging in size from the smallest that may go dry in late summer downstream to those that have permanent flow. Landowner considerations may be and often are included with the projects to meet the needs of property owners. These often include the construction of fords across the stream, fencing, and access to water for livestock. More information about this program is available at http://fw.ky.gov/Fish/Pages/Stream-Team-Program.aspx.

8. Partners for Fish and Wildlife Program

The Partners for Fish & Wildlife program works with private landowners to improve fish and wildlife habitat on their lands. They are leaders in voluntary, community-based stewardship for fish and wildlife conservation. The future of the nation's fish and wildlife depends on private landowners – more than 90% of land in Kentucky is in private ownership. Providing more high-quality habitat not only helps wildlife - by contributing to a healthy landscape, you create a conservation legacy to pass on to future generations.

To accomplish this work, the Partners for Fish & Wildlife team up with private conservation organizations, state and federal agencies and tribes. Together, with the landowner, this collective share funding, materials, equipment, labor and expertise to meet both the landowner's restoration goals and their conservation mission. More information about this program is available at https://www.fws.gov/frankfort/partners.html.

9. Keep Lexington Beautiful's Great American Cleanup

The Keep Lexington Beautiful's Great American Cleanup™ events are sponsored by local, state, and national sponsors. They provide supplies for litter removal, graffiti removal, recycling, clothing collection, stream cleanups, beautification, or community improvement events. Those who are interested in participating can sign up through registration forms available through the Keep Lexington Beautiful Commission, typically posted annually to LFUCG's website.

10. Keep the Bluegrass Beautiful

Scott county is part of Keep the Bluegrass Beautiful, a regional affiliate of Keep America Beautiful sponsored by Bluegrass Greensource. They are interested in projects to reduce litter, increase recycling, and beautify of the community. As an affiliate, Keep the Bluegrass Beautiful is eligible for grants, such as the Lowe's Community Partner Grant and the Cigarette Litter Prevention Program. They also provide opportunities for participation in Great American Cleanup™ events, cigarette litter prevention programs, and America Recycles day. More information is available at https://bggreensource.org/keep-the-bluegrass-beautiful/

VI. OVERSIGHT AND MONITORING

Upon approval of this WBP, focus will transition from planning to implementation. Oversight of implementation activities and the means and methods used to monitor and evaluate success will be key to ensuring the effective implementation of BMPs as outlined in **Chapter V**. This Chapter defines oversight responsibilities and describes the means and methods selected to evaluate success.

A. Organization

As listed in **Chapter I** (page 3), the Cane Run Watershed Council and many stakeholders will be essential in the implementation of this plan. Implementing this plan will require significant time, resources, and effort. Ideally, a full-time watershed coordinator position would be developed and filled to support the implementation of this plan. A coordinator would provide targeted outreach and program promotion and would be responsible for working with stakeholders to identify funding opportunities, develop funding applications, administer projects, keep stakeholders engaged, and coordinate educational programming.

B. Education and Outreach

The Cane Run Watershed Council will work to present the objectives and recommendations of this plan to the general public and key stakeholders within the watershed. The plan will be published on the Cane Run Watershed Council/Friends of Cane Run website to increase its accessibility to the public.

One of the initial goals of the Cane Run Watershed Council should be to outreach to the watershed stakeholders, evaluate support for implementation, and then establish renewed milestones and priorities based on responses.

Development of a summary of the Cane Run WBP in the form of education and/or promotional pieces would aid in the education and outreach efforts. These pieces should condense the plan's findings and recommendations into a product fitting for local leaders and other important audiences; supplemental pieces that showcase BMP activities once implemented.

C. Schedule and Milestones

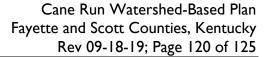
Implementing the Cane Run WBP will occur over a 10-year (or greater) period. Additional time may be needed as identified through adaptive management as this plan is implemented and/or it is identified that additional water quality goals need to be achieved in order to restore healthy, functioning, sustainable conditions to streams of the Cane Run watershed. The BMP Implementation Plan (**Chapter V, Table 50**, pages 109 - 114), identifies anticipated implementation milestones and schedule that can be used to track implementation progress. Milestone and schedule adjustments shall be made, if needed, to ensure that goals are met if this strategy becomes infeasible or ineffective or needs to otherwise be refined.

D. Monitoring Success

Success will be monitored and evaluated in terms of implementation progress, load reductions achieved, education and behavior change, and water quality sampling results.

I. Tracking Implementation

If a Watershed Coordinator position is developed and utilized, this person is best suited to track BMP implementation progress over time (otherwise the council will have to designated someone to track the implementation). Both BMP-specific and programmatic data will be recorded and publicized. The identification of a responsible party(ies), funding allocated, geographic location (latitude and longitude), design and / or construction timeline(s), and photo documentation will be recorded and reported/updated for individual BMPs at least quarterly on the Cane Run Watershed Council/Friends of Cane Run web page. In addition, measurable, watershed-wide indicators of success, such as the number of BMPs implemented/installed, length of stream stabilized/buffered, etc. will be tracked for each BMP and publicized on the web page and at Cane Run Watershed Council meetings.


The Watershed Coordinator will track progress toward achieving the needed load reductions to meet water quality goals. In addition to the documentation indicated above for each BMP, load reductions achieved by each implemented BMP will be recorded and maintained and will serve as a tool to determine progress made toward implementing this WBP.

2. Tracking Education and Outreach

The Watershed Coordinator will maintain a record of those in attendance at all Watershed Council meetings, as well as document and publicize meeting minutes. In addition, an on-line survey will be developed and electronically distributed/promoted at the end of the first full year of plan implementation. The goal of the survey will be to solicit input from Watershed Council members and other citizens of the watershed related to perceptions regarding implementation activities and suggestions for future implementation.

3. Water Quality Monitoring

When sufficient implementation has occurred within a given sub-watershed that suggests that enough load reductions have been achieved to show an improvement in water quality, then

water quality monitoring will be conducted to evaluate the effectiveness of the implementation efforts. The determination of whether enough implementation has occurred to pursue water quality monitoring shall be made using the database of estimates of overall BMP load reductions cumulated from implemented BMPs relative to the required load reductions to meet water quality goals in a given sub-watershed.

Additional funding will be sought to conduct water quality monitoring, using the parameters listed in **Table 49**, pages 105 - 106, to measure reductions in pathogen and nutrient concentrations. Results will be used to document progress toward meeting water quality goals or lack thereof. The most appropriate approach to monitoring will be selected based on BMPs/efforts that have been implemented. Specific sampling approach, duration, frequency, and objectives will be determined at the time monitoring is warranted.

E. Evaluating and Updating the Plan

Changes in water quality are influenced by many factors and implementation efforts may take considerable time before changes can be observed by monitoring data. Thus, sufficient time should be allowed for implementation to occur before adaptive management of project implementation or plan updates ensue.

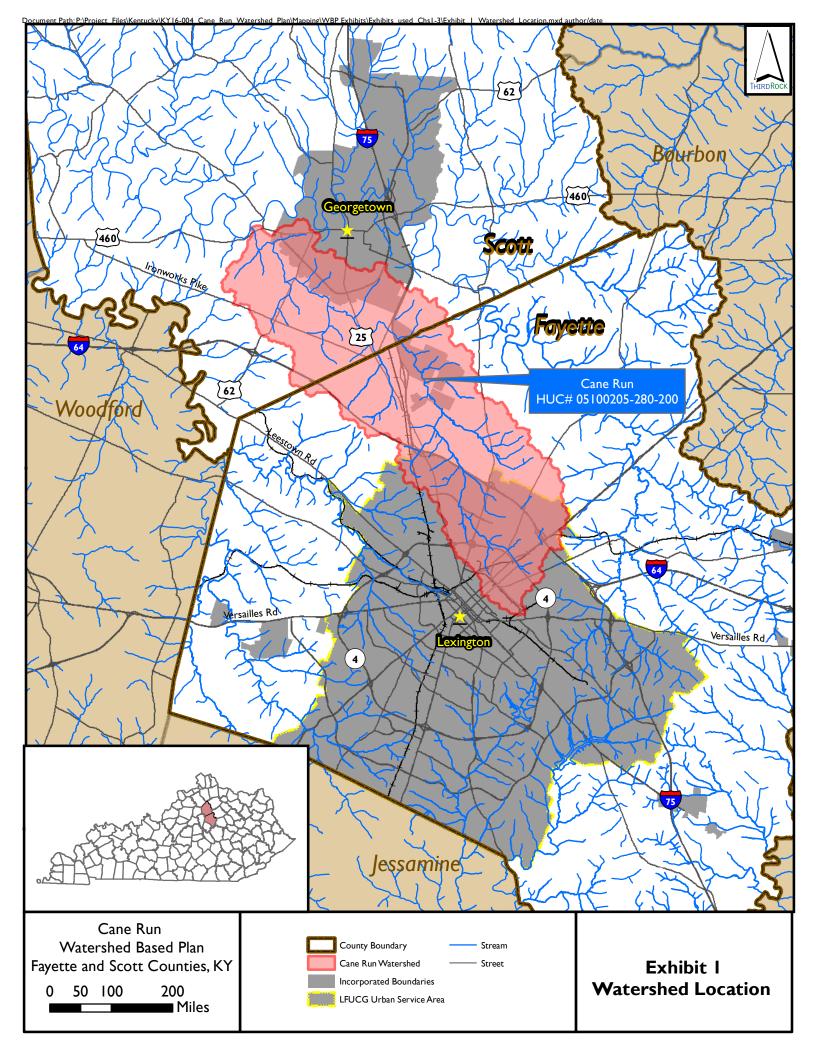
The goals, objectives, and BMP implementation strategy included in this WBP were based derived from the best available information and projected needs of the community at the time of plan development. It will be the responsibility of the Watershed Coordinator and Cane Run Watershed Council to revisit and supplement the WBP on or before the 5-year anniversary of plan approval, if it is warranted.

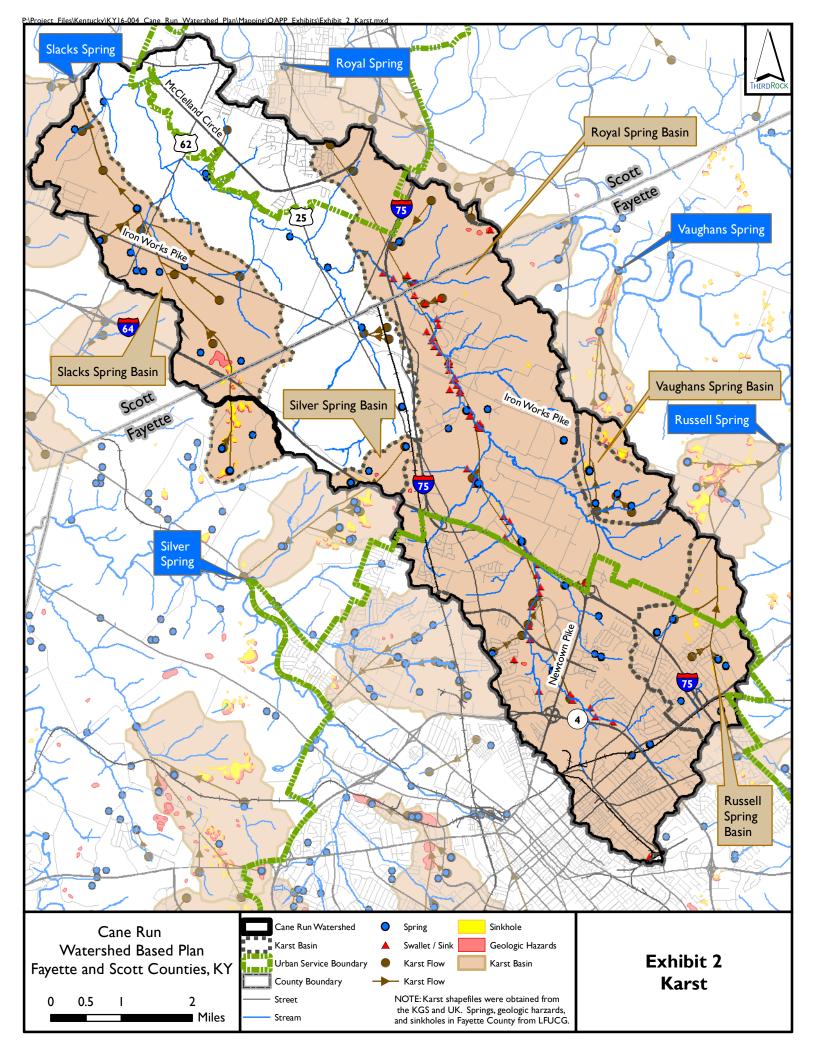
VII. REFERENCES

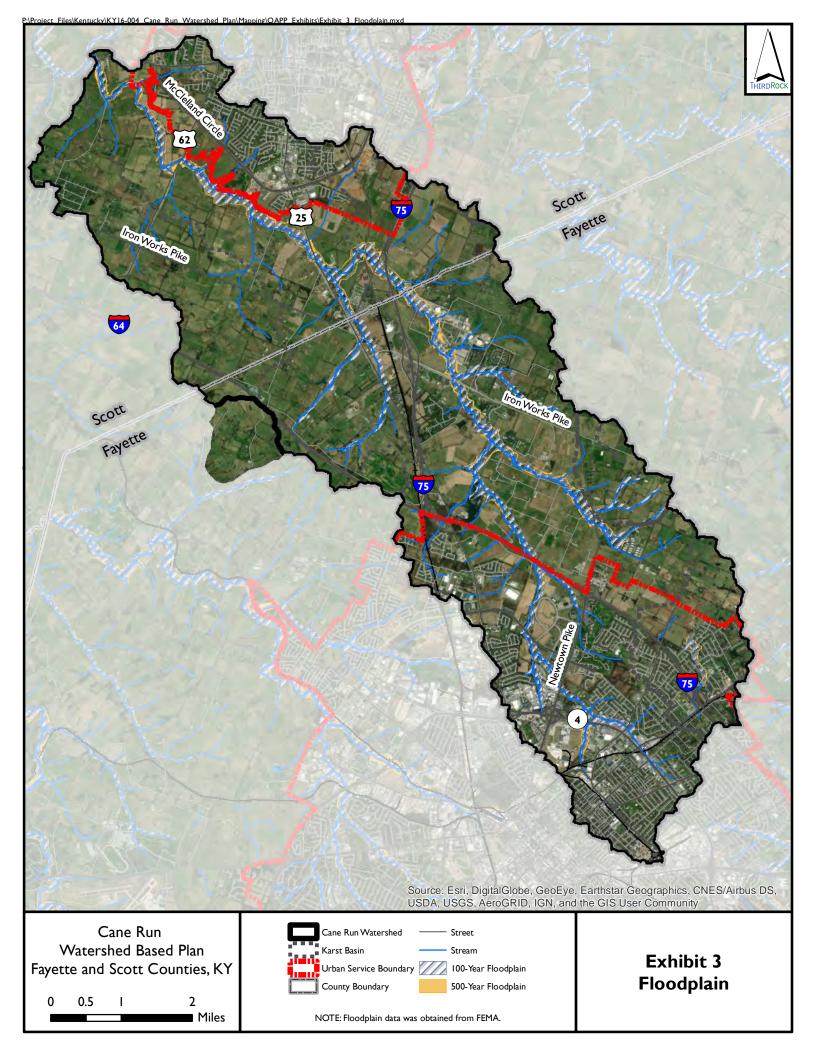
- Adkins, D. 2017. Mobile-Home Company Backs Out of Trailer Park Deal. Georgetown News-Graphic. January 19, 2017.
- Albritton, B., Viswanathan, C., Ormsbee, L., and C. Johnson. 2011. Nutrient TMDL for Cane Run, Kentucky Water Resources Research Institute, University of Kentucky, Lexington KY 40506, June 2011, 167 pp.
- Brion, G.M. 2005. Report to the City of Georgetown: Water Quality Analysis Project 2005.
- Brion, G.M. 2006. Report to the City of Georgetown: Water Quality Analysis Project 2006.
- City of Georgetown, Kentucky. 2015. Code of Ordinances. Last updated 2019. https://library.municode.com/tx/georgetown/codes/code_of_ordinances?nodeld=GECOOR
- Cressman, E.R. 1967, Geologic map of the Georgetown quadrangle, Central Kentucky: U.S. Geologic Survey Geologic Quadrangle Map GQ-605, scale 1:24,000
- Currens, J.C., Paylor, R.L., and J.A. Ray. 2003. Mapped Karst Groundwater Basins in the Lexington 30 x 60 Minute Quadrangle. Kentucky Geological Survey and Kentucky Natural Resources and Environmental Protection Cabinet Division of Water. Map and Chart 35, Series XII, 2002, Revised 2003.
- Federal Interagency Stream Restoration Working Group (FISRWG). 1998. Stream Corridor Restoration: Principles, Processes, and Practices. GPO Item No. 0120-A; SuDocs No. A 57.6/2:EN 3/PT.653.
- Fischer, R. A., and J.C Fischenich. 2000. Design recommendations for riparian corridors and vegetated buffer strips. EMRRP Technical Notes Collection (ERDC TN-EMRRP-SR-24), U.S. Army Engineer Research and Development Center, Vicksburg, MS. Web site. Accessible online at www.wes.army.mil/el/emrrp
- Horsley & Witten Inc. 1996. "Identification and Evaluation of Nutrient and Bacterial Loadings to Maquoit Bay, Brunswick and Freeport, Maine." Portland, ME: University of Southern Maine, Muskie School of Public Service, Casco Bay Estuary Partnership
- Husic, Admin. 2016. Personal Communication. Graduate Research Assistant at University of Kentucky Department of Civil Engineering.
- Kanizay, S.P., and E.R. Cressman. 1967. Geologic map of the Centerville quadrangle, central Kentucky: U.S. Geologic Survey Geologic Quadrangle Map GQ-653, scale 1:24,000.
- Kentucky Division of Water (KDOW). 2011. Methods for Assessing Habitat in Wadeable Waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.

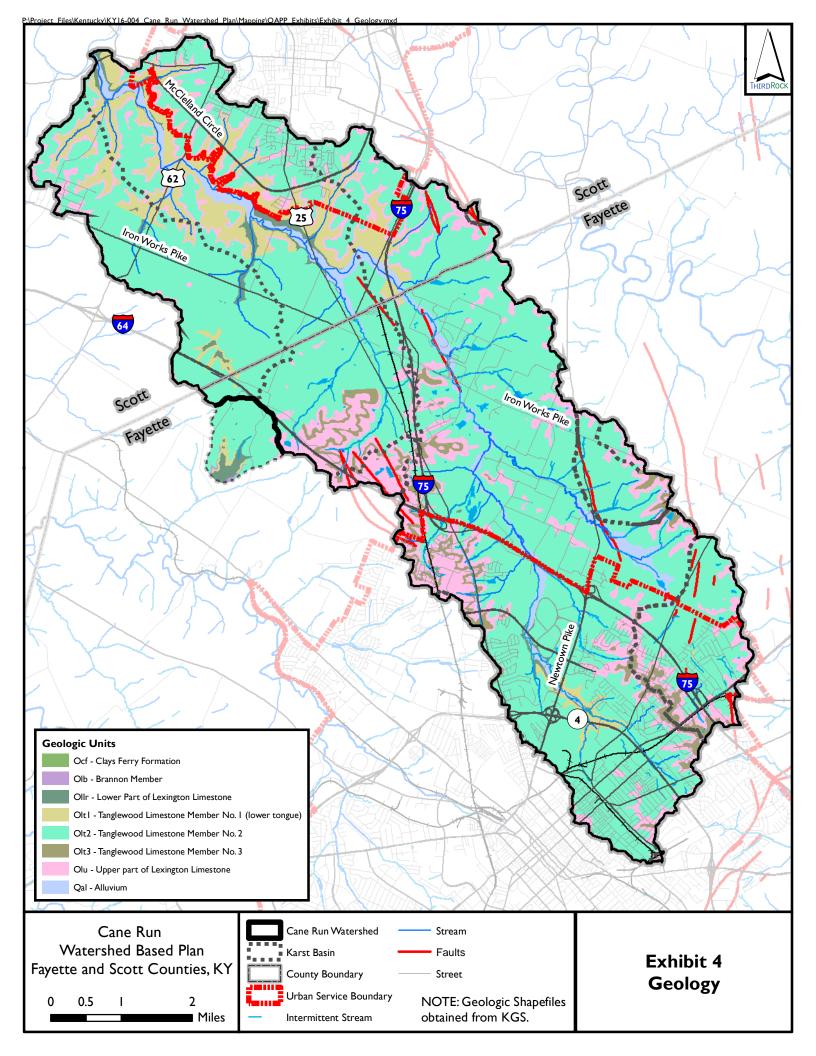
- Kentucky Division of Water (KDOW). 2015. 2014 Integrated Report to Congress on the Condition of Water Resources in Kentucky: Volume II. 303(d) List of Surface Waters. Kentucky Energy and Environment Cabinet, Department for Environmental Protection, Division of Water, Water Quality Branch. Frankfort, Kentucky.
- Kentucky Water Resources Research Institute (KWRRI). 2002. Kentucky River Basin Management Plan, The Kentucky River Authority under The Kentucky Watershed Management Framework. Accessed November 2010 at http://www.uky.edu/WaterResources/Watershed/KRBMP/KRBMP02P.pdf
- Kitchell, A. and T. Schueler. February 2005. Urban Subwatershed Restoration Manual 10 Unified Stream Assessments: A User's Manual Version 2.0. Center for Watershed Protection. Prepared for the Office of Water Management, U.S. Environmental Protection Agency, Washington D.C.
- Lee, S. C. 2012. Identifying Hot-Spots of Fecal Contamination in the Royal Spring Karstshed. University of Kentucky, College of Engineering, Department of Civil Engineering. *Theses and Dissertations—Civil Engineering*. Paper 2. http://uknowledge.uky.edu/ce_etds/2
- Lempke, J. 2010. Personal Communication via email on January 4, 2011 concerning exotics at The Arboretum State Botanical Garden of Kentucky.
- Lexington-Fayette County Urban Government (LFUCG). 2001. Lexington-Fayette County Greenway Master Plan, http://www.lexingtonky.gov/index.aspx?page=791
- Lexington-Fayette County Urban Government (LFUCG). 2008a. Stormwater Quality Management Program (SWQMP). http://lexingtonky.gov/modules/ShowDocument.aspx?documentid=3566
- Lexington-Fayette County Urban Government (LFUCG). 2008b. Sanitary Sewer Assessment Work Plan. http://lexingtonky.gov/modules/ShowDocument.aspx?documentid=3569
- Lexington-Fayette County Urban Government (LFUCG). 2010. Charter and Code of Ordinances, Urban County Government of Lexington-Fayette, Kentucky, Adopted by the Urban County Council October 22, 1959 and last Republished November 1990. http://library.municode.com/index.aspx?clientId=11163&stateId=17&stateName=Kentucky
- Lexington-Fayette County Urban Government (LFUCG). 2011. Group Two Sanitary Sewer Assessment Report submittal to the United States Environmental Protection Agency. October 13, 2011.
- Lexington-Fayette County Urban Government (LFUCG). 2012. Group Two Sanitary Sewer System and WWTP Remedial Measures Plan: Submittal to the United States Environmental Protection Agency and the Kentucky Department for Environmental Protection. April 13, 2012. http://www.lexingtonky.gov/Modules/ShowDocument.aspx?documentid=20839
- MacQuown, W.C., and E. Dobrovolny. 1968. Geologic map of the Lexington East quadrangle, Fayette and Bourbon Counties, Kentucky: U.S. Geologic Survey Geologic Quadrangle Map, scale 1:24,000

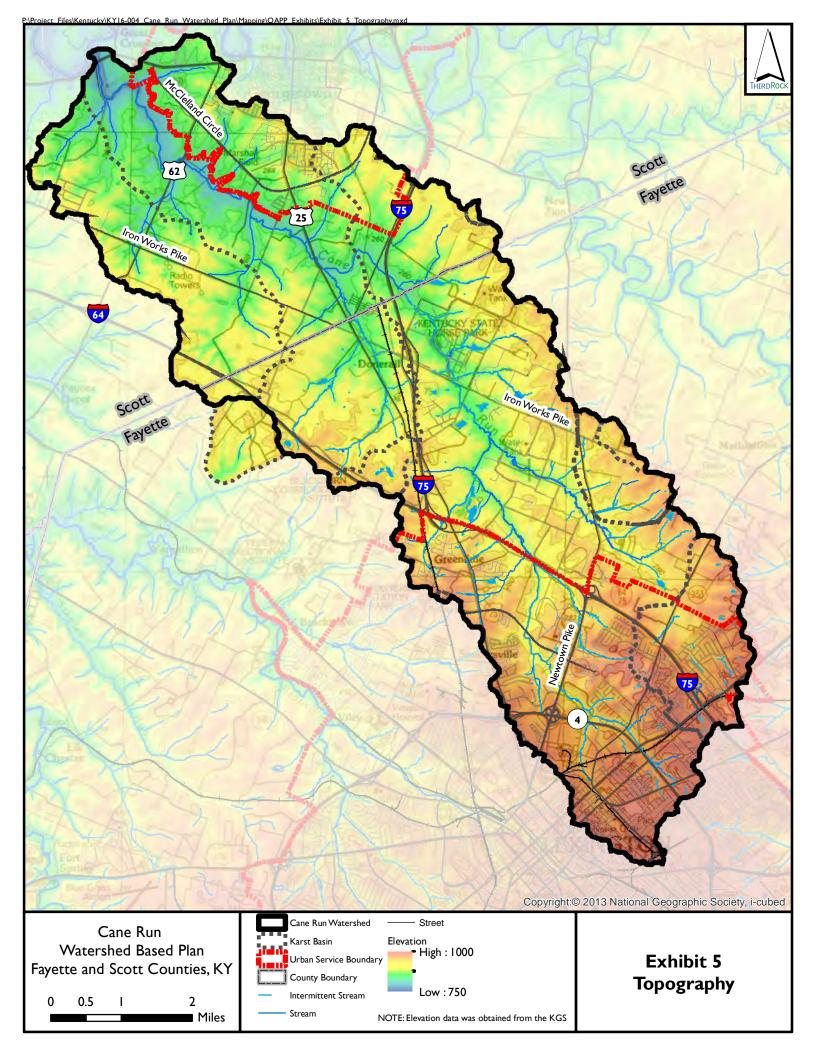
- Miller, R.D., 1967. Geologic map of the Lexington West quadrangle, Fayette and Scott Counties, Kentucky: U.S. Geologic Survey Geologic Quadrangle Map GQ-600, scale 1:24,000
- National Weather Service. 2011. "Monthly Climatological Normals 1981 2010." Accessed December 2011 at http://www.crh.noaa.gov/images/lmk/lexington_cli_pdf/ monthly normals 1981 2010 lexington.pdf
- Ormsbee, L., Albritton, B, Viswanathan, C., Anmala, J., and N. Kowsuvon. 2013. Final Total Maximum Daily Load (TMDL) for Fecal Coliform 7 Stream Segments within the Cane Run Watershed, Fayette, and Scott Counties, Kentucky. Kentucky Department of Environmental Protection. Division of Water. Frankfort, Kentucky.
- Palone, R.S. and A.H. Todd (editors.) 1997. Chesapeake Bay riparian handbook: a guide for establishing and maintaining riparian forest buffers. USDA Forest Service. NA-TP-02-97. Radnor, PA.
- Parola, A. C., Vesely, W. S., Croasdaile, M. A., Hansen, C., and M. S. Jones. 2007. "Geomorphic Characteristics of Streams in the Bluegrass Physiographic Region of Kentucky." Project Final Report for Section 319(h) Nonpoint Source Implementation Program Cooperative Agreement #C9994861-00. University of Louisville Stream Institute and Kentucky Division of Water.
- Ray, J.A., Webb, J.S., and P.W. O'dell. 1994. *Groundwater Sensitivity Regions of Kentucky*, Kentucky Department for Environmental Protection, Division of Water Groundwater Branch.
- Rowe, M., Essig, D., and B. Jessup. 2003. Guide to Selection of Sediment Targets for Use in Idaho TMDLs. Idaho Department of Environmental Quality.
- Royal Spring Water Supply Protection Committee. June 2003. Fayette and Scott County Wellhead Protection Plan. Approved by Kentucky Division of Water.
- Scogin, M. 2018. U.S. 25 S. Sewer Line Takes Major Step Forward. Georgetown News-Graphic. December 13, 2018.
- Sims, R.P., Preston, D.G., Richardson, A.J., Newton, J.H., Isgrig, D., and R. L. Blevins. 1987. Soil Survey of Fayette County, Kentucky. United States Department of Agriculture, Soil Conservation Service, in Cooperation with the Kentucky Agricultural Experiment Station.
- Slone, T. and T. Wethington. 2001. Kentucky's Threatened and Endangered Species. Kentucky Department of Fish and Wildlife Resources. Frankfort, Kentucky. 34pp.
- Southwest Regional Climate Center. 2019. The University of North Carolina, Chapel Hill, North Carolina. Historical Climate Summaries for Kentucky. Accessed February 2019 at http://www.sercc.com/climateinfo/historical/historical/ky.html
- Third Rock Consultants (Third Rock). 2012. Visual Stream Assessment: Cane Run. Prepared for Lexington-Fayette Urban County Government.

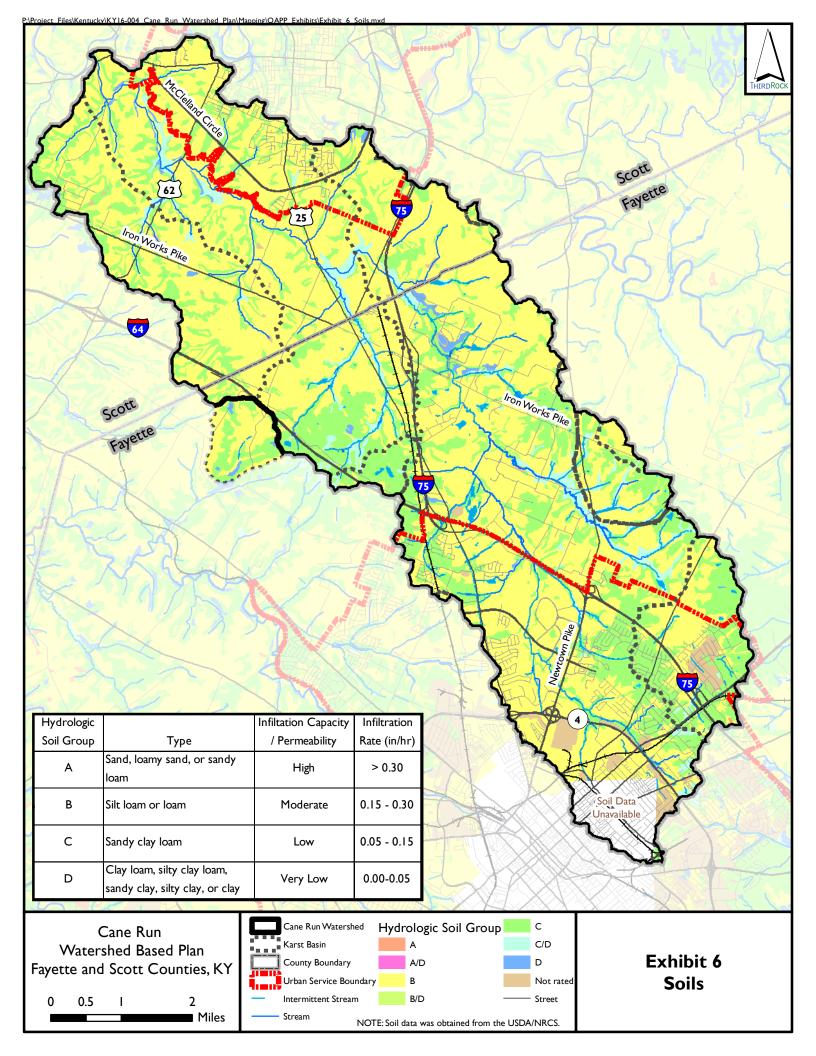


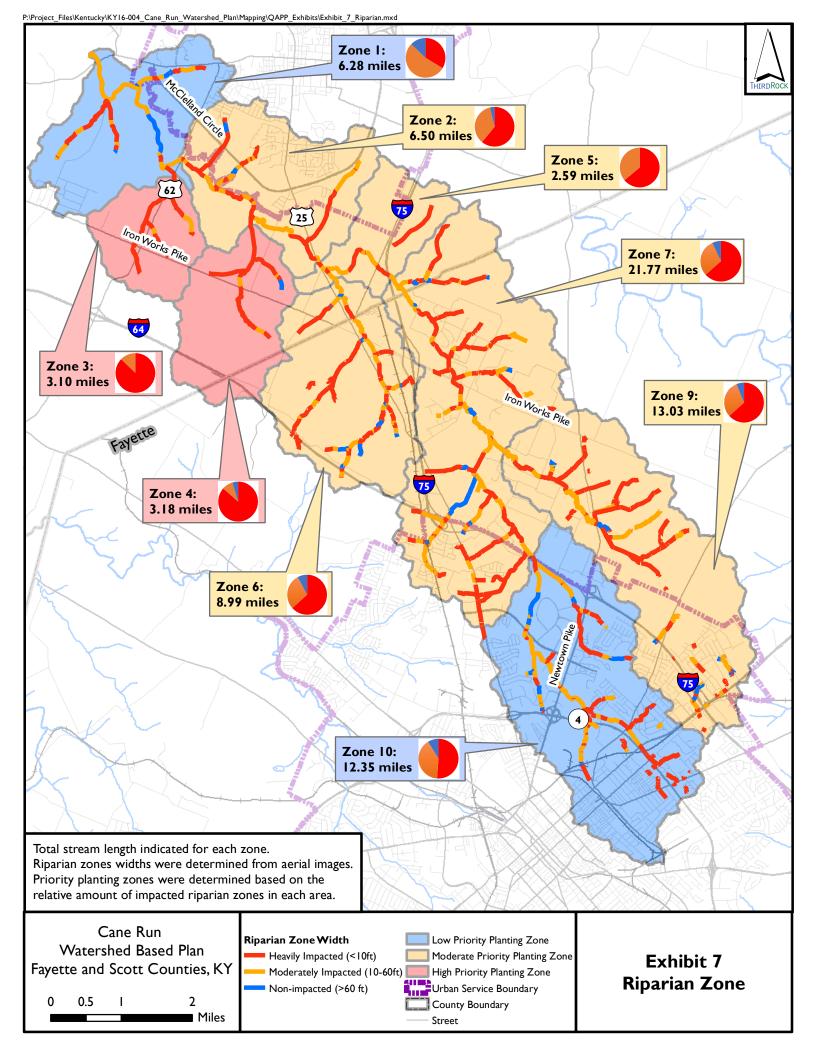

- Third Rock Consultants (Third Rock). 2016a. Quality Assurance Project Plan (QAPP) for Cane Run Comprehensive Watershed Based Plan. Prepared for Kentucky Division of Water. Effective Date May 3, 2016. Revised August 8, 2016.
- Third Rock Consultants (Third Rock). 2016b. Quality Assurance Project Plan (QAPP) for Lexington-Fayette Urban County Government Watershed-Focused Monitoring Plan. Prepared for Lexington-Fayette Urban County Government, Division of Water Quality. Effective Date June 1, 2016. Revised August 1, 2017.
- Third Rock Consultants (Third Rock). 2016c. Severe Erosion Survey, Cane Run Watershed, Fayette and Scott County, Kentucky. Prepared for Kentucky Division of Water for the Cane Run Watershed Based Plan. July 27, 2016.
- Third Rock Consultants (Third Rock). 2017a. Cane Run Watershed Comprehensive Watershed-Based Plan Biological and Habitat Monitoring Report. Prepared for Kentucky Division of Water for the Cane Run Watershed Based Plan. October 17, 2017.
- Third Rock Consultants (Third Rock). 2017b. Cane Run Watershed Comprehensive Watershed-Based Plan Combined Water Quality Monitoring and Quality Assurance Project Report. Prepared for Kentucky Division of Water for the Cane Run Watershed Based Plan. December 15, 2017.
- Third Rock Consultants (Third Rock). 2018a. Cane Run Watershed-Focused Monitoring Stream Corridor Characterization Technical Memorandum. Prepared for Lexington-Fayette County Urban Government (LFUCG). January 16, 2018.
- Third Rock Consultants (Third Rock). 2018b. Cane Run Watershed-Focused Monitoring Stream Biology Technical Memorandum. Prepared for Lexington-Fayette County Urban Government (LFUCG). January 16, 2018.
- Third Rock Consultants (Third Rock). 2018c. Cane Run Watershed-Focused Monitoring Priority Area Upland Visual Assessment Technical Memorandum. Prepared for Lexington-Fayette County Urban Government (LFUCG). February 26, 2018.
- Third Rock Consultants (Third Rock). 2018d. Cane Run Watershed-Focused Monitoring Discharge Prevention / Source Investigation Technical Memorandum. Prepared for Lexington-Fayette County Urban Government (LFUCG). April 13, 2018.
- Third Rock Consultants (Third Rock). 2018e. Cane Run Watershed-Focused Monitoring Water Quality Monitoring Technical Memorandum. Prepared for Lexington-Fayette County Urban Government (LFUCG). April 10, 2018, Revised May 11, 2019.
- University of Kentucky (UK), Biosystems and Agricultural Engineering (BAE). 2011. Cane Run and Royal Spring Watershed Based Plan. College of Agriculture, Lexington, KY. 438pp.
- United States and Commonwealth of Kentucky v. Lexington-Fayette Urban County Government. November 2006. Civil Action No. 5:06-cv-00386-KSF

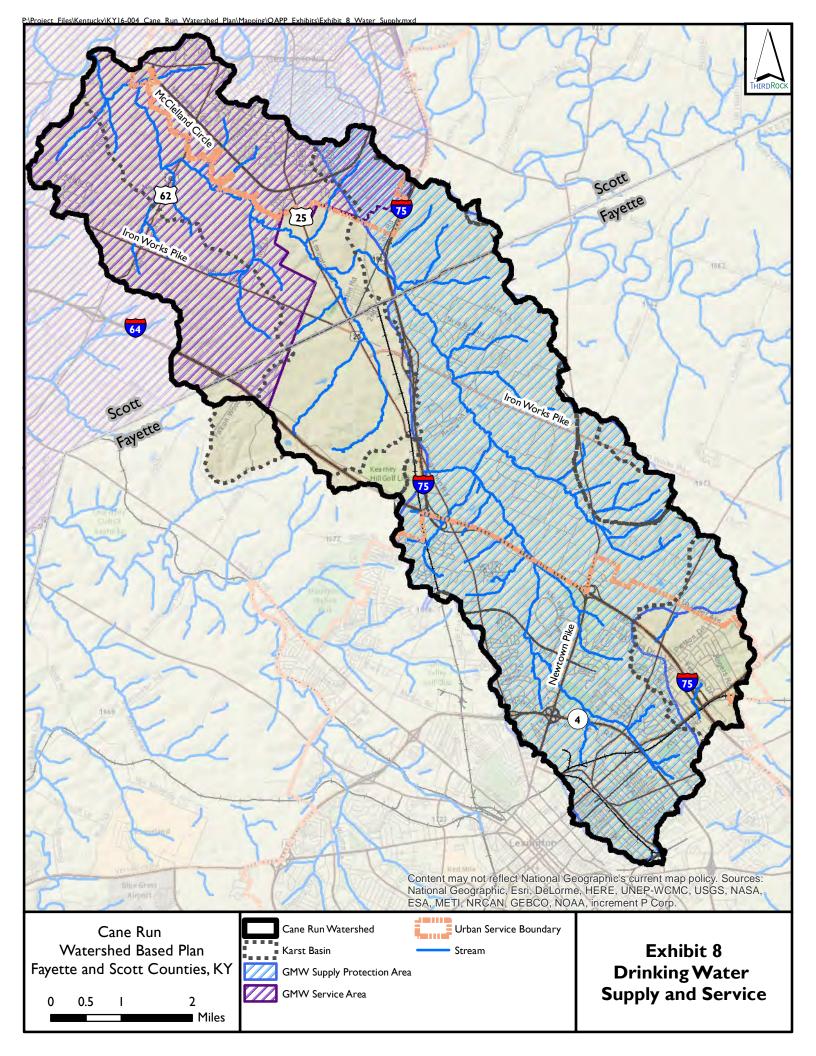


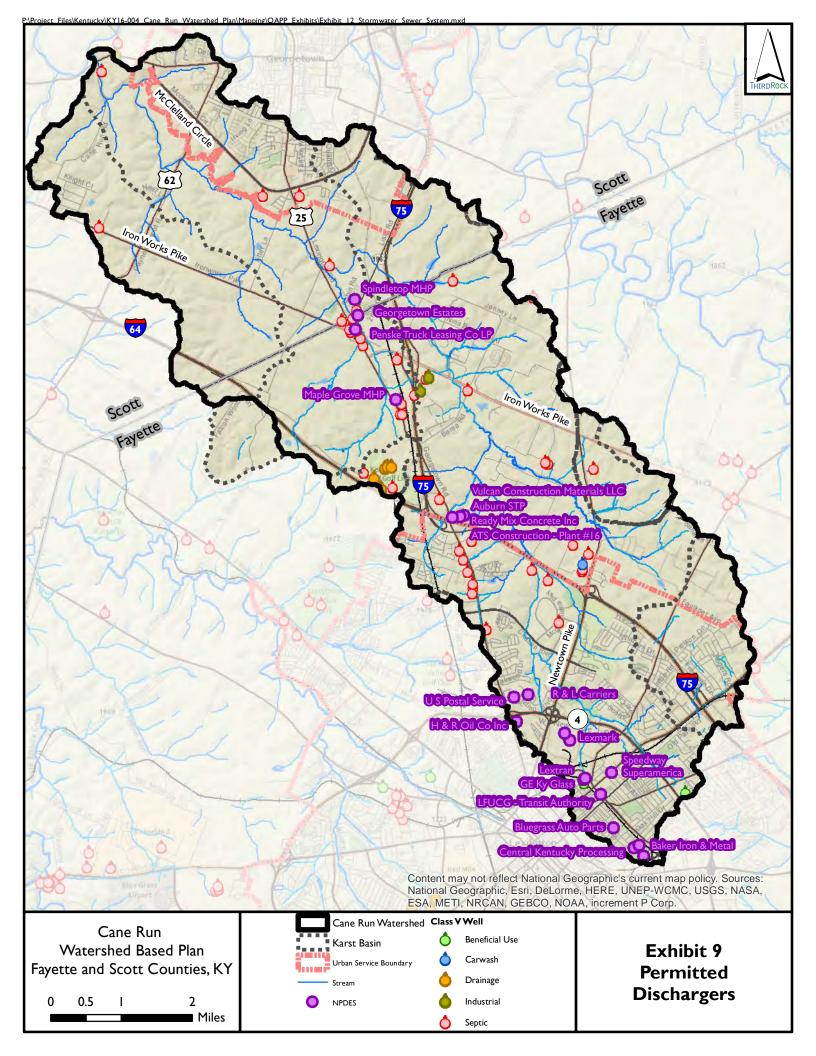

- United States and Commonwealth of Kentucky v. Lexington-Fayette Urban County Government. 2008. Consent Decree, Lodged in the United States District Court, Eastern District of Kentucky, Central Division at Lexington. Related to Civil Action No. 5:06-cv-00386.
- United States Census Bureau. 2010. State and County QuickFacts. Data derived from Population Estimates, Census of Population and Housing, Small Area Income and Poverty Estimates, State and County Housing Unit Estimates, County Business Patterns, Nonemployer Statistics, Economic Census, Survey of Business Owners, Building Permits, Consolidated Federal Funds Report. Accessed at https://www.census.gov/quickfacts/fact/table/US.
- United States Census Bureau. 2014. American Community Survey (ACS), 2010-2014 5-year Estimates. Accessed at https://www.census.gov/programs-surveys/acs/news/data-releases/2014.html.
- United States Department of Agriculture. 2012. Census of Agriculture. United States Summary and State Data. Vol. 1. Geographic Area Series. Part 51. AC-07-A-51.
- United States Department of Agriculture Natural Resource Conservation Service (USDA-NRCS). 1986. Urban Hydrology for Small Watersheds, Technical Release 55. USDA-NRCS, Engineering Division. U.S. Gov. Print. Office, Washington, DC. Part 630, Section 4, Chapter 7.
- United States Environmental Protection Agency (USEPA). 1999. Protocol for Developing Nutrient TMDLs, First Edition. EPA 841-B-99-007.
- United States Environmental Protection Agency (USEPA). 2002. Onsite Wastewater Treatment Systems Manual. EPA 625-R-00-008.
- Weisenberger, B.C. and D. Isgrig. 1977. Soil Survey of Fayette County, Kentucky. United States Department of Agriculture, Soil Conservation Service, in Cooperation with the Kentucky Agricultural Experiment Station.
- Woods, A.J., Omernik, J.M., Martin, W.H., Pond, G.J., Andrews, W.M., Call, S.M, Comstock, J.A., and D. D. Taylor. 2002. Ecoregions of Kentucky (color poster with map, descriptive text, summary tables, and photographs): Reston, VA., U.S. Geological Survey (map scale 1:1,000,000).

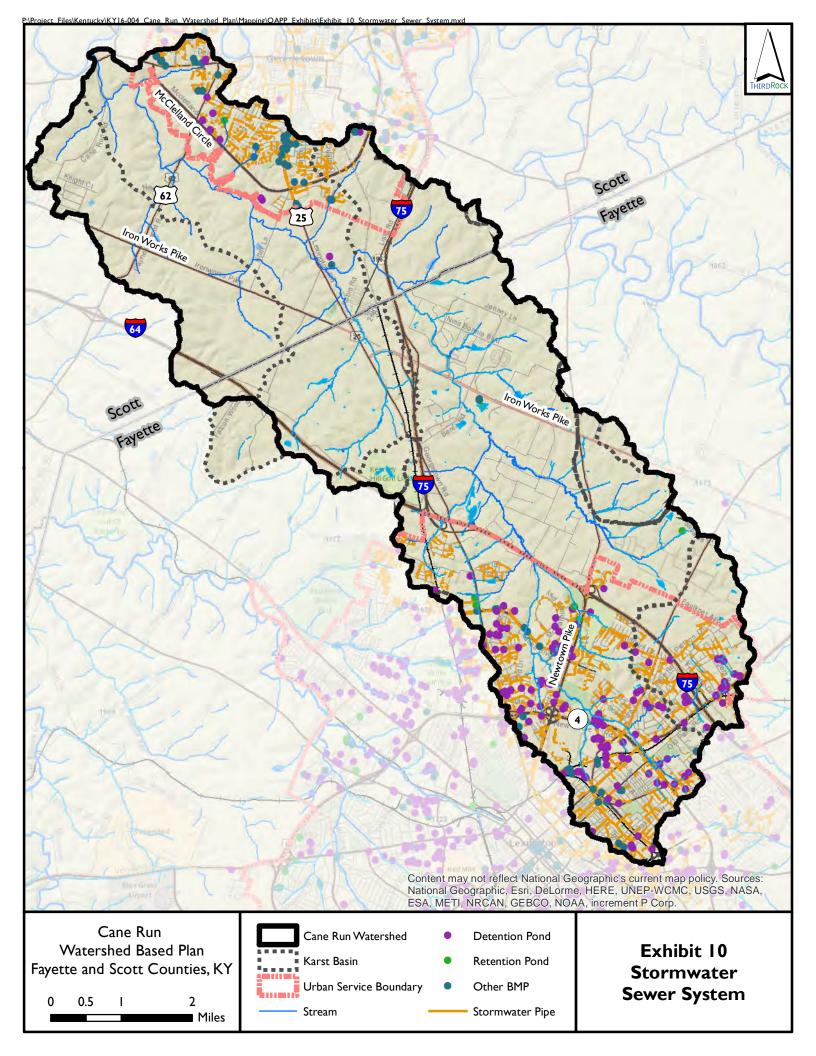

APPENDIX A

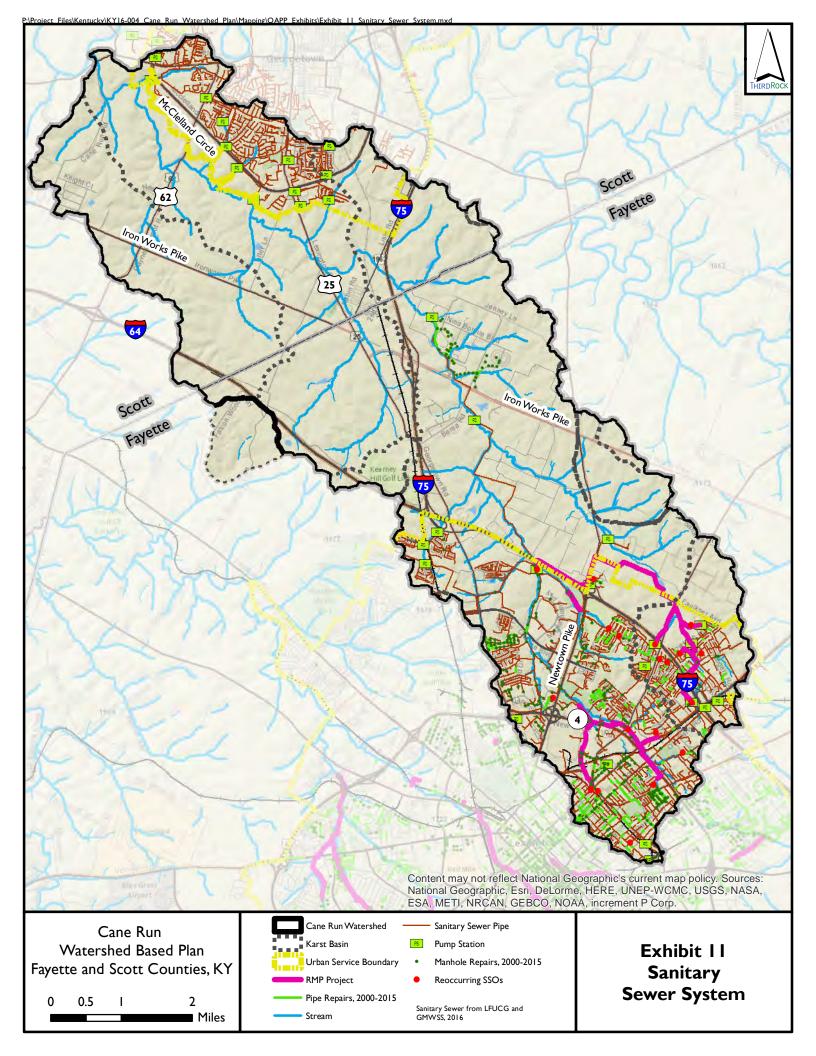


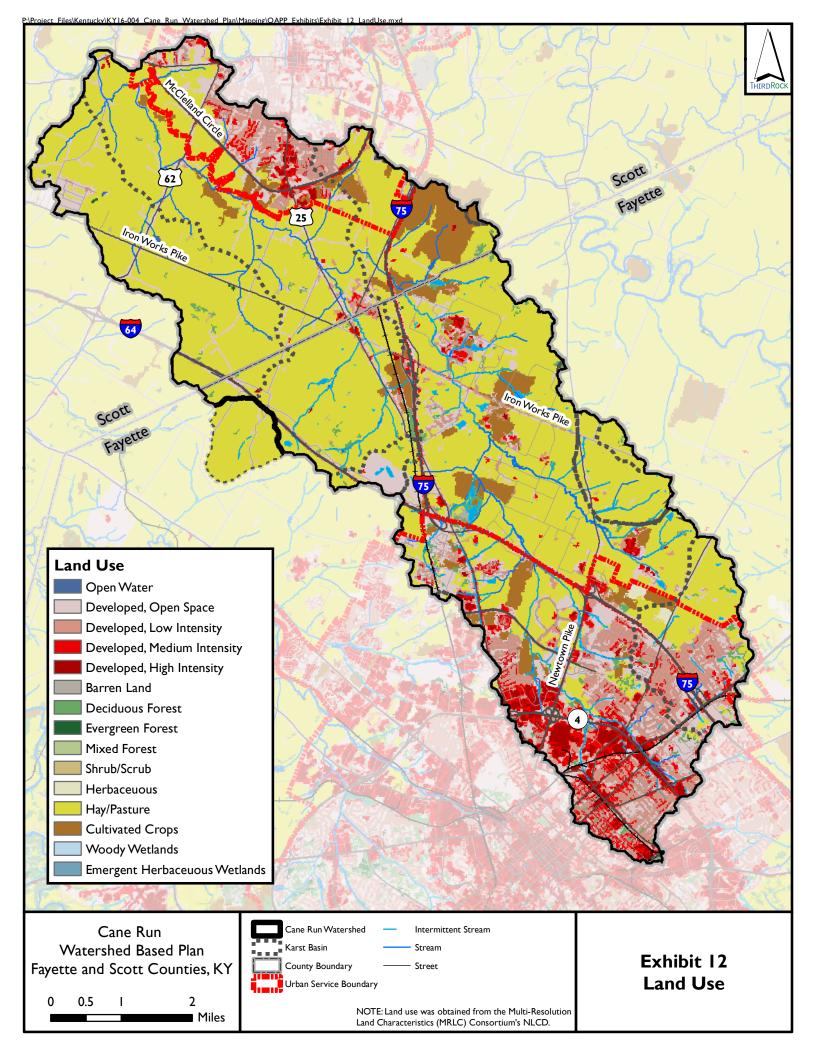


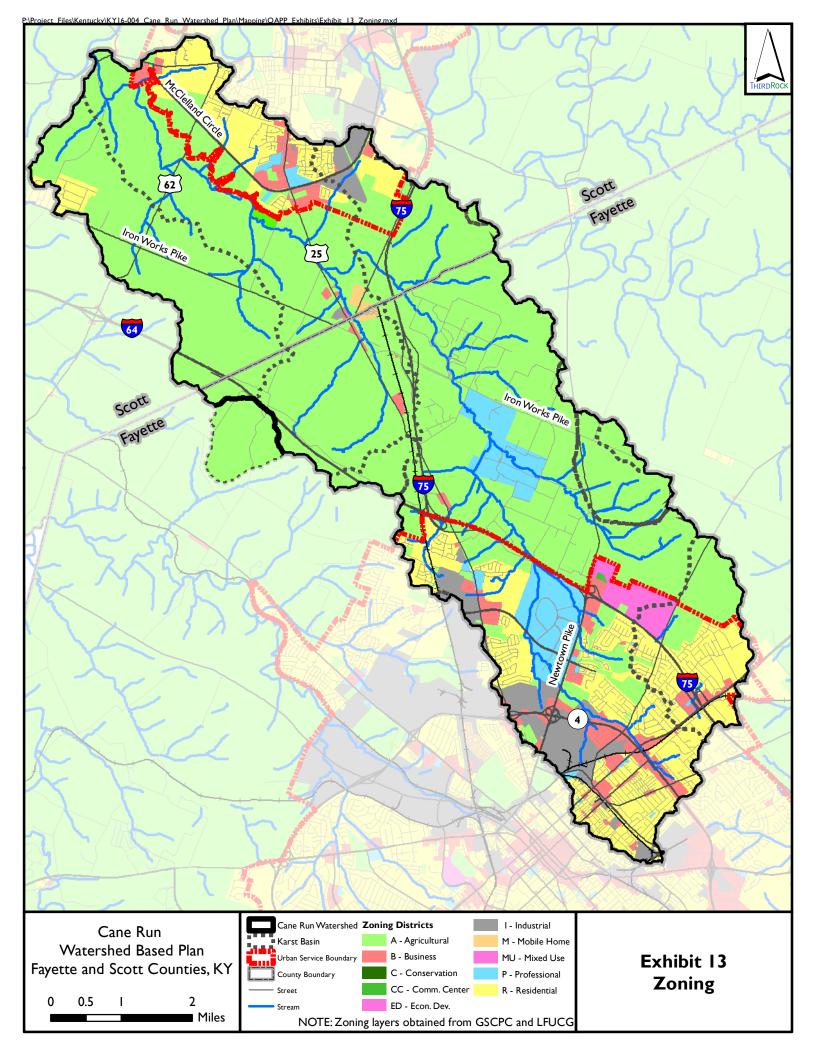


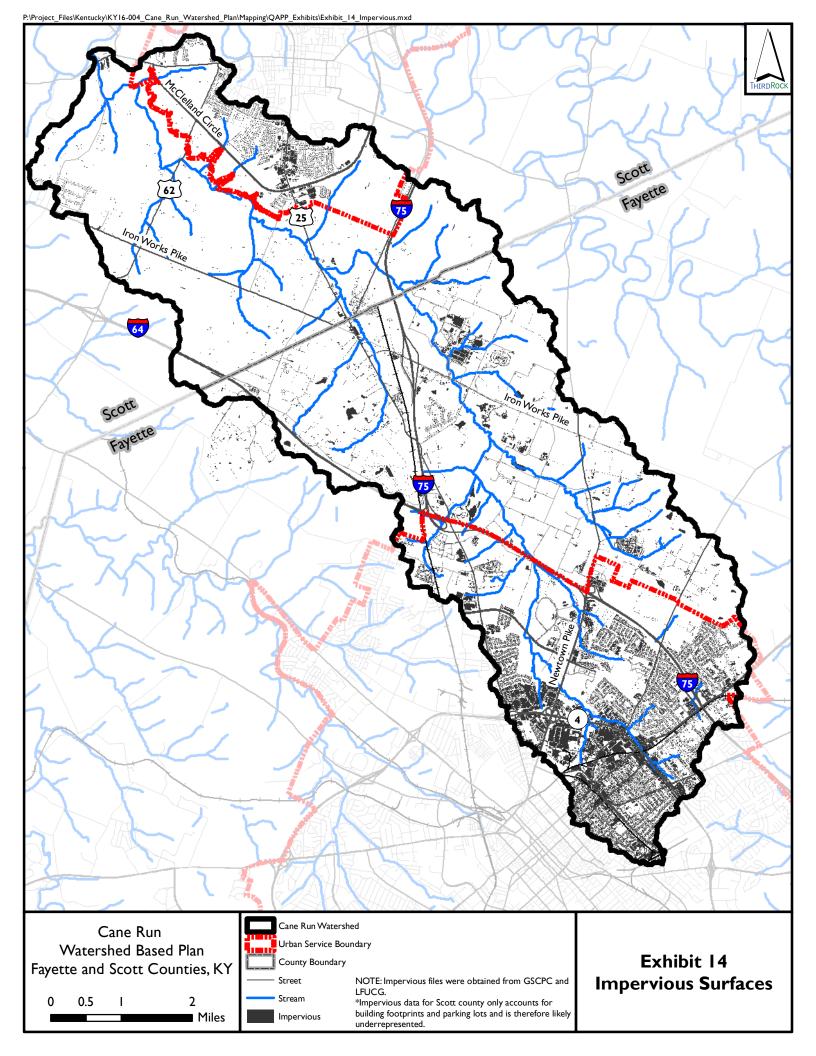


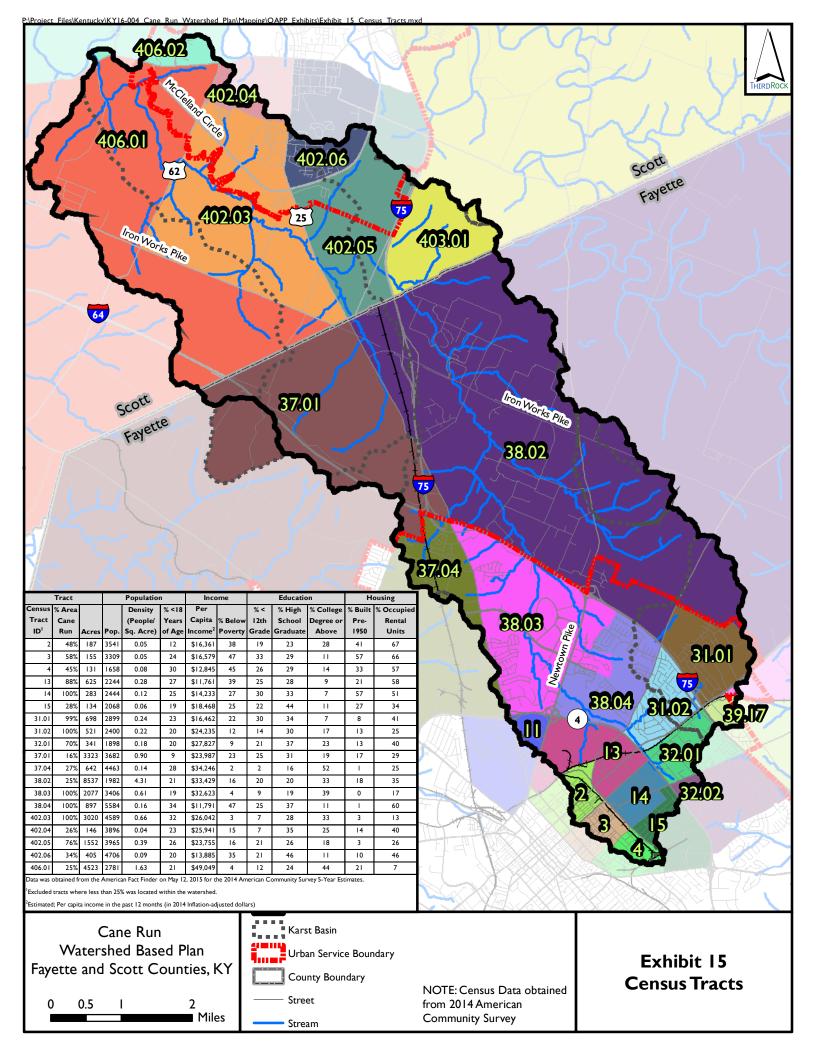


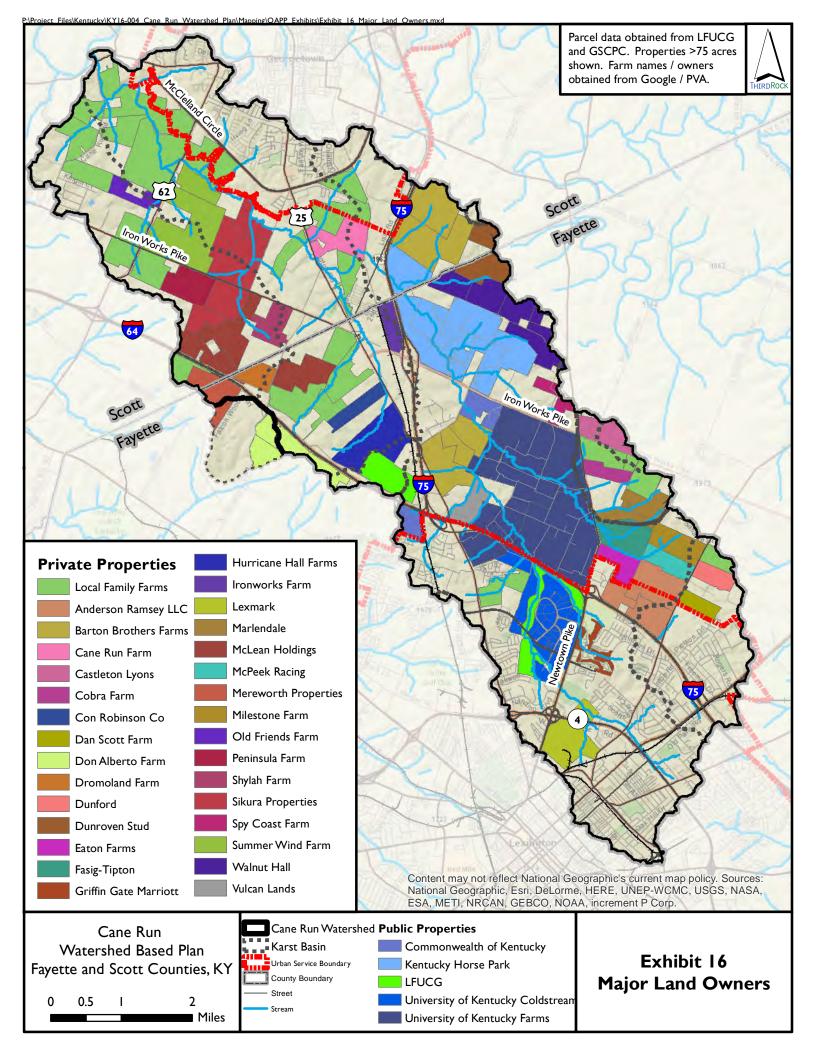


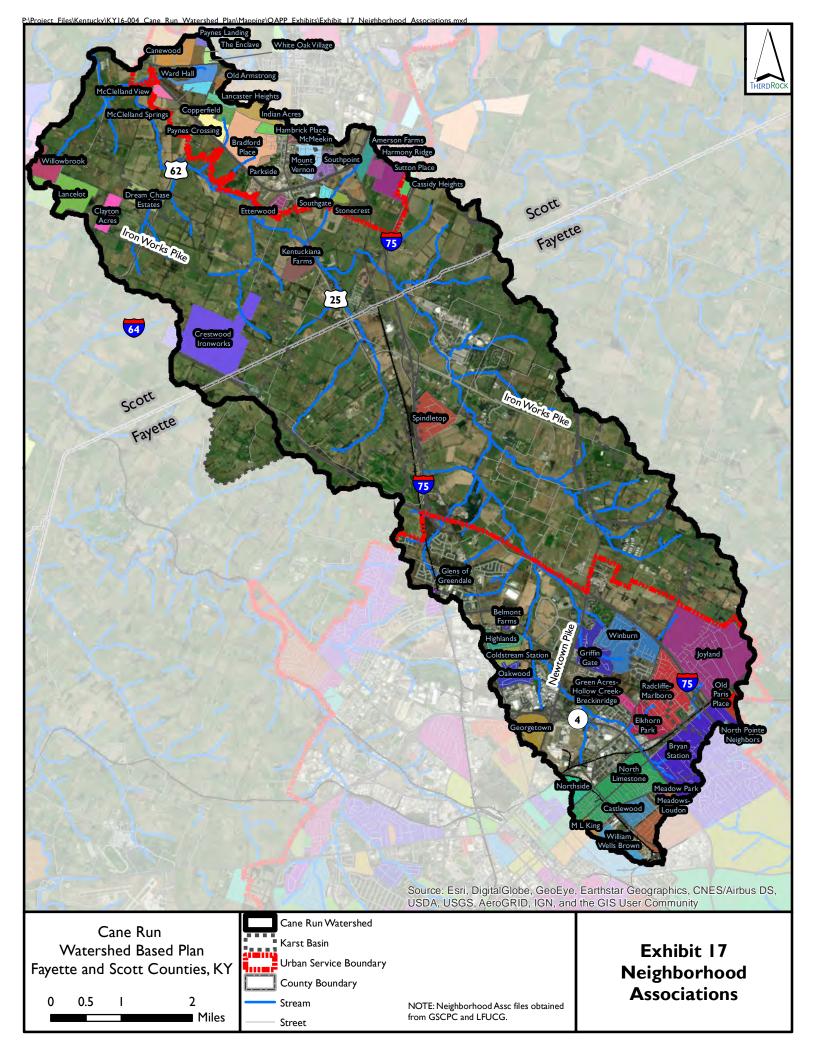


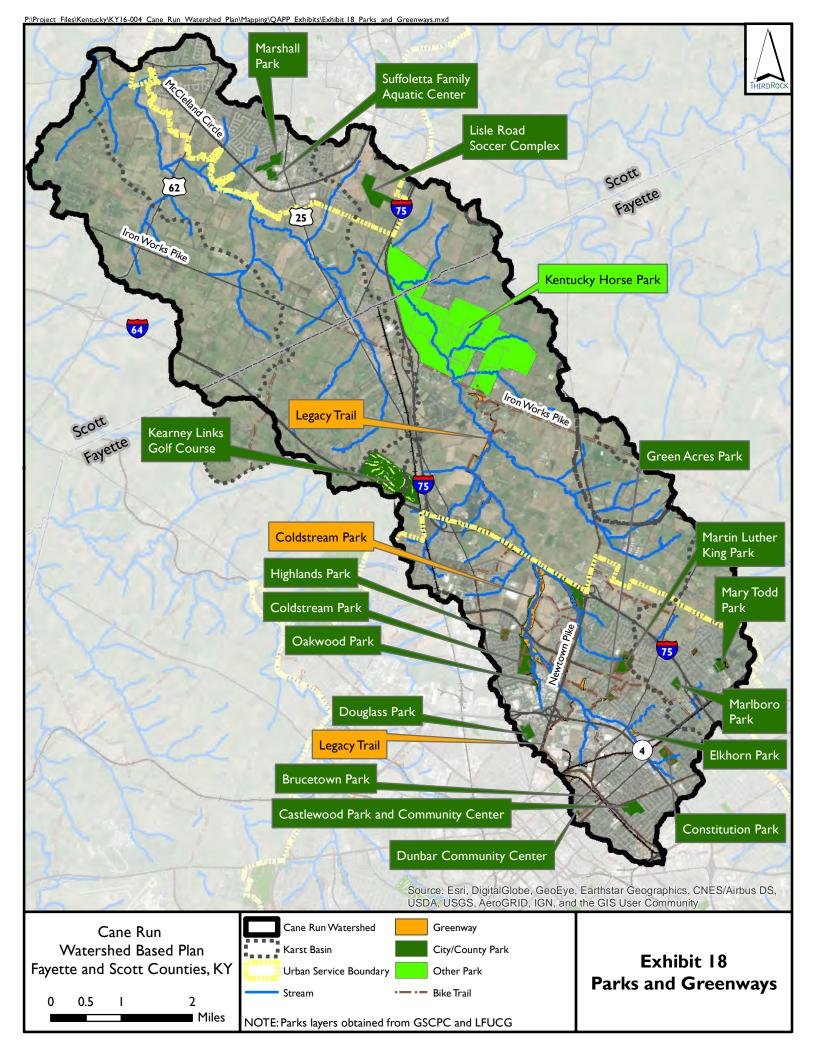


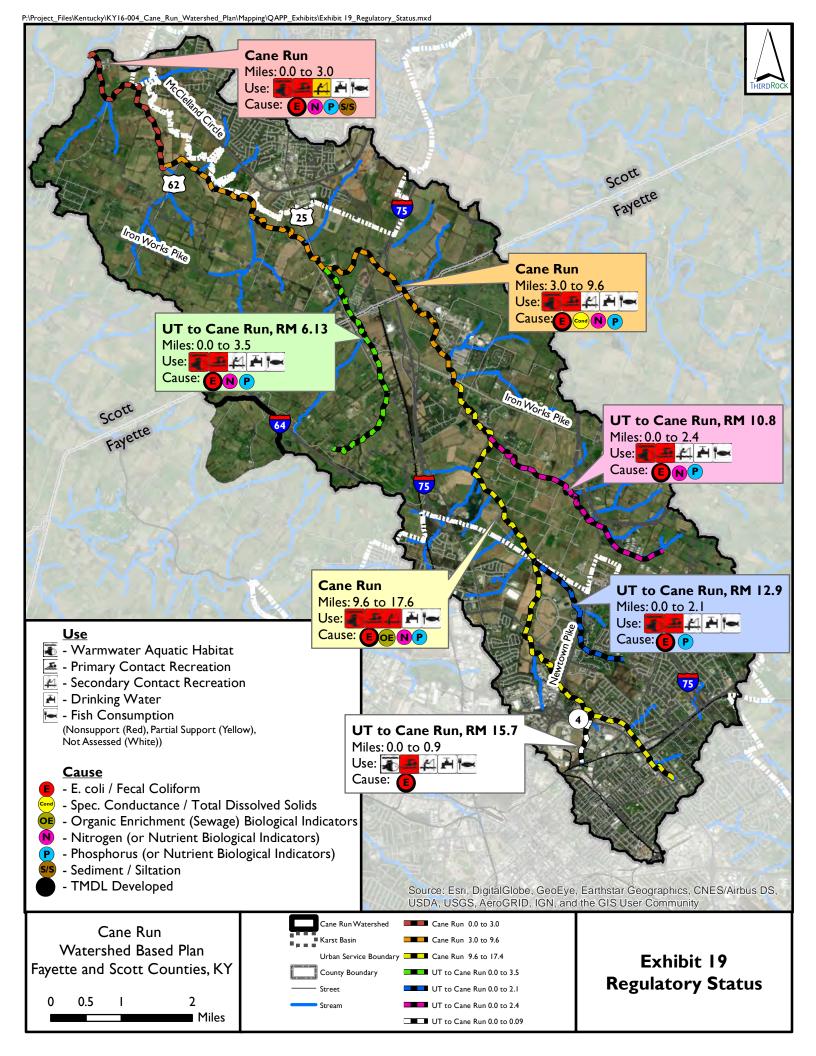


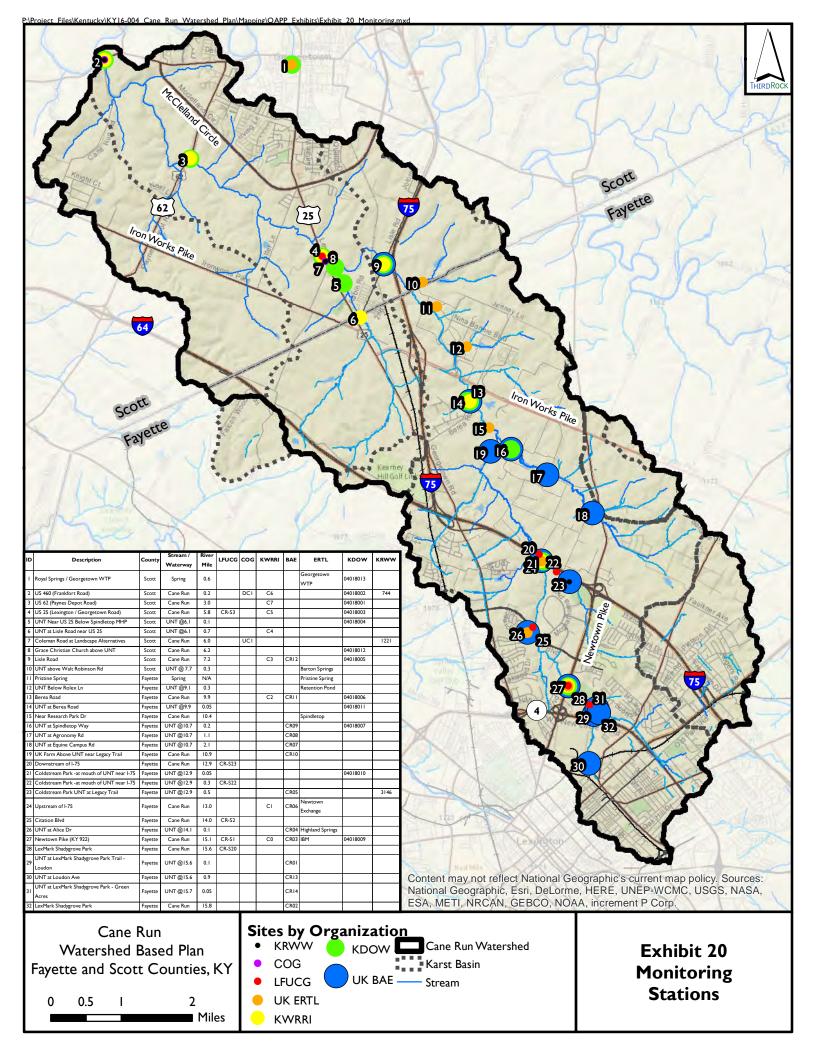


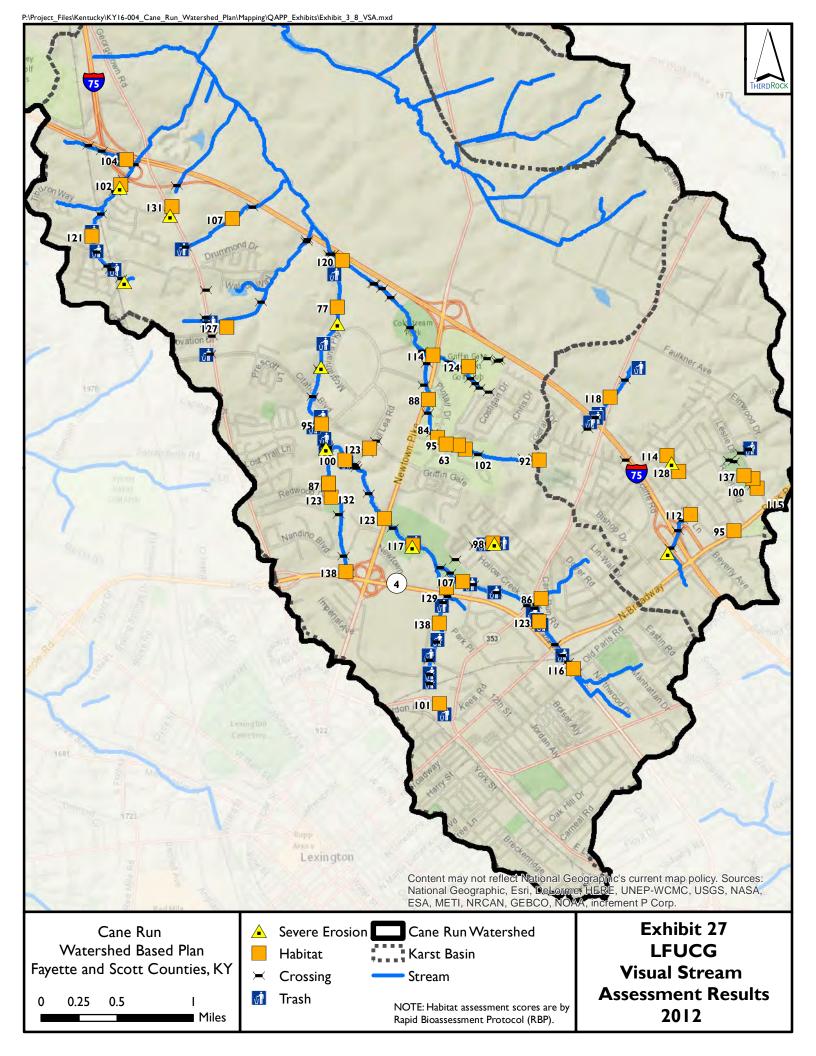


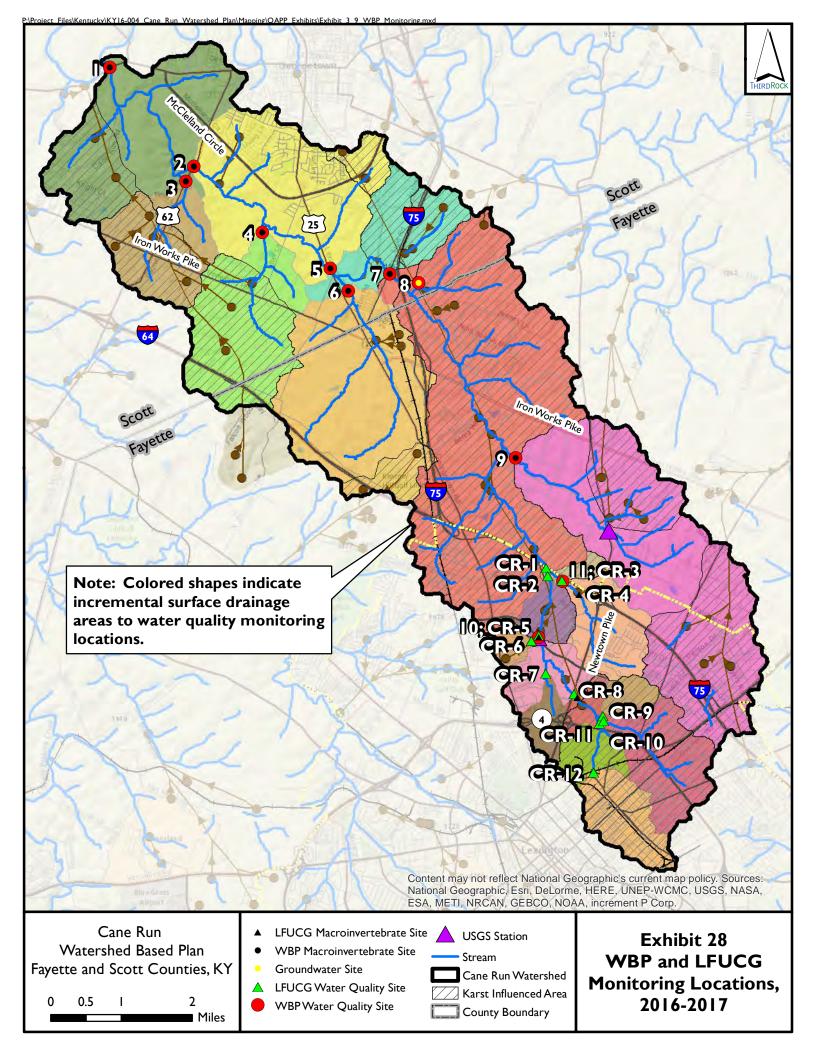


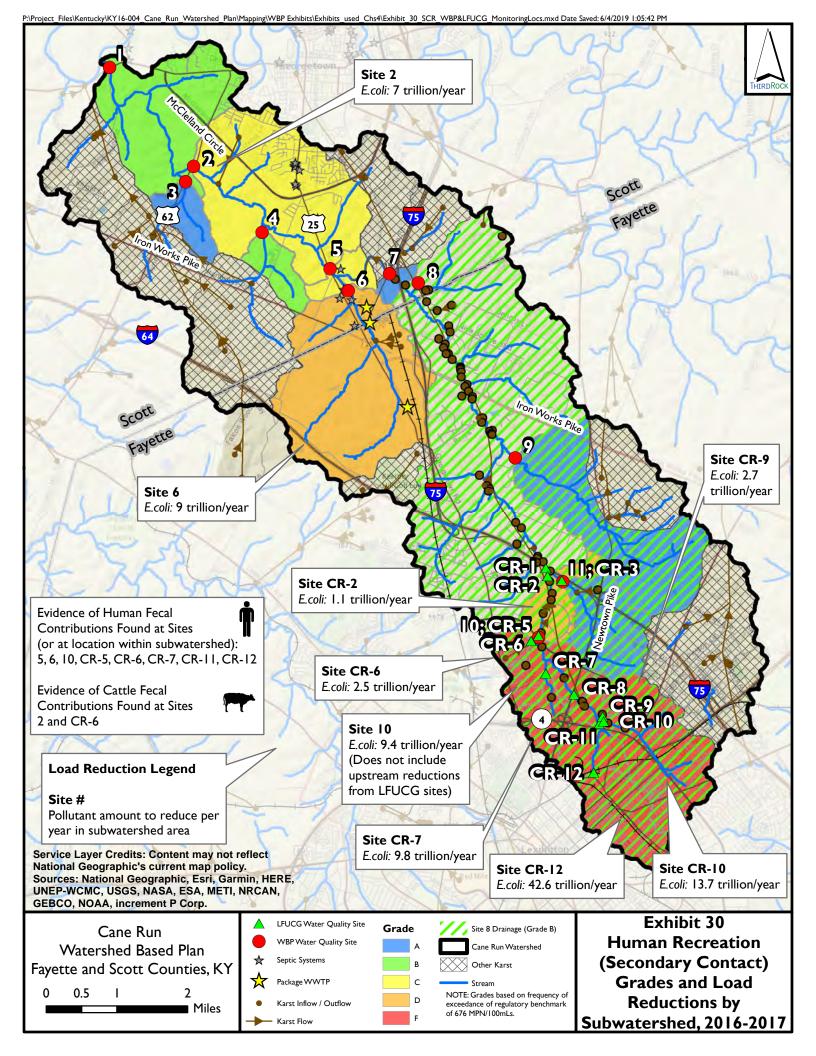


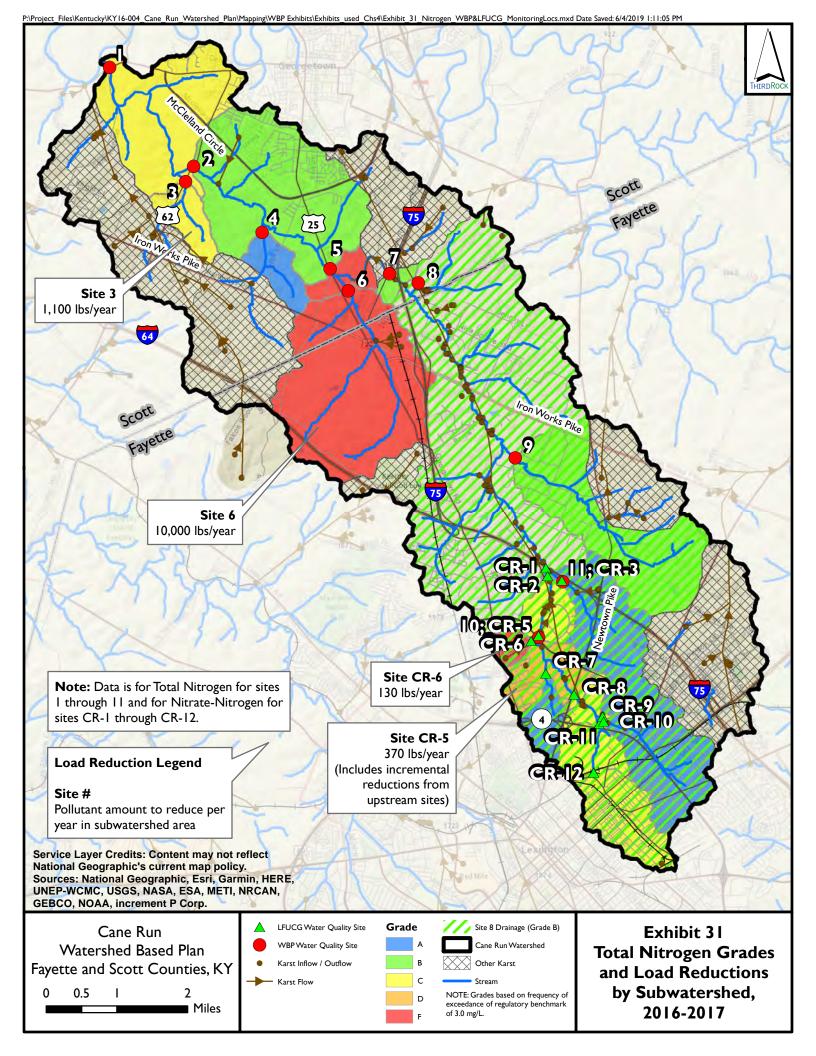


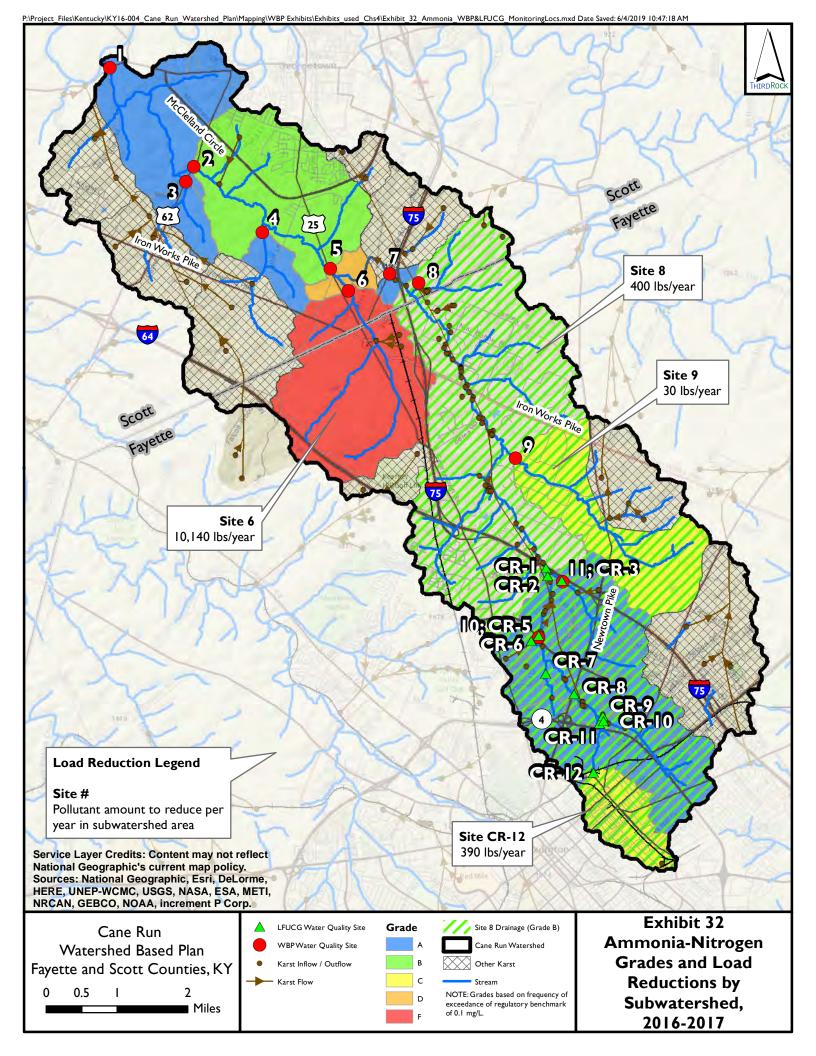


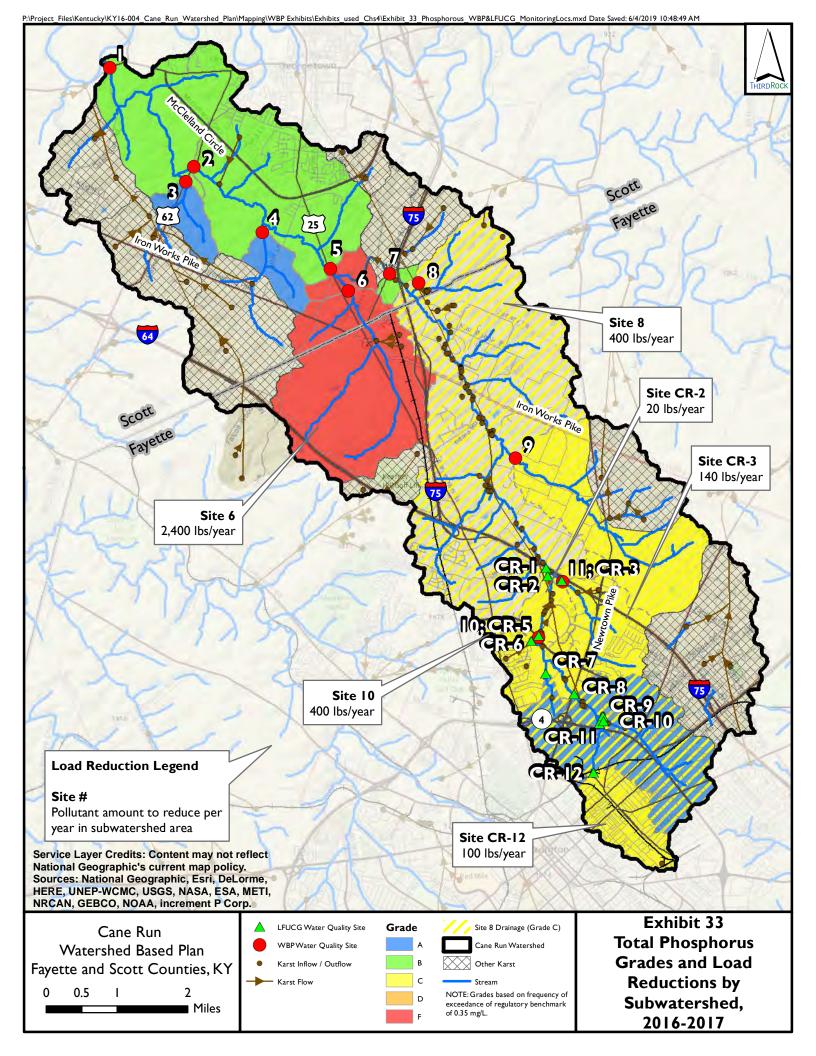












APPENDIX B

FAYETTE & SCOTT COUNTY

WELLHEAD PROTECTION PLAN

Prepared by:

Royal Spring Water Supply Protection Committee

June 2003

DISSION F WATER

SIGNATURE

SIGNATURE

DATE

DAT

Juidong Gn wss

Royal Spring Water Supply Protection Committee P.O. Box 640 Georgetown, Kentucky 40324

Members

Robert Riddle, P.E. General Manager Georgetown Municipal Water & Sewer Service

Jim Rebmann
Senion Environmental Flanner
Lexington-Fayette Urban
County Government

Jim Long
Supervisor
Georgetown Municipal
Water & Sewer Service

Donovan
Dotector
Georgetown/Scott County
Emergency Management
Services

J.R. Williamson

Coordinator

Scott County Solid Waste

Program

Brad Frazier, P.E.

Engineer
Georgetown/Scott County
Planning & Zoning

Jimmy Emmons
Senior Planner
Lexington-Fayette Urban
County Government

June 25, 2003

Mr. Bruce McKinney Division of Water 14 Reilly Road Frankfort, KY 40601

RE: Wellhead Protection Plan

Dear Bruce:

RLR/kma

On behalf of the Royal Spring Water Supply Protection Committee, we believe to the best of our knowledge and belief that this plan is complete and accurate. Both the Planning Commissions of Fayette and Scott Counties have adopted the plan.

It has been a challenge and pleasure to have worked on this plan and hopefully the Aquifer of Royal Spring will be protected by its' use.

Respectfully,

Robert L. Riddle, P.E.

Chairperson

Royal Spring Water Supply Protection Committee

New Holl

TABLE OF CONTENTS

Introduction			
Section 1.	Wellhead Protection Program - State Requirements	10	
	1-1 Responsibility for Groundwater Protection	10 10	
	1-2 State Authority		
	1-3 Formation of the Planning Unit		
	1-4 Background	11	
	1-5 Program Description	11	
Section 2.	Goals & Objectives	14	
Section 3.	Geographic Setting	15	
	3-1 Community Relationships	15	
	3-2 Background	17	
	3-3 Population	20	
	3-4 Employment	21	
	3-5 Water Demand	23	
	3-6 Land Use Planning	23	
	3-7 Future Residential Development	24	
	3-8 Future Non-Residential Development	26	
	3-8.1 Agricultural	26	
	3-8.2 Business, Commercial, Industrial 3-9 Transportation Systems	27	
	3-9 Transportation Systems 3-9.1 Highway System	28 29	
	3-9.1 Angliway System 3-9.2 Aviation	31	
	3-9.3 Motor Carriers & Trucks	32	
	3-9.4 Railroad Systems	33	
	3-9.4 Namoau Systems	ږد	
Section 4.	Geologic / Hydrologic Setting	36	
	4-1 Location	36	
	4-2 Previous studies	36	
	4-3 Geology & structure	38	
	4-4 Topography	39	
	4-5 Royal Spring shallow aquifer	40	
	4-5.1 Groundwater occurrences	40	
	4-5.2 Groundwater flow	40	
	4-5.3 Groundwater uses	42	
	4-5.4 Ease of pollution	42	
	4-5.5 Time of travel	45	
	4-6 Wellhead Protection Area Delineation 4-7 References	46 47	
	4-/ Keterences	4/	

Section 5.	Potential for Groundwater Contamination		49
	5-1	Sinkholes and Streams	49
	5-2	Land Use & Contamination Potential	51
	5-3	Royal Spring Aquifer Land Use and Materials	
		Inventory	55
	5-4	Public Meeting on Wellhead Protection	57
	5-5	Existing Records	58
	5-6	Future Contamination Potential	66
	5-7	Determining the Waste Hazard Potential	67
	5-8 .	Emergency Planning and Response	67
	5-9	Municipal & Private Sewer Waste Systems	69
	5-10	Septic Systems & Soil Types	72
	5-11	Municipal & Private Landfills	76
	5-12	Sinkhole Related Dumps	77
	5-13	Rural Non Point Source Pollution	78
Section 6.	Land Use Evaluation		84
	6-1 Susceptibility Analysis		85
	6-2 Fa	yette County Land Use	90
	6-4 Mı	cott County Land Use in the Royal Spring Aquifer utual Systems – Transportation / Rail / Interstate	100
	/L	ocal	100
Section 7.	Water	Use in the Aquifer	102
Section 8.	Management of the Wellhead Area		104
	8-1 Ma	anagement Approach	. 104
		sponsibility for Wellhead Protection	105
		blic Education and Resources	105
	8-4 Be	st Management Strategies	108
		8-4.1 Mitigating the impacts of decreased water	
		quality	109
	0.6117	8-4.2 Monitoring of surface waters	112
		stershed Protection Measures	113
	8-6 Ke	gulatory Management Strategies	114
		8-6.1 Royal Spring Aquifer Point Source Control Recommendations	314
		8-6.2 Royal Spring Aquifer Non-Point Source	114
		Control Recommendations	116
		8-6.3 The Development Process – Best	110
		Management Practices	117
		<u> </u>	
		8-6.4 Fayette County Rural Service Area Land	117

	b	Management Plan	118		
		8-6.5 Official Overlay Zoning District or Admin			
		Overlay District for the Aquifer	119		
		8-7 Best Management Practices (BMP's)	120		
		8-8 Future Management Plans	121		
		0 0 1 4 4041 0 11 1411 14 6011 10 11 1411 10		•	
	Section 9.	Long Range Planning for Wellhead Protection			
		9-1 Scott & Fayette County Long Range Planning			
		Regulatory & Non-Regulatory Management	123		
		9-2 Selecting Management Strategies	124	·	
		9-3 Level of Involvement	124		
		9-4 Future Development Programs	126		
	Section 10.	Georgetown Municipal Water & Sewer Service (GMWSS) Drought Management /Spring			
		Contamination Plan	127		
		10-1 Existing Raw Water Sources	127		
		10-2 Existing Supplemental Water Supplies	127		
		10-3 Determining Ability to Meet Customer Demand	128		
n i		10-4 Emergency Water Shortage Response Plan and			
<i>'</i>		Supply Contamination Response Plan	129		
					*

INDEX OF FIGURES

Section 1.	Figure 1-1	Map of Planning Unit	12
Section 3.	Figure 3-1 Figure 3-2	Map Delineating the Royal Spring Aquifer Planning Unit Major Transportation Systems with Adjusted	18
	Ü	Daily Traffic Counts	30
Section 4.	Figure 4-1	USGS Quadrangle Coverage of the Royal Springs	
	_	Wellhead Protection Area	37
	Figure 4-2	Distribution of Cane Run in the Elkhorn Creek Watershed	39
	Figure 4-3	Relationship of Groundwater Basins in the	
	J	Royal Spring Aquifer Recharge Area	41
	Figure 4-4	Location of Known Water Wells	
	J	in the Royal Spring Aquifer	43
	Figure 4-5	Generalized Sinkhole Map of Fayette County	44
	Figure 4-5A	Generalized Sinkhole Map of Fayette County	44 A
Section 5.	Figure 5-1	Sinkhole Locations & Transportation Routes	52
	Figure 5-1 A	Sinkhole Locations & Transportation Routes – Scott Co	52 A
	Figure 5-2	Hazardous Waste Generator Sites 59	
	Figure 5-2 A	Hazardous Waste Generator Sites	59 A
	Figure 5-3	Permitted KPDES Discharge Sites	60
	Figure 5-3 A	Permitted KPDES Discharge Sites	60 A
	Figure 5-4	Stormwater Hazards	61
	Figure 5-4 A	Stormwater Hazards	61 A
	Figure 5-5	Underground Storage Tanks	62
	Figure 5-5 A	Underground Storage Tanks	62 A
	Figure 5-6	Hazardous Waste Storage Facilities	63
	Figure 5-6 A	Hazardous Waste Storage Facilities	63 A
	Figure 5-7	Sewer overflow Problems in the Royal Spring Aquifer	70
	Figure 5-8	Royal Spring Aquifer Area Wastewater Treatment Plants	73
	Figure 5-9	Fayette & Scott County Soil Associations	75
	Figure 5-10	Aerial View of the Royal Spring Aquifer	79
	Figure 5-11	Cane Run Reforestation Project	81
Section 6.	Figure 6-1	Analysis of Land Development in the Royal Spring	
	_	Aquifer for the Urban Service Area in Fayette County	93
	Figure 6-2	1995 Urban Service Area (Fayette County) Land use	
		in the Wellhead Protection Area	95
	Figure 6-2 A	1995 Urban Area (Scott County) Land use	
		in the Wellhead Protection Area	95 A
	Figure 6-3	Full Development Urban Service Area (Fayette County)	
	_	Land use in the Wellhead Protection Area	96
	Figure 6-3 A	Draft Zoning Map Royal Springs Aquifer Recharge Area	96 A
	Figure 6-4	Comparison of Land Use Types	97
	Figure 6-4 A	Comparison of Land Use Types	97 A
	Figure 6-5	Rural Land Use in the Royal Springs Aquifer	99
	Figure 6-5	A Rural Land Use in the Royal Springs Aquifer	99 A

LIST OF TABLES

Section 3.	Table 3-1 Population of Scott & Fayette County	21
	Table 3-2 Manufacturing Employment 1985-1995	22
	Table 3-3 Current Water Use Supplied by GMWSS	23
	Table 3-4 Water Demand Projections GMWSS Service Area	23
	Table 3-5 Agricultural Trends in Fayette & Scott County	26
	Table 3-6 Total Road Miles by Classification	29
Section 5	Table 5-1 Known Springs in the Immediate Area	52
	Table 5-2 Overflow Problems - Fayette County	71
Section 6.	Table 6-1 Intensity of Land Use	85
	Table 6-2 Rating Likelihood of Release from Permit Information	87
	Table 6-3 Potential Contaminant Sources / Land-Use Activities	88-89
	Table 6-4 Numeric Ranking & Susceptibility Ranking for Fayette	
	County	91
	Table 6-5 Existing & Future Land Use in the Urban Service Area	92

APPENDIX

Section 3	Appendix 3-1	Fayette County Urban Non-sewered Urban Area In the Royal Spring Wellhead Protection Area
Section 5	Appendix 5-1	Specific Sinkhole Locations in the Aquifer
	Appendix 5-2	Wellhead Protection Contaminant Inventory
	Appendix 5-3	Minutes Royal Spring Aquifer Wellhead Public Meeting
	Appendix 5-4	Hazardous Materials Location - Fayette County
	Appendix 5-5	Hazardous Materials Location - Scott County
	Appendix 5-6	Site Characteristics Form - Major Subdivision &
		Development Plan Application Requirements – Fayette County
	Appendix 5-7	Scott County - Hazardous Materials Ordinance
	Appendix 5-8	Homeowner's Septic Guide and
		Record Keeping Folder
	Appendix 5-9	Fayette County Landfill Regulations
Section 6	Appendix 6-1	Rural Service Area Land Management
		Plan - Royal Spring Aquifer section
	Appendix 6-2	Chapter 26 Fayette County Rural Land
	••	Management Board
	Appendix 6-3	Scott County Cluster Development Regulations
	·	
Section 8	Appendix 8-1	Stream Water Sampling Program
	Appendix 8-2	Royal Spring Finished Water Quality Analysis

Introduction

Groundwater is an important resource, both nationally and locally. It provides over ninety five percent of rural Americans with a source of drinking water. Over fifty percent of Americans living in urban areas derive their water supply from underground water sources. Groundwater is also used for about half of the nation's agricultural needs and about one third of its industrial needs.

In the last twenty years, extremely rapid growth in urban as well as rural areas, has begun to take a toll on our groundwater supplies. Because groundwater is extremely important to this growth, our nation has become sensitive to the contamination of our groundwater resources. Numerous incidents of groundwater contamination reinforce the need for this sensitivity, and protection of our water supplies at the Federal, State and local level has become an imperative. The Royal Spring Aquifer is no exception to the rule. Because of the varied availability of groundwater sources and differing land use complexity, each community is charged with the protection of their groundwater supplies. As a result, many different groundwater protection programs are being implemented throughout the United States that best meet local circumstances and needs. The Georgetown Municipal water system is the largest public water system in the state of Kentucky supplied by a spring. The Kentucky Division of Water has named the Royal Spring Aquifer a priority for watershed protection.

The unique characteristics of the Royal Spring Aquifer make it a system that is highly susceptible to pollution. The Aquifer is located in karst topography, an irregular limestone region with sinkholes, underground streams and caverns from which the spring emerges. The gently undulating topography that typifies our Bluegrass landscape provides a direct access to the groundwater system via sinkholes and cavern passages for both surface water and pollutants. The underground streams and caverns also allow water and pollutants to travel quickly, a matter of hours from Interstate 75 where it crosses Cane Run to Georgetown. Approximately eighty-percent of the recharge area, the geographic area that contributes water to the aquifer, is located in Fayette County.

Prevention of groundwater pollution occurs only when citizens and local government are involved in identifying potential sources, understanding their role in pollution prevention, and taking steps to protect the environment. The plan detailed in the following chapters is designed to protect the waters of Royal Springs for continued enjoyment and use.

Section 1 Wellhead Protection Program - State requirements

1-1 Responsibility for Groundwater Protection

The 1986 amendment to the Safe Drinking Water Act requires states to adopt a Wellhead Protection Program (WHPP) to protect public water supply wells and springs from contamination through the management of potential contaminant sources within a designated land area around a well or spring. The protected areas are called Wellhead Protection Areas (WHPA'S). The U.S. Environmental Protection Agency (EPA) approved Kentucky's WHPP in September 1993. Kentucky was the fourth state in EPA Region IV and the 30th state in the nation to receive EPA approval.

The implementation plan identified in Kentucky's Wellhead Protection Program includes the following steps:

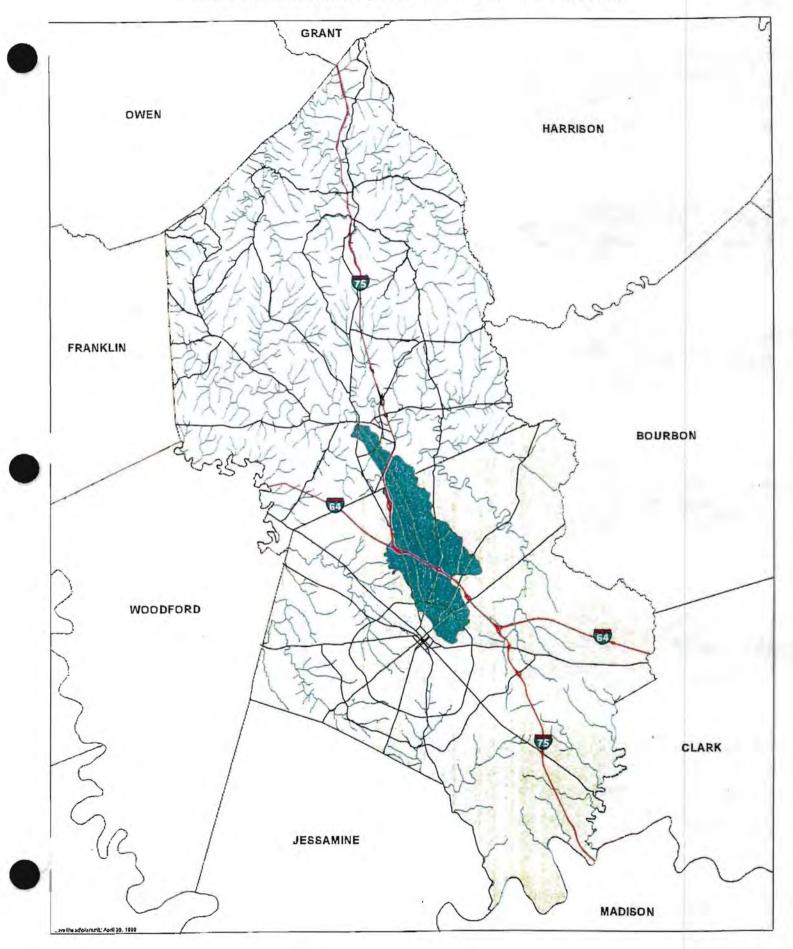
- 1. Form a community planning team
- 2. Delineate WHPA'S for public water supply wells & springs
- 3. Inventory potential sources of contamination within the WHPA'S
- 4. Develop management strategies to control potential contaminant sources
- 5. Plan for the future

1-2 State Authority

The Kentucky Wellhead Protection Program is coordinated by the Kentucky Department for Environmental Protection, Division of Water, Groundwater Branch, and is regulated through the Water Supply Planning Regulations (401 KAR 4:220). The regulations require that counties assess the quality of water used by their public water supply systems and formulate protection plans for those systems. The Wellhead Protection Program is designed to assist communities relying on groundwater for their drinking water source to comply with the regulations and develop Wellhead Protection Plans. Communities and counties work together to formulate the plans and submit them to the state by a designated date for review and approval. The Groundwater Branch has identified approximately 295 public water systems in Kentucky that must be covered by a Wellhead Protection Plan. Counties without an approved plan will not receive funding for future water projects.

1-3. Formation of the Planning Unit

Consistent with the State program, the Royal Spring Water Supply Protection Committee was formed and has been meeting since December 1995 to develop a Wellhead Protection Plan for Royal Spring. The Wellhead Protection Committee was created to include decision-makers in a multi-agency cooperative partnership. The Mayors of Georgetown, Lexington-Fayette Urban County Government, and the County Judge Executive of Scott County appointed members. Committee advisors include experienced staff from various State, Local and Federal agencies as well as citizens and interested parties, who are encourage to participate. The committee is unique in that the natural recharge area of the Royal Spring Aquifer crosses three political boundaries --- Fayette County, Scott County and Georgetown --- before emerging at Royal Spring. Eighty percent of the recharge area lies in Fayette County, and though it does not directly benefit from the spring, the intensity of land use in Fayette County contributes to the water quality. Figure 1-1 shows the Royal Spring Aquifer Protection Area within Scott and Fayette Counties.


1-4. Background

Both Scott and Fayette Counties have long recognized the importance of Royal Spring and the aquifer protection area. Since the development of the Toyota Manufacturing site over ten years ago, the development pressures on both counties have increased, and development has encroached into the recharge area. Both counties have zoning and land use controls and both counties have recently adopted their respective 1996 Comprehensive Plan Updates for future growth and land development. The development of an effective wellhead protection plan goes one step further in the natural progression of aquifer protection by providing newer updated information to both legislative bodies.

1-5. Program Description

The Royal Spring Aquifer recharge area conforms to the Kentucky Wellhead Protection Program outlined in the October 1996 guidance document titled Well Protection: A guide for Kentucky published by the Natural Resources and Environmental Protection Cabinet, Division of Water. The Royal Spring Aquifer protection plan is based on the five tenets of the guide:

FIGURE 1-1
Map Delineating the Royal Springs Aquifer Planning Unit

- The delineation of the aquifer
- Inventory of potential contaminant sources
- Existing management programs
- Developing educational programs
- Developing new management strategies for aquifer protection

Section 2. Goals & Objectives

Goals:

- To provide a continual source of potable groundwater from the Royal Spring water system for Scott and Fayette County residents.
- To preserve the integrity of surface waters for the enjoyment of all.

Objectives:

- Implement effective planning and development processes that recognize significant water uses, protect the groundwater from excessive consumption and minimize erosion into surface waters.
- Encourage the use of best management practices that balance development and resource protection to prevent degradation of water quality.
- Develop regulations complementing but no more imposing than existing federal, state and local regulations to prevent contamination and to continually improve the quality of surface and ground waters.
- Provide opportunities for community education and involvement in groundwater and surface water preservation and protection.

Section 3. Geographic Setting

3.1 Community Relationships

Georgetown/Scott County and Lexington-Fayette Urban County are located in the heart of the Bluegrass Region of Central Kentucky. As the second largest regional center in the state of Kentucky, Scott and Fayette Counties offer a hub of economic, educational, health and cultural activities.

The topography of Scott and Fayette County is gently undulating, highly productive farmland. Farmland comprises about 74% of the rural land in Fayette County and 80% of the land outside the Urban Service Boundary in Scott County. Both counties are located upon a topographic high of an uplift of the Cincinnati Arch. This is an old geologic structure of Ordovician age that has formed our present day physiographic landscape. Fayette County is slightly higher in elevation. This gives Fayette County a unique characteristic in that all streams flow away from the core of downtown Lexington. No major stream flows through Lexington.

The Ordovician Limestone which underlies all of Fayette and Scott Counties has also created a mildly karst condition which permits the rapid movement of water through the rock strata. This has created a number of complex shallow aquifer systems found throughout the county. The many springs and wells present are utilized for agricultural purposes as well as for potable water. The largest and most productive aquifer is the Royal Spring Aquifer, serving the community of Georgetown and Scott County. This aquifer is one of the largest springs in the state of Kentucky serving as a public water supply. Approximately eighty percent of the aquifer recharge area is located in northern Fayette County.

Fayette County has been a leader in recognizing the importance of groundwater assets, and protection of the aquifer recharge area from water pollution has long been a goal in Fayette County planning efforts. One of the first studies, "The Hydrology of the Lexington & Fayette County, Kentucky Area" was published jointly with the U.S. Geological Survey in 1968. This early study helped shape land use planning and the principles of development in a karst area.

Fayette County covers a geographical area of 283 square miles and is the only merged government in the State of Kentucky. Under the charter of the Lexington-Fayette Urban County Government, the functions of the City of Lexington and the County of Fayette were merged in January 1974 into a single government to administer and plan for the total area embraced by the boundaries. The legislative authority of the Lexington-Fayette Urban County Government is vested in the fifteen members of the Urban County Council. Twelve members represent each of the twelve council districts of the county, and three members are elected to represent the county population at large.

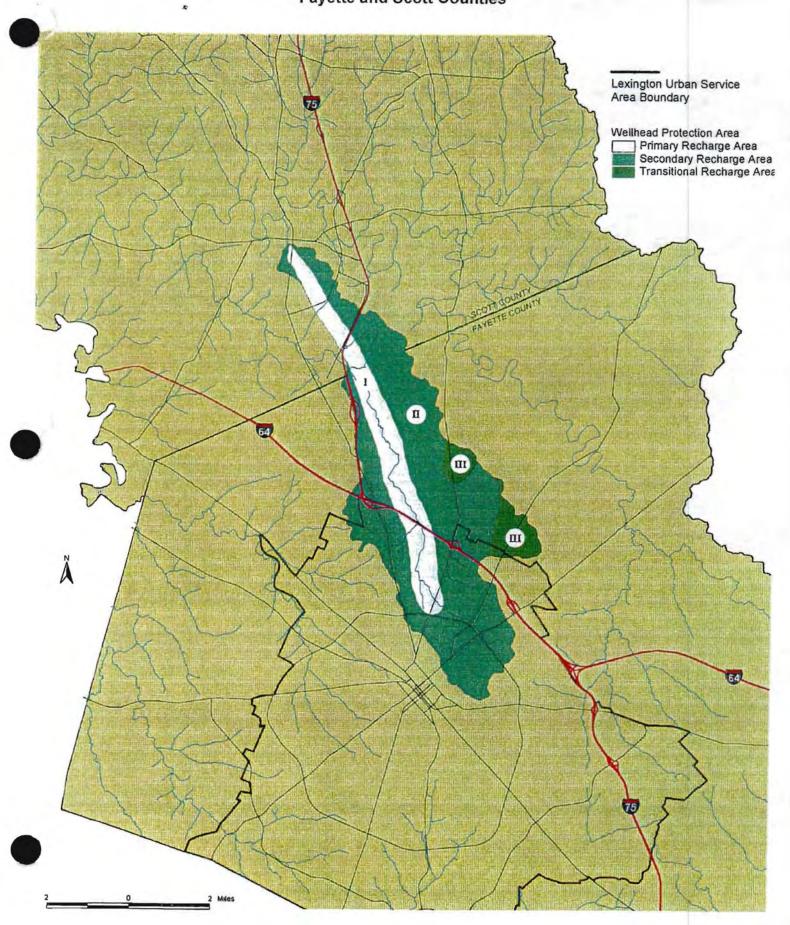
The Fayette County Planning and Zoning Commission was created in 1928 by the City Charter. The formation of the Planning Commission set a course of development in Fayette County that has been carried on to the present time. The first guidelines for development, the Subdivision Control Regulations, were adopted in 1929. In 1930, the first Zoning Ordinance was adopted. The first comprehensive planning document was adopted in 1931. In 1958, the City-County Planning & Zoning Commission adopted a comprehensive planning amendment defining and establishing an "Urban Service Area" for development, which represented a dramatic change in the planning process. In the European tradition of compact development, a core urban area was identified for growth and development. The "Rural Service Area" was set-aside for non-urban activities such as in the agricultural and equine industries. Scott County has also adopted the Urban Service Area concept for the community of Georgetown.

Scott and Fayette Counties have a combined area of 567 square miles with approximately half the total area in each county. Fayette County has one major population center, Lexington, with a 1998 population estimate of 250,000 people. Scott County has three population centers, Georgetown, Sadieville and Stamping Ground, with a total 1998 population estimate of 27,000 people. Fayette and Scott counties have each adopted a Comprehensive Plan and in 1996 a Comprehensive Plan Update that guide development in the respective county.

The Royal Spring Aquifer is addressed in Section IV of the Georgetown-Scott County Comprehensive Plan. Goal 3 of the Georgetown-Scott County Comprehensive Plan Update states that the location of the Urban Service Area for Georgetown should not be extended south beyond

Urban Service Boundary limits. The purpose of the goal is to encourage preservation of prime farmland, the separate identity and small town character of Georgetown, and the rural character of the surrounding area. The plan also includes an *Environmentally-Sensitive* category and a *Water Quality Protection Area*. These areas apply to Industrial Zoning within the Royal Spring Aquifer Recharge Area and to properties that drain directly to Elkhorn Creek within five miles of the Georgetown Municipal Water intake. Also a category called *limited sewer treatment capacity* deals with septic systems for limited light industrial uses.

The Lexington-Fayette Urban County Comprehensive Plan also addresses aquifer recharge areas. More than one aquifer recharge area exists in Fayette County. Land use controls have an *Environmentally Sensitive* category and an element indicating the protection of *aquifers* in the land use regulations. Goal 16 of the Fayette Urban County Comprehensive Plan Update has four objectives pertaining to the protection of aquifer areas:


- Objective E "Monitor and minimize air, water, visual, noise, and artificial light pollution"
- Objective G "Preserve and protect natural drainage ways, environmentally sensitive areas and plant life from severe intrusion, alteration, or destruction during urban development"
- Objective J " In cooperation with federal, state, and regional agencies ensure the adequacy and quality of the water supply, encourage conservation of water resources and expedite the abatement of pollution"
- Objective K "Ensure that the proper facilities and structures are employed to accommodate surface drainage in a manner that recognizes their effects on underground drainage and that is consistent with the desire to improve water quality"

Both comprehensive plans stress the need to maintain and keep the unique horse farmlands and agricultural lands as an open space buffer between the two counties.

3-2 Background

The Royal Spring Aquifer and its recharge area are a significant physical presence in the center of two of the fastest growing counties in central Kentucky. Figure 3-1 illustrates what is

FIGURE 3-1
The Royal Spring Aquifer within Fayette and Scott Counties

believed to be the recharge area for the spring. It is estimated to be 25 square miles (Sendline et. al., 1989 p.12 Table 1.). Eighty percent of the recharge area is located in Fayette County with the remainder in Scott County. The main surface stream for the aquifer is Cane Run. The headwaters for this stream and aquifer have been dye traced in the upper reaches to the highly urbanized area located close to downtown Lexington at East Seventh Street. The northern most reach of the aquifer is located at the discharge point of Royal Spring located at Clinton Street in Georgetown. Future hydrologic analysis may yield additional information on the true boundaries of the recharge area.

Royal Springs serves as the principle water supply for the city of Georgetown and Scott County. Nearly 8,000 customers are currently served by the Georgetown water system. Fayette County receives no direct benefit from Royal Springs as a public water supply. However some Fayette County residents have private wells and springs that draw from the shallow aquifer. Agricultural and recreational uses also prevail in the aquifer.

Water quality problems may result when contaminants are introduced in concentrations that either exceed the capacity of the soils to filter them out (poor or no filtering qualities exist in karst areas) or exceed the dilution that occurs as water mixes with the contaminant. In almost all cases, contamination is caused by humans. The potential for contamination is inherent in the creation of communities as a result of urban, suburban, and rural land uses. Use of the land for horse and cattle farms, food or crop production, recreation and even the extraction of limestone through quarrying can affect water quality.

Pollution potentially comes from many sources. On-site septic systems where loadings are not attenuated by the soil or in which toxic inorganic septic tank cleaners are used is one example. In the 1989 report, Groundwater Evaluation, Planning and Policy: An Analysis of Fayette County, Kentucky, a wide range of pollution problems was identified in rural areas. Older studies described in the report found 70 % of the water wells contaminated by fecal coliform, and a review of more recent Health Department records cited in the report indicated thirty-one out of thirty six springs tested unsafe due to total coliform concentrations. The source of the contamination was thought to be animal waste.

Dumping refuse, garbage or horse muck into sinkholes is a direct way for pollution to be introduced into the groundwater system. Commercial, business and industrial discharges to surface streams and sinkholes are a potential source of contamination as are improper storage of raw and hazardous materials or wastes. Incidental leaks of fuel and fluids from vehicles and transportation related accidents where product or automotive fluids drain into storm drains are another source of contamination. Non-essential or inappropriate applications of agricultural and turf chemicals may be detrimental to the groundwater.

Primary concerns in the Royal Spring recharge area include the potential for leaking storage tanks, especially fuel tanks, and intentional or accidental spills that allow chemical contaminants or petroleum products to enter the groundwater. Additional concerns are the extensive use of agricultural chemicals that are leached from the soils and industrial and residential development that can result in stripping the natural vegetation and land cover by total earth movement and recontouring of the land. Replacing natural or agricultural lands with lawns, landscaping, and impervious surfaces such as roofs and parking lots results in faster runoff rates leading to excessive sediment discharge to the receiving water and increased stream bank erosion. Such erosion is evident on Cane Run Creek.

Growth in Fayette County is important to consider because land use changes in the Royal Springs Aquifer Recharge Area can have an impact upon the water quality of the springs. Locational aspects of business, industry, agriculture, and even recreation could impact the flow of the Royal Spring Aquifer if wells intercept the groundwater flow.

3-3 Population

The same of the sa

Population figures and growth trends are factors in determining both the consumptive use of water for drinking and for sewage treatment. Scott and Fayette counties form the center of the Bluegrass Region as a major employment center and the dominant population center. Table 3-1 lists population data supplied by the Bluegrass Area Development District.

Scott County, one of eight Inner Ring counties of the Bluegrass Area Development District, is located on the northwestern boundary of the District. It's 1990 population makes it the seventhmost populated county in the District. The county's growth rate of 9.4% from 1980 to 1990

ranked fifth in the District. This was significantly higher than the 7.9 % growth rate for the District overall.

Table 3-1 POPULATION OF SCOTT & FAYETTE COUNTIES

		FAYETTE	Change	SCOTT	Change
1960 Census		131,906		15,376	
1970 Census		174,323	32%	17,948	17%
1980 Census		204,165	17%	21,813	22%
1990 Census		225,366	10%	23,867	9%
Moderate Growth Estimate	2000	244,713	9%	26,460	11%
Moderate Growth Estimate	2010	257,621	5%	28,405	7%
Moderate Growth Estimate	2020	261,936	2%	29,662	4%
<u> </u>	·				· · · · · · · · · · · · · · · · · · ·
High Growth Estimate	2000	260,861	16	29,558	24%
High Growth Estimate	2010	290,000	11%	33,016	18%
High Growth Estimate	2020	317,032	9%	35,856	9%

Population in the urban areas of Scott County increased a total of 580 people from 1980 to 1990 while population in the rural areas increased 1,474 people or nearly 72% of the total growth. Rural population is expected to continue growing faster than urban population with the potential to impact land use patterns.

Population density is one indicator of development, and as development and land use patterns change in the Royal Spring recharge area, the potential for groundwater pollution increases. The average population density in the District is 138 people per square mile. Fayette County has a population density of 788 persons per square mile, the highest in the District, and it is one of the most developed.

3-4 Employment

Industrial growth is generally dependent upon the availability of water. Though industrial growth in Fayette County is not dependent upon the availability of water from Royal Spring because it receives its water from the Kentucky River, land use changes can impact the availability of water in Scott County by intercepting groundwater flow.

Fayette and Scott County were ranked number one and two respectively among the 17 counties in the Bluegrass Area Development District in terms of growth from 1985 to 1995 in manufacturing and employment. The change in the number of people engaged in manufacturing activities is shown in Table 3-2.

TABLE 3-2 MANUFACTURING EMPLOYMENT 1985-1995

County	1985	1995	Change	
Fayette	17,891	18,190	1.7 %	
Scott	2,457	8,802	245.6 %	

The largest employment gains in the District were experienced in the manufacturing of Transportation Equipment (51.3 percent), Rubber & Miscellaneous Plastic Products (43.4 percent), and Fabricated Metal (41.6 percent). The increase in automotive industries over the last ten years has had a major impact on the District's employment base and the economy. This is attributed to Toyota Motor Manufacturing and the associated automotive suppliers locating in the area.

3-5 WATER DEMAND

in the second second

The Georgetown Municipal Water and Sewer Service (GMWSS) provides water to nearly 8000 people in their service area. Potable water is supplied by two sources, water from the Royal Spring treated by the Georgetown WTP and finished water pumped from the Frankfort water system. Water from the Royal Spring provides for over 85% of the total demand.

The amount of water provided by the GMWSS to its customers is shown in Table 3-3. The amounts shown include residential, commercial, institutional, industrial, water plant and fire protection uses, distribution system losses, and line flushing based on 1995 water records.

TABLE 3-3 CURRENT WATER USE SUPPLIED BY GMWSS

Source	Average Daily Flow MGD	Peak Daily Flow MGD
Georgetown WTP	1.615	2.361
Frankfort	<u>.250</u>	<u>.400</u>
Total	1.865	2.761

The projected water demand from GMWSS based on population forecasts is shown in Table 3-4. Water from the Royal Spring is expected to provide approximately 80% of the total demand.

TABLE 3-4 WATER DEMAND PROJECTIONS GMWSS SERVICE AREA

YEAR	POPULATION	AVERAGE DAILY DEMAND MGD	PEAK DAILY DEMAND MGD
2000	19,761	2.075	3.063
2010	23,466	2.464	3.637
2016	26,014	2.731	4.032
2020	27,875`	2.927	4.350

3-6 Land Use Planning

The type of land use has a bearing on the potential source of pollutants. The linkages of transportation systems, location of residential housing, both sewered and non sewered, the location of industrial, business and commercial properties in Fayette County and Scott County are important to understand for their impacts on the Aquifer. Both counties recognize the importance of protecting the Royal Spring Aquifer. Over two and a half years have been spent in increasing aquifer awareness.

Though most of the zoning designations for business and commercial properties in Fayette County existed before the extent of the Royal Spring Aquifer was known, planning efforts continue to refine and protect the aquifer. A number of considerations have been identified and discussed in the planning process to help protect the aquifer, they include.

- Involving the public in the decision making process
- The need for consensus among the City of Georgetown, Scott County and Fayette County for the plan to be successful
- Understanding the impact of different types of development on degradation of water quality

- Identifying portions of the aquifer subject to existing pollution
- Determining whether specific portions of the aquifer should remain in rural / agricultural character
- Determining whether the cost of restrictions in terms of land use be offset by the significant economic, social, ecological, recreational and aesthetic benefits for the aquifer
- Determining if degradation of the aquifer has significant economic, social, ecological, recreational and aesthetic costs for the Royal Spring Water Supply
- Providing for implementation measures that can be utilized by all three political units

In the past three years of discussion, a number of needs have been explored in the development of this plan in regard to land use. These are:

- A determination of the existing aquifer recharge area
- Identification of all known existing and potential point & non-point sources of groundwater contamination
- Development of a mapped area delineating the area of concern
- Development of a resource assessment method to be used for determining the amount and kind of development that can take place in the aquifer area
- Development of a comprehensive statement of land use management policy as it pertains to development in the aquifer recharge area
- Proposal of limits on land uses that might have an inverse impact on the water quality of the aquifer
- Limiting the development of land that might have an impact on the water withdrawal capability for the Royal Spring Aquifer public water supply
- Proposal of limits on land uses that might have an adverse impact on water quality and or recharge capabilities in the aquifer protection area
- Designation of specific areas in the aquifer recharge area that are suitable and appropriate for public acquisition
- Development of a program for local governmental implementation of this comprehensive management plan for the protection of the aquifer.

It is the intention of this plan to develop guidelines for aquifer protection to be incorporated in the planning process of all three political entities – Georgetown, Scott County and the Lexington-Fayette Urban County Government.

3-7 Future Residential Development

Residential development for Fayette County is defined by the 1996 Comprehensive Plan, which designates two major areas: The Urban Service Area (83 square miles) and The Rural Service Area (200 square miles).

New residential development in the Urban Service Area requires sanitary sewers and must meet a number of environmental requirements such as incorporating retention basins and erosion control methods during and after construction. Fayette County is also beginning a more determined program to improve the surface water quality of our county. A number of new water quality sampling points have been established. Though sanitary sewers are predominant in the Urban Service Area, a very small developed area in the Urban Service Area and located within the Royal Spring recharge area is on septic tank systems. These systems are listed in Appendix 3-1.

Residential development in the Rural Service Area has been limited to ten acres or more to allow for the use of septic tanks. In the past three years, pressure has been increasing to develop in the rural areas. A significant number of horse farms and acres of agricultural land have been converted into ten-acre tracts. Today rural preservation efforts for farmland have increased the minimum lot size to forty acres for residential development.

Development in the Fayette County Rural Service Area is being investigated in an ongoing analysis process. Steeper land, thin soil cover, poor soils for septic systems, sinkholes, and more floodplain all pose interesting challenges to not only the aquifer protection plan, but also the entire planning process for rural lands. The concept of rural land planning that is being considered at this time is to create Purchase Development Right (PDR) legislation for the Rural Service Area in Fayette County. Also under consideration is the creation of smaller units of development on either smaller lots in non-prime agricultural lands or allow clustering of residential units to protect larger tracts of land. From a water supply protection perspective, the problem with the former concept is that soils of poor quality that are not of prime agricultural quality are also not of good quality for septic systems. The problem with the later concept is that the cluster of residential units must be on a large enough land area for a septic tank system. For this reason, Fayette County is considering a requirement that no clustering of NON-SEWERED residential units be permitted on less than ten acres of land in the Rural Service Area

For planning in the rural areas a system called land capability strategies have been developed. These concepts have been mapped out in the Rural Service Area and a Land Capability Map has been developed. The importance of this map to water supply protection planning is that a representative sample of the present land use within the aquifer area is illustrated. Seven management units have been created for consideration. These are:

- Core Agricultural and Rural Landscape Area (CARL)
- Rural Landscape and Environmentally Sensitive Area (RLES)
- Scenic Resources Protection Areas (SRP)
- Transitional Landscape Area (TL)
- Rural Development Area (RDA)
- Cross-roads Community Area (CRC)
- Potential Development Areas (PDA)

Section six of this report will take a closer look at the existing aquifer, the number of acres of each type of land use that are projected and the relative potential for pollution problems for each type of land use.

3-8 Future Non-Residential Development

3-8.1 Agricultural

Agricultural land use is important to consider in planning the protection of the Royal Spring recharge area because of its extreme importance in the Bluegrass area. Table 3-5 illustrates the trends in agricultural land use. Total agricultural acreage as well as the number of farms has been declining in both Fayette and Scott counties while the average size of a farm has increased. Tobacco continues to be one of the top cash crops in both Fayette and Scott counties. Water usage for agricultural purposes is a concern in the aquifer protection area especially in drought periods, such as experienced in 1988 and 1999, when the demand for water from both streams and wells increased. Water taken from the Royal Spring Aquifer during these periods is not available to meet the community water supply needs. Because farming is expected to continue being one of the principle occupations in the rural area. Agricultural consumption from the Royal Spring Aquifer will need to be considered in water supply protection planning.

TABLE 3-5 AGRICULTURAL TRENDS IN FAYETTE & SCOTT COUNTY

	Total Acreage			Total Number Farms		Average Size of Farms Acres		Harvested Cropland Acres	
County	1987	1992	1987	1992	1987	1992	1987	1992	
Fayette	155,594	147,154	912	836	170.6	176.0	29,511	30,047	
Scott	164,293	154,082	1,062	971	154.7	158.7	37,322	31,388	

3-8.2 Business, Commercial, Industrial

Non residential development patterns are of great concern in the protection of the aquifer. Business, commercial and industrial development provides opportunities for potential contamination from underground and above ground storage tanks, runoff from outside chemical and waste storage areas, parking lots, and roofs. Trucks provide potential for contamination from leaks in cargo they are transporting as well as from fuel tanks and other vehicle fluids. Land use patterns for businesses, commercial and industrial property are influenced by the rail and highway systems in place which provide corridors for this type of non-residential development.

The water supply protection plan needs to take into consideration the potential for contamination from a hazardous spill incident. Landscape features, transportation paths and mitigation parameters such as those listed below determine the best management practice for preventing contamination. Best management practices are outlined in Section 8.

LANDSCAPE FEATURES

- Sinkholes
- Swallow holes
- Fracture zones
- Disappearing streams
- Soils
- High groundwater

TRANSPORTATION PATHS

- Natural surface streams channels
- Man-modified surface channels
- Sinkholes
- Underground channels natural
- Underground channels -storm sewer
- Detention basins

MITIGATION PARAMETERS

- Spill potential quantity
- Pollutant potential type
- Quantity of stormwater runoff
- Potential for changing basin hydrology
- Natural barriers to flow
- Flow capacity
- Time of travel

- Pollutant removal capability
- Proximity to source of concern
- Access for public safety
- Monitoring data

With information on the current land uses and the full development potential of the aquifer, and the landscape features, the potential hazard rating based upon the land use can be applied to the aquifer area. Areas that have a high rating may be analyzed with closer scrutiny, and best management practices identified. This process is the mainstay of the Royal Spring Aquifer Protection Plan.

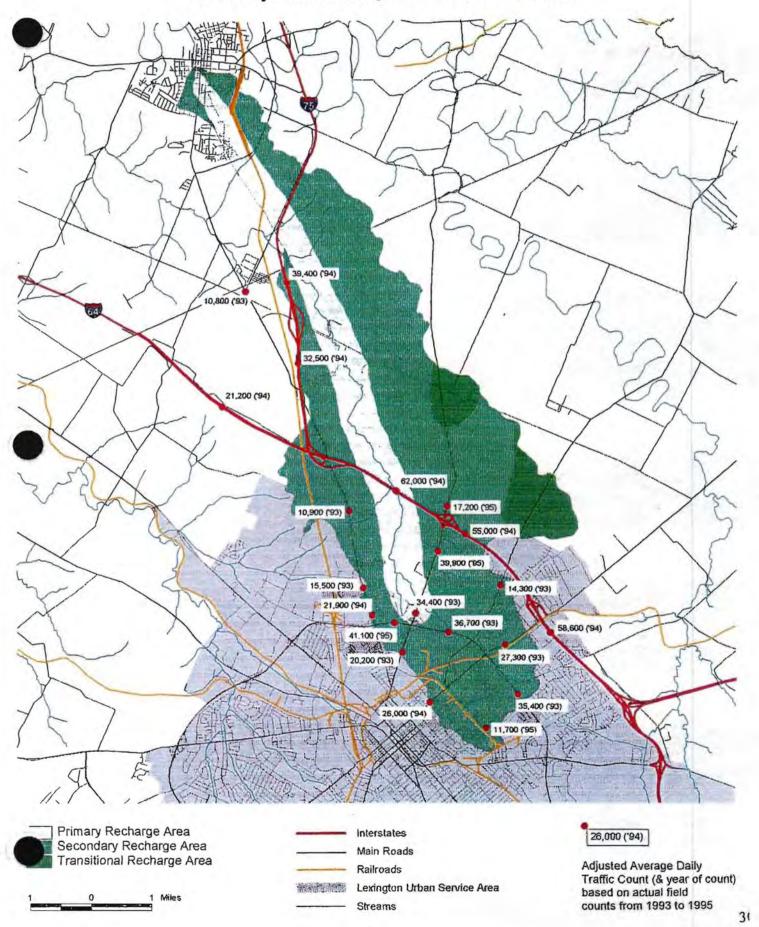
3-9 Transportation System

Transportation systems are a priority in the planning process because of the potential for intentional and accidental spills as fuels and hazardous materials are transported across and within Fayette and Georgetown/Scott Counties. The rail and interstate systems bisect and run parallel to the aquifer recharge system for almost eight miles (from mile marker 114.4 to mile marker 122). The main stream channel of Cane Run is located at mile marker 116.2 A hazardous spill at this location into the creek could have immediate consequences to the aquifer. It is estimated that contamination would travel the distance from an interstate hazardous incident to the Royal Spring point of discharge in about nine to twelve hours depending on the flow characteristics of Cane Run and the amount and type of product discharged.

Our society depends on the use of hazardous materials, and as a result, their transportation has become an integral part of daily living. State and federal agencies regulate air, rail, water, pipeline, and highway carriers of hazardous materials. There are no local hazardous material transportation regulations in Fayette and Scott Counties; however, the LFUCG Divisions of Fire, Police, and Environmental and Emergency Management and the Division of Georgetown/Scott County Emergency Management Agency (E.M.A.) are experienced, trained, and prepared to respond and resolve hazardous material incidents.

Following is a more detailed description of the existing transportation systems.

3-9.1 Highway System


As in most metropolitan areas in the United States, the dominant system of transportation in Fayette & Scott County is the highway system. Fayette County contains Central Kentucky's largest urbanized area and serves as the leading market and trade center for the region. It also provides major employment, education, health-care, and many other opportunities to Central Kentuckians. In Scott County, Toyota is the leading employment center providing jobs for over 7,400 employees. The major transportation routes with average daily traffic counts are shown in Figure 3-2. Table 3-6 shows road mileage by functional class for Fayette County and Scott County.

The Fayette and Scott County area is a junction point for two major interstate routes: east-west I-64 and north-south I-75. In the north of Fayette County, the two interstate routes join and run diagonally together along the northwest border of the urbanized area dividing again southeast of the area. Traffic volumes along the common section of I-64/I-75 have increased over 40% since the mid-1980's. The average daily traffic exceeds 62,000 vehicles at the intersection of I64 & I75 (1994-traffic count). During peak travel periods, volume increases more than 70%. Forty miles of interstate widening is planned in the Central Kentucky area over the next 10 years.

TABLE 3-6 1994 TOTAL ROAD MILES BY CLASSIFICATION

	Fayette Co.	Scott County	Georgetown
TYPE	Miles	Miles	Miles
Interstate	35.4	23.7	2.7
Expressway	13.8	0	0
Principal Arterial	56.0	3.3	9.3
Minor Arterial	141.8	14.9	11.5
Collector	159.0	57.1	7.2
Local	847.6	191.8	260
Rural Minor Collector	0	60	0
TOTAL	1,253,6	350.8	290.7

FIGURE 3-2
Map of the Major Transportation Systems
With Adjusted Average Daily Traffic Counts

Access to and from the Lexington urbanized area and the city of Georgetown is provided by the interstate system via five interchanges. Three major interchanges of I 75 & I 64 interstates are located in the Royal Springs Recharge Area. These are at mile markers 115, 117, 119.4.

Three major state roads run through the Royal Springs Recharge Area; Georgetown Road, Newtown Road, and Paris Pike. Traffic counts on these major state roads are expected to increase with continued development.

The importance of highways is not to be underestimated. In the analysis of the occurrence of sinkholes, which provide a direct opening into the aquifer, many of the sinkhole locations are immediately adjacent to the state roads. The location of the mainstem of Cane Run also poses a direct connection to the aquifer. Cane Run at Newtown Road had 34,400 vehicles a day crossing the stream. At the interstate crossing with Cane Run, over 62,000 vehicles a day cross the stream. No sinkholes have been found immediately adjacent along the interstate or railway system that would pose an immediate threat to the aquifer in the case of a catastrophic spill. Section 5 covers sinkhole locations in detail.

3-9.2 Aviation

The Blue Grass Airport functions as a principal intermodal transfer point. Though not in the recharge area, the surface transportation system and the aviation transportation system are dependent on one another for the transfer of people and goods within the region.

Air service needs of Central Kentucky and the Blue Grass Airport serves a large portion of Eastern and Southern Kentucky. These needs are met through a mixture of scheduled commercial air service, as well as general aviation service. In addition, Blue Grass Airport interacts with many smaller public and private airports in the region to provide aviation services to private aircraft.

There are various classes of controlled and uncontrolled airspace which make up the operational airspace of the Blue Grass Airport. Flights in the United States are normally channeled along navigational routes that are as well defined as our surface highway systems. The route systems that are in use in the Lexington-Jefferson Metropolitan Planning Organization (MPO) area are the

VOR Airway System, Jet Route System, Area Navigation (RNAV) System, and the Terminal Airspace System, which is composed of the Blue Grass Airport's facilities, equipment, and personnel. Some of these routes traverse the Royal Spring recharge area.

Many military operations involve the movement of freight. Though the number of flights fluctuates somewhat year to year, since 1988, there have been an average of 2,700 military operations each year at Bluegrass Airport.

The Georgetown Airport was opened in 1993 and was designed to be a reliever airport for private planes, corporate jets and cargo functions. The Georgetown Airport is a general aviation facility, providing passengers and pilots with a 5,500 ft. runway with 1,000 foot overruns and parallel taxiway. The airport is served by instrument approaches and lights for 24 hour operations year round. Other features of the airport include a new terminal building, maintenance hanger, fuel farm, and T-hangars in addition to an Automatic Weather Observation System (AWOS III) and weather radar.

3-9.3 Motor Carriers & Trucks

The trucking industry is vital for the transportation of fuel, raw materials and freight into and out of Fayette and Scott Counties.

More than 50 motor carriers service the area. More than 21 of these carriers operate terminals locally. These carriers fall under various classes according to the types of commodity carried. There are also numerous utility trucks, e.g., telephone, water, gas, and electricity; and service trucks, e.g., painters, plumbers, and electricians.

The highest truck volumes on the Lexington highway system are found on the rural and urban interstates and arterials. Listed below are some examples of 1992 truck traffic percentages of total average daily traffic (ADT) at selected locations and facility types.

I-75/I-64 - Urban Interstate between Newtown Road (KY 922) and Paris Road (US 27/68), trucks = 9.312 - 21.9% of 42,519 ADT.

New Circle Road (KY 4) - Urban arterial between Leestown Road (KY 421) and Georgetown Road (US 25), trucks = 6,195 - 11.8% of 52,500 ADT.

Paris Pike (US 27/68) - Rural arterial, near the Bourbon County line, trucks = 952 - 8% of 11,900 ADT.

Nearly all truck companies operating in the area do so from a base in the Lexington urban area. A truck terminal usually consists of a dock (the number of bays varies) at which freight is loaded and unloaded. In the Lexington urban area, truck terminals are concentrated in the industrial and wholesale/warehouse zones located primarily in the north. This puts them in close proximity to the interstates and allows ease of access with other regional population centers. Shippers and receivers of goods are concentrated along major arterials in retail, professional service, and commercial zones (e.g., malls, shopping centers, universities, and office parks).

The majority of pickup and delivery truck trips occur during regular business hours. Local and national studies show that Mondays and Fridays tend to be very heavy days in terms of pickups and deliveries.

Through truck trips (without a local destination) are required by Lexington ordinance to use New Circle Road (avoiding the inner urban area) or the interstates to the north. New Circle Road is the only officially designated truck route in the area as it provides access that penetrates or is near all light and heavy industrial zoning in the Lexington urban area and is less than a mile by major arterial away from three interchanges with I-64/I-75.

3-9.4 Rail Systems

Railroads are a vital part of the American transportation system as the primary long-distance goods transportation mode. In 1991, railroads carried 37% of inter-city freight. In 1990, railroads accounted for 46% of long-haul traffic over 500 miles. The Lexington Metropolitan Planning Organization (MPO) planning area is served primarily by two of the nation's busiest railroads: CSX Transportation and Norfolk Southern Corporation, both of which are Class I. In 1992, Class I railroads were those with annual revenues of at least \$251.4 million. The major rail lines are shown in Figure 3-2.

CSX

CSX has an extensive rail system east of the Mississippi River. Major commodities originating in or moved through Kentucky are coal, grains, forest products, automobiles, chemicals, paper, building materials, food, and consumer products.

CSX has approximately 23 miles of double tracked, heavy rail, main-line track running east-west (Winchester to Frankfort, Kentucky) through the Lexington-Fayette County area, not including branch lines or spurs which run off of the main line to serve certain Lexington customers. A portion of the main line as well as some branch lines or spurs are located in the Royal Spring recharge area. CSX has a main switching and freight classification yard in central Lexington on Buchanan Street just south of West Main Street, outside the recharge area.

Norfolk Southern Corporation

Norfolk Southern has approximately 30 miles of double tracked, heavy main-line rail running north-south (Georgetown to Danville Kentucky) through the Lexington-Jessamine Metropolitan Planning Area.

The company has switching yards in Lexington and in Nicholasville where goods may be "transloaded" from railcar to truck and vice versa to serve the Metropolitan Planning Area. In central Lexington, the yard is located off South Broadway between DeRoode Street and Angliana Avenue, out of the Royal Spring Recharge Area.

Norfolk Southern has a rail terminal located in Georgetown that has full "intermodal facilities" to transfer double-stacked truck trailers from railcar to truck tractors and vice versa.

Like CSX Railroad, Norfolk Southern carries a wide variety of goods. Some of the major commodities carried include forest products, chemicals (i.e., plastic and asphalt), automobiles, peanuts, liquor, and

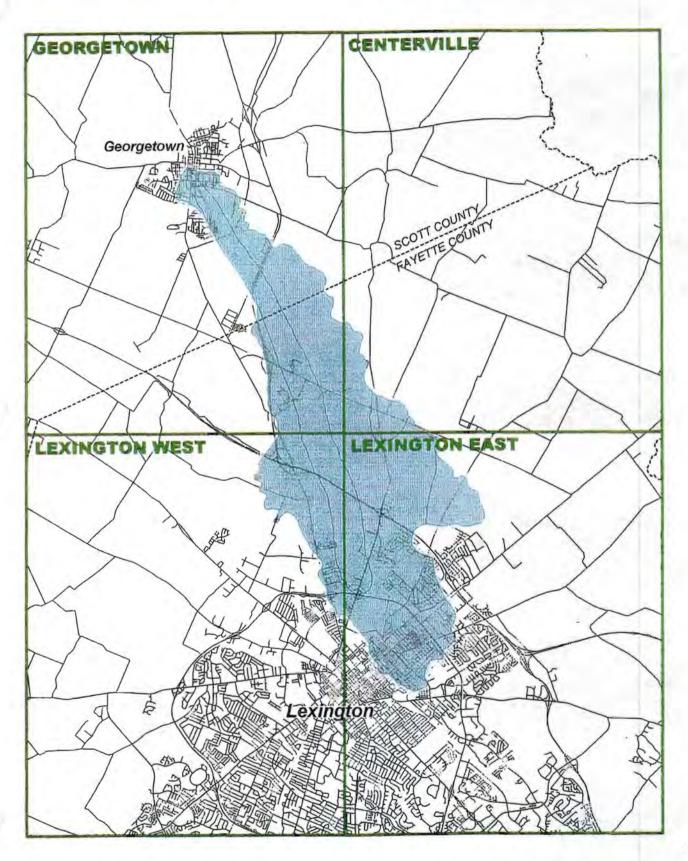
steel. The Toyota automobile manufacturing plant located in Georgetown/Scott County is a major customer of the Norfolk Southern Corporation.

On an average day, Norfolk Southern may have as many as 35 to 40 trains travel in, out, or through the Lexington area.

Passenger Rail

Currently, the closest passenger rail stations operated by Amtrak are located approximately 80 miles from Lexington, in Cincinnati, Ohio, and Jeffersonville Indiana and in Maysville, Kentucky. There are no passenger rail systems that transverse the Royal Spring Recharge area.

Section 4. Geologic / Hydrologic Setting


4-1 Location

Georgetown is located in southern Scott County in north central Kentucky, 75 miles east of Louisville and 12 miles north of Lexington in the Inner Bluegrass physiographic region (McFarlan, 1943). The Royal Spring Aquifer Recharge Area is believed to extend from just south of North Elkhorn Creek into the northern part of Fayette County. The entire area is covered by the Lexington East, Lexington West, Georgetown and Centerville 7 ½ minute quadrangles. Figure 4-1 shows the location of the Wellhead Protection Area of the Royal Spring Aquifer within the four quadrangles.

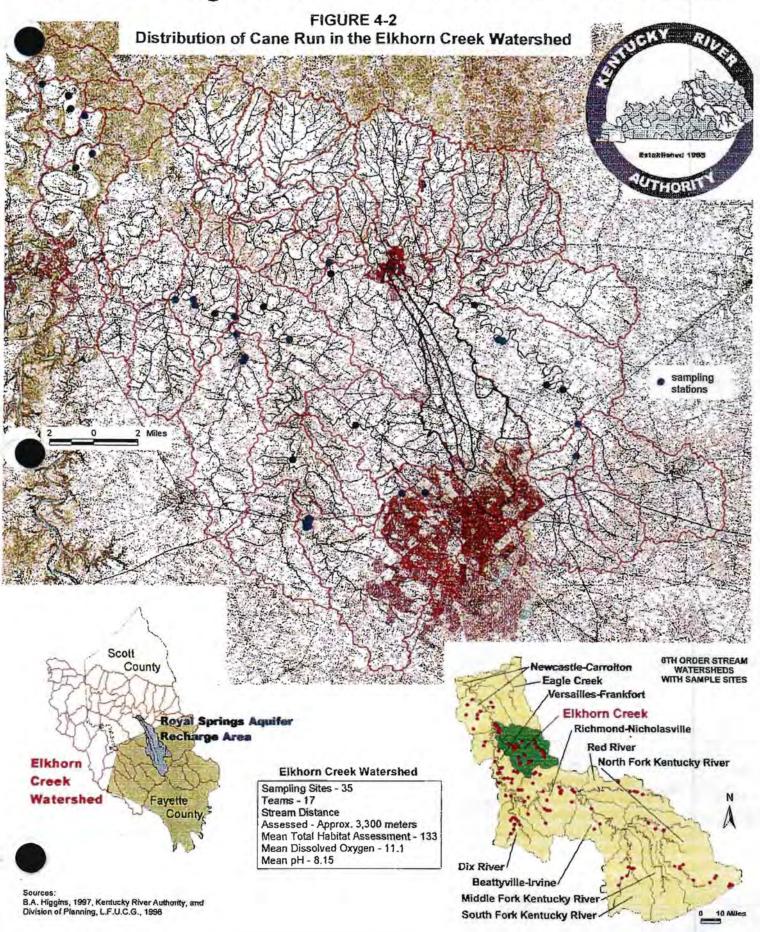
4-2 Previous Studies

There have been numerous hydrogeologic reports written on the Georgetown area. Hamilton (1950) discussed the principles of groundwater occurrence in the Inner Blue Grass region and completed an inventory of wells in Fayette and Scott County. Hendrickson and Krieger (1964) discussed the geochemistry of the groundwater and surface water in the Blue Grass Region. Mull (1986) published a report on the hydrology of Lexington and Fayette County and Faust (1977) discussed the groundwater resources of Lexington, prepared a potentiometric map for the area, and outlined the recharge area of a number of springs and wells, including Royal Spring. Faust believed the yield of wells is related both to topography and stratigraphy. Thrailkill and his students (1982, 1983), defined shallow carbonate aquifer groundwater basins for the Inner Blue Grass Region. Spangler (1982) wrote a thesis on the karst hydrogeology of northern Fayette and southern Scott Counties and Scanlon (1985) determined the chemical characteristics of groundwater in wells and springs in the Inner Bluegrass.

FIGURE 4-1
Map of the U.S.G.S. Quadrangles
that Contain the Wellhead Protection Area

4-3 Geology and Structure

The Inner Bluegrass is underlain by carbonates, siltstone, and shales of middle Ordovician age. The bedrock surface is covered by a thin residual soil and the area has developed mature karst surface features. Within the study area, the Clays Ferry and the Lexington Limestone Formations are exposed at the surface. The Clays Ferry Formation can range up to 100 feet in thickness and is predominately shale, siltstone and interbedded thin limestone. The Lexington Limestone Formation is up to 350 feet in thickness and is dominantly limestone. The study area is covered by four USGS geologic quadrangle maps (Cressman, 1967; Kanizay and Cressman, 1967; MacQuown and Dobrovolney, 1968; and Miller, 1967) and the reader is referred to them for more details on the geology of the region.


Strata in the study area are generally flat lying. The major structural feature in the area is the Cincinnati Arch, which is a broad fold trending north-south from Nashville, Tennessee to Cincinnati, Ohio. The dip of the area bedrock is controlled by the Cincinnati Arch and gently dips 20 to 30 feet/mile to the west and somewhat less northward (Cressman, 1973). There are no major fault systems mapped in the study area but the bedrock in the area has many joints, which appear to decrease with depth. There is a linear trend of sinkholes that exists in the Royal Spring basin that may be related to a joint pattern, but data are not available to verify this.

4-4 Topography

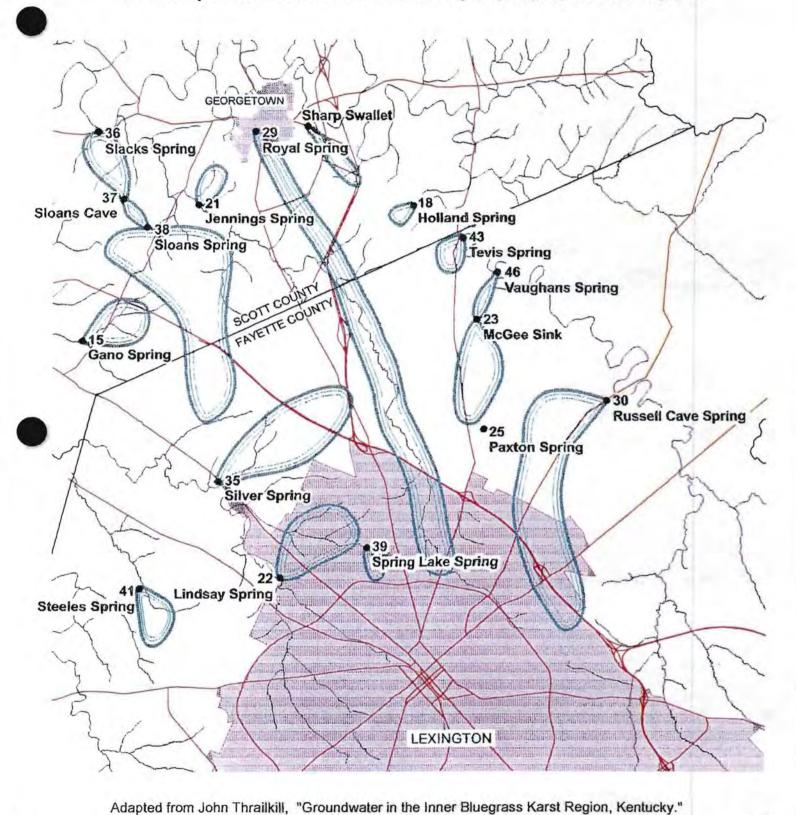
The Royal Spring WHPA is dominated by gently rolling karst topography. The maximum relief in the WHPA area is approximately 230 feet. The maximum elevation is in the southern part of the WHPA, in the center of Lexington, at 1030 feet. Royal Spring is located at the northern end of the WHPA at an elevation of approximately 800 feet. The study area is located within the Cane Run watershed illustrated in Figure 4-2 and drains to North Elkhorn Creek. The North Elkhorn flows west to its confluence with the Kentucky River at Frankfort.

Karst topographic features include sinkholes, swallow holes, karst windows, and springs. Surface karst features are numerous within the Royal Spring WHPA. Also found in the WHPA are other

Kentucky River Watershed Watch

Karst landforms such as blind valleys and pocket valleys, which are a result of deep circulating water and often indicate the presence of groundwater basins as defined by Thrailkill (1982).

4-5 Royal Spring shallow aquifer


4-5.1 Groundwater Occurrence

Groundwater basins (karst aquifers) in the study area are produced by the dissolution of carbonate rock that forms dendritic conduit systems that discharge at a spring. The most important carbonate unit in the area is the Lexington Limestone, which has developed into a shallow unconfined aquifer, less than 100 feet deep (Matson, 1909; Hamilton, 1948, 1950; Mull, 1968; Thrailkill et al., 1982). The two predominant karst forming rock units within the Lexington Limestone are the Tanglewood and Grier members. Both of these units are relatively soluble and allow water to move through bedding planes and joints in the rock. Solution of the bedrock allows numerous conduits of varying sizes to form in the Lexington Limestone. Royal Spring discharges from the Grier Member of the Lexington Limestone. Both the surface water (the Cane Run Basin) and groundwater (the Royal Spring groundwater basin) contribute recharge to Royal Spring, (Thrailkill, 1982 and Spangler, 1982). Topographic maps have been used to estimate the surface recharge area to Royal Spring (Thrailkill, 1982).

4-5.2 Groundwater Flow

Groundwater flow in the Georgetown area is controlled by the topography and general characteristics of groundwater basins associated with karst (Hamilton, 1948; Thrailkill et al., 1982). Groundwater basins have a dendritic flow pattern and flow within these groundwater basins may cross beneath the surface divides. Mull felt that the regional dip of the area, in the form of the Cincinnati Arch, possibly directs the flow of the groundwater movement. Surface drainage and shallow interbasin drainage seem to flow down-dip away from the city of Lexington in a northwest direction towards Georgetown. The overall direction of the Royal Spring groundwater basin is parallel to the regional dip. Figure 4-3 shows the relationship of the smaller groundwater basins in the aquifer recharge area of Royal Spring. Thrailkill (1982) believes that a linear pattern of sinkholes in the Royal Spring basin is the result of an unmapped fault or joint system. This linear structural feature aids in the movement of the groundwater in the northwest direction. Thrailkill (1989) indicated that not all of the water that enters the

FIGURE 4-3
Relationship of Groundwater Basins in the Royal Spring Aquifer Recharge Area

km

41

conduit system discharges at Royal Spring. He suggested that as much as 65% of the flow could be diverted to another discharge point and not be measured in Royal Spring.

4-5.3 Groundwater Uses

Groundwater provides water for the public water system in Georgetown, Royal Spring, and for private wells and springs in the WHPA as well. Royal Spring pumps about 2 million gallons a day to service approximately 16,000 people (Marvin Hedges, personal communication). A groundwater survey of 1,700 property owners in Fayette County, conducted by the University of Kentucky in 1988, identified approximately 70 wells, with 31 located in the Royal Spring WHPA (Fickel et. al., 1989). The distribution of wells compiled from this survey is shown in Figure 4-4.

The sensitivity to pumping and withdrawal of groundwater in the Royal Spring groundwater basin was demonstrated during the drought of 1988, when a well located in the Royal Spring WHPA in Fayette County significantly impacted the flow at Royal Spring. Flow at Royal Spring was diminished to the point that the spring could not supply the public water supply system.

The Division of Water in Frankfort maintains records of all wells constructed since 1986. Prior to 1986 accurate records of wells drilled were not kept. This was noted by Hamilton (1950) and he concluded at that time that there was no way of obtaining all the information on drilled wells that were either successful in yielding water or dry wells. Local drillers informed Hamilton that the general success of locating producing wells at that time was no more than one out of every five wells drilled.

4-5.4 Ease of pollution

Because there is a direct connection between surface water and groundwater in karst aquifers they are particularly vulnerable to pollution of ground water. Much of the surface water in the study area is diverted through sinkholes, swallets, and drainage wells into the Royal Spring groundwater basin. Figures 4-5 and 4-5-A show the location of identified sinkholes in Fayette and Scott County. These features are the main paths for surface water and possible contamination to enter the groundwater system. The water can rapidly enter these conduits and be discharged within hours or days to the springs. Recharge through infiltration from the soil to

FIGURE 4-4 University of Kentucky Department of Geological Sciences Generalized Survey of Water Wells in Fayette County (1989)

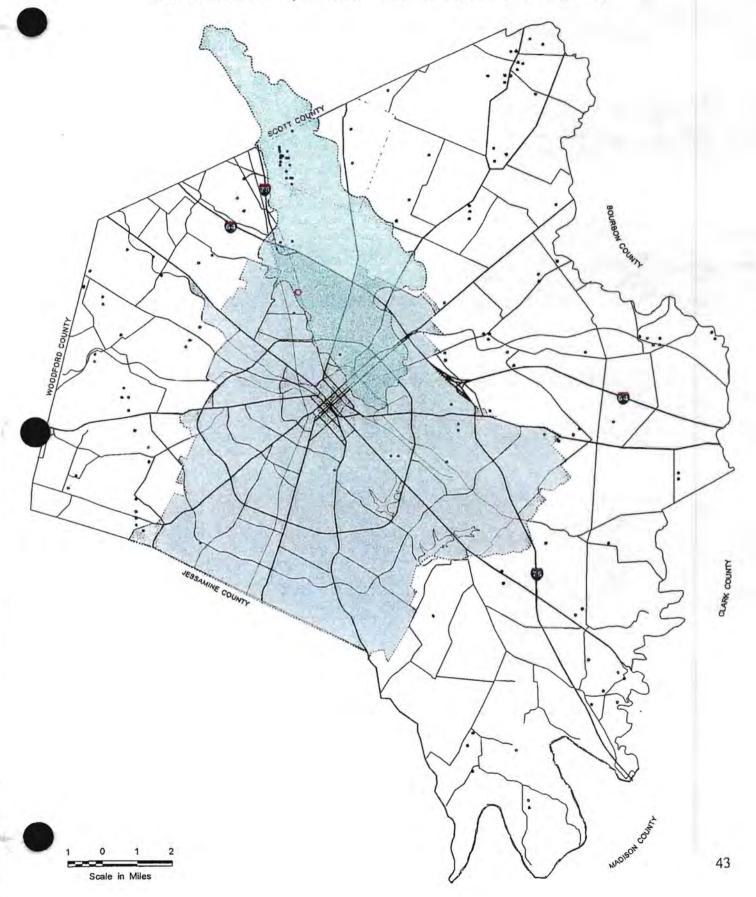
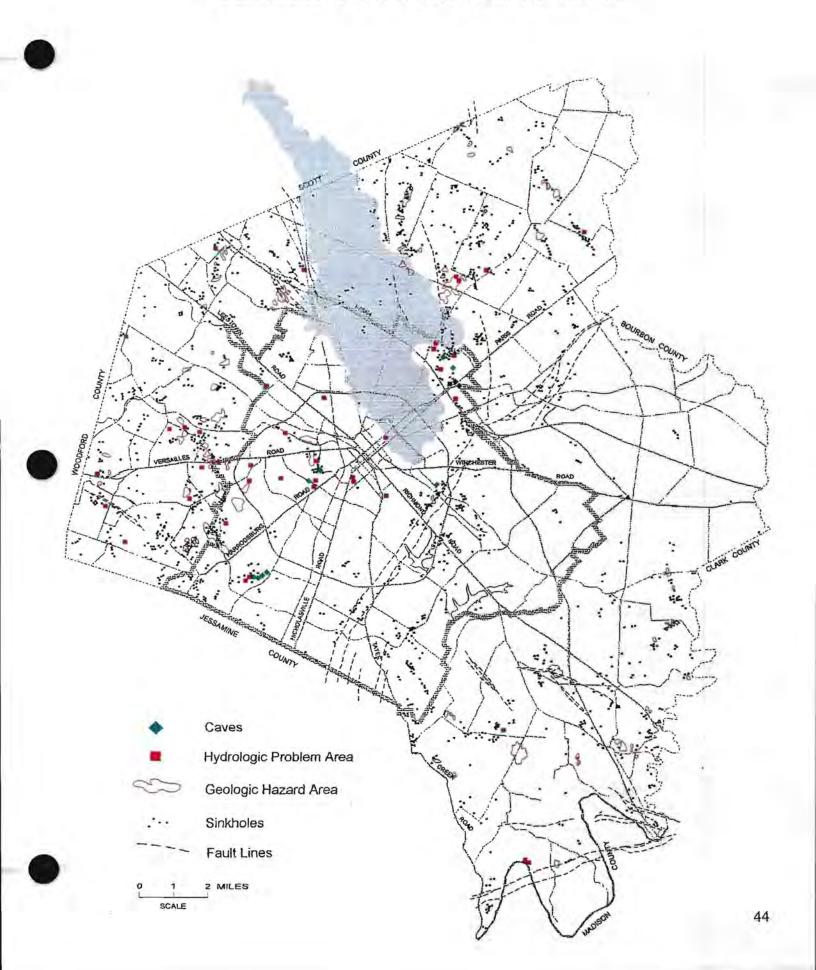
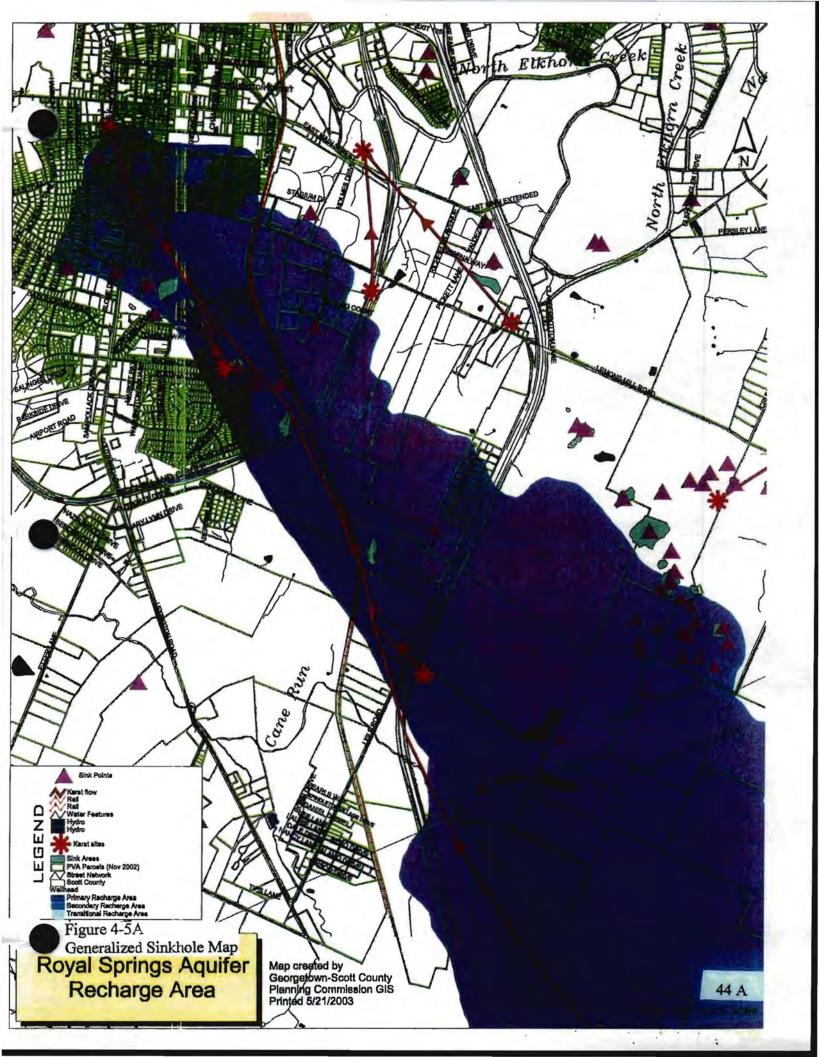




FIGURE 4-5
Generalized Map of Fayette County Sinkholes

conduits also occurs (Thrailkill et al.,1982).

The upper portion of Cane Run drains an urbanized part of Lexington, Kentucky. Urbanization has the two-fold effect of increasing runoff and degrading water quality. Urbanized areas can create excess storm runoff into Cane Run due to the presence of impermeable construction such as pavements and roofs. Storm runoff from the urbanized area collects in the head waters of Cane Run. Some of the water in Cane Run is diverted into a series of swallets that act as recharge points for the shallow aquifer and the remainder of the water flows on the surface out of the WHPA.

A contaminant can rapidly be transported with water through solution channels with limited attenuation processes other than dilution. The dilution mechanism can greatly reduce the concentration of the contaminant under high flow conditions by mixing with large quantities of water. The amount of contaminant that can absorb on clay and organic particles within the conduits is minimal (Thrailkill et al., 1982).

4-5.5 Time of Travel

Time of travel has been determined in the Royal Springs WHPA from dye tests conducted by Thrailkill and his students (Thrailkill et. al., 1982). The time of travel ranged from 0.8 hours to 141 hours. The velocities calculated from these data ranged from 0.14 to 3.6 meters per second. As it can be seen, the travel times for underground water flow is very short. The sinks and swallets identified in the Thrailkill studies are very critical to wellhead protection. Based on the time of travel from dye traces between numerous swallets and Royal Spring, two protection zones have been identified for the Royal Spring WHPA. These areas have been identified as Zone 1 and 2. Zone 1 represents the highest priority protection zone in the WHPA. Zone 2 represents the remaining area that is connected to the conduit system by surface streams or by less fractured rocks within the groundwater and inter-basin areas. The travel times in this area will have variable flow rates but are greater than those from Zone 1. The Zone 1 area has been studied rather extensively, but other sinks or swallets that have not yet been linked to the spring by dye tracing may also exist.

4-6 Wellhead Protection Area Delineation

Hydrogeologic mapping was chosen as the delineation method for Royal Spring. Surface and groundwater are interconnected through the karst features found in the area and Cane Run Creek. The drainage divides of the surface basin of Cane Run Creek was determined from topographic maps and the associated groundwater basins defined by dye tracing conducted by Thrailkill, Spangler and Throester (1982). Because a portion of the Cane Run drainage basin lies outside the Royal Spring groundwater basin, the impact of flooding can cause water to back up into the groundwater basin. For this reason, the 100-year flood plain map was used to check boundaries and determine the impact of a flood of this intensity on Royal Spring and was used to reinforce the selection of the WHPA boundary. The Russell Cave Spring groundwater basin underlies a portion of the Cane Run surface drainage basin. All surface flow to these sinkholes is considered to be a part of that groundwater basin and was therefore removed from the Royal Spring WHPA. This caused the indentation in the WHPA in the southeast end of the WHPA (Area III in Figure 3-1). Even under high flow conditions, up to at least the intensity of the 100-year flood, sinkholes and swallets will drain surface runoff in this area. This surface/groundwater flow will enter directly into the Russell Cave Spring groundwater basin and can cause no recharge or threat to Royal Spring.

A DRASTIC evaluation was completed for the Inner Bluegrass Karst Region, which included the entire Royal Spring WHPA. Couch (1988) concluded from this study that DRASTIC might not be suitable for areas where the aquifer is not well defined. Couch also claims that the aquifer had to be treated as a continuous body, when it has clearly been demonstrated that shallow conduits are discontinuous in many places, and therefore the DRASTIC Index Map most likely overestimated the development of the aquifer.

The delineation of the WHPA boundary for the Royal Spring water supply represents the importance of dye trace information. Without the work of Dr. John Thrailkill and his students at the Department of Geological Sciences, University of Kentucky, the degree of accuracy achieved in locating the boundary would not have been possible.

Section 4-7 References

- Couch, Amber, 1988, A DRASTIC Evaluation for Part of the Inner Bluegrass Karst Region, Kentucky: The Centerville, Georgetown, Lexington East, Lexington Quadrangles, MS Thesis, University of Kentucky
- Cressman, E. R., 1973, Lithostratigraphy and positional environments of the Lexington Limestone (Ordovician) of central Kentucky, U.S. Geological Survey, Prof. Pap. 678, 61pp.
- Cressman, E. R., 1967, Geological map of the Georgetown quadrangle, Scott and Fayette Counties, Kentucky: U.S. Geological Survey, GQ-605, Scale 1:24,000
- Faust, R. J., 1977, Ground-water resources of the Lexington, Kentucky Area, U. S. Survey Water Resources Investigation Report 76-113, 24pp.
- Fickel, T., Fitzmaurice, K., Kemp, J., Paulson, R., Randall, S., Taylor, P., Sendlein, L., 1989, Groundwater Evaluation, Planning and Policy: An Analysis of Fayette County, Kentucky, IMMR, University of Kentucky, 53pp.
- Hamilton, D. K., 1950, Areas and principles of groundwater occurrence in the inner Blue Grass region, Kentucky, U.S. Geological. Survey 9, Bull. 5, 68pp.
- Hamilton, D. K., 1948, Some solution features of the limestone near Lexington, Kentucky: Economic Geology, 43, 39-52pp.
- Hedges, Marvin, 1988 Personal Communication Hendrickson, G. E., and Krieger, R. A., 1964, Geochemistry of natural waters of the Blue Grass Region, Kentucky, Kentucky Geological Survey, Water Supply Pap. No. 1700 136pp.
- MacQuown, W. C., Jr., and Dobrovolney, E., 1968, Geologic map of Lexington East quadrangle, Fayette and Bourbon Counties, Kentucky: U.S. Geological Survey, GQ-683, 1:24,000
- McFarlen, A. C., 1943, Geology of Kentucky: University of Kentucky, Lexington, 531pp.
- Maston, G. C. 1909, Water Resources of the Blue Grass region, Kentucky U.S. Geological Survey Water- Supply Paper, No. 233, 223pp.
- Miller, R. D., 1967, Geologic map of Lexington West Quadrangle, Fayette and Scott Counties, Kentucky: U.S. Geological Survey, GQ-600, scale 1:24,000.
- Mull, D. S., 1968, The Hydrology of the Lexington and Fayette County, Kentucky Area, Lexington and Fayette County Planning Commission, Lexington, Kentucky, 24pp.

- Scanlon, B. R., 1985, Chemical, physical, and microbiological characteristics of groundwater in wells and springs in the Inner Bluegrass Karst Region, University of Kentucky, Ph.D. Dissertation.
- Sendlein, Lyle V. A., 1989, DRASTIC Analysis for Application By State Government, Final Report, Natural Resources and Environmental Protection Cabinet.
- Spangler, L. E., 1982, Karst hydrogeology of northern Fayette and southern Scott counties, Kentucky, M.S. Thesis, University of Kentucky, Lexington, Kentucky, 103 pp.
- Thrailkill, John, Byrd, P. E., Sullivan, S. B., Spangler, L. E., Taylor, C. J., Nelson, G. K., Pogue, K. R., 1983, Studies in Dye-tracing Techniques and Karst Hydrogeology: University. Kentucky Water Resour. Inst., Lexington, Ky., Res. 140, 89 pp.
- Thrailkill, John, Spangler, L. E., Hopper, Jr., W. M., McCann, M. R., Throester, J. W. and Gouzie, D. R., 1982, Groundwater in the Inner Bluegrass Region, Kentucky: University of Kentucky Water Resource Institute, Lexington, Ky., Res. 136, 144 pp.
- Thrailkill, John, and others, 1982, Groundwater in the Inner Bluegrass Karst Region, Kentucky, Kentucky Water Resources Research Inst. Lexington PB83-108126, NTIS, Springfield, Virginia 22161, 147pp. (dye tracing).
- Thrailkill, John, 1989, The flow budget of the Royal Spring Groundwater Basin, Fayette and Scott Counties, Kentucky. Kentucky Water Resources Symposium, University of Kentucky, November 30-December 1, 1989.

Section 5. Potential for Groundwater Contamination

Protection of the present water supply will require planning and control of important swallets and sinkholes that provide direct connection with Royal Spring. A detailed study should be made of the WHPA so that all input points can be located and categorized relative to pollution potential. The fact that the WHPA for Royal Spring occurs in two counties will make the development of protection strategies more difficult. An added problem is that the upper end of the WHPA occurs in an area that will probably experience significant business development because of the location of interstate highway 75.

To effectively protect this aquifer, it is crucial that residents in the recharge area recognize the impacts that their individual actions may have on the quality of water in Royal Spring. An historical problem has been the practice of disposing of agricultural waste and domestic garbage in sinkholes. By local and state laws this is now an illegal practice. Information has and will continue to be dispersed to landowners in the recharge area concerning their impact on water quality. The Scott County Conservation District granted the Royal Spring Water Supply Protection Committee \$2,000 for water quality educational material to schools in the area. Other material is scheduled to be distributed concerning the protection of the water supply in Royal Spring.

There are several federal, state, and local programs available to landowners to address natural resource issues and problems in the area. Landowners within the Scott County portion of the recharge area have the opportunity for cost assistance in cleaning up sinkhole dumps. The Scott County Fiscal Court has allocated funds through the Solid Waste Division and the Scott County Conservation District to address this problem (see section 5-12).

5.1 Sinkholes and Streams

Development in any sinkhole area presents a potential for groundwater contamination because the sinkhole serves as a window into the aquifer recharge system. An ordinance that may be used as a model by Scott County for protecting karst aquifers is already in effect in Fayette County Kentucky, which has been a leader in the recognition of the potential for groundwater pollution through sinkhole openings found in the bedrock. In 1985 the Lexington Fayette Urban County

Government developed a comprehensive sinkhole regulation to address the problems of development in sinkhole areas. The regulation deals with two elements. The potential for ground water pollution and the long-term stability of sinkholes filled during development. Any development plan submitted in Fayette County has a review of the geologic conditions specifically looking for sinkholes. The entire county has been mapped at two different scales of mapping. The rural area is mapped at four-hundred foot scale with a ten foot contour interval, while the urban areas have been mapped at two hundred scale with a five foot intervals. Soil maps showing detailed soils also exist at both scales for the entire county. The combination of these two types of maps gives a very detailed picture of sinkhole locations.

In areas of urban development, in Fayette County, all sinkholes are required to be free of debris before development can start. Any filling of sinkholes has to have an approved plan submitted to the LFUCG Division of Engineering and the LFUCG Division of Planning. The LFUCG Division of Environmental and Emergency Management also has developed regulations for any hazardous materials storage areas in close proximity to sinkhole areas.

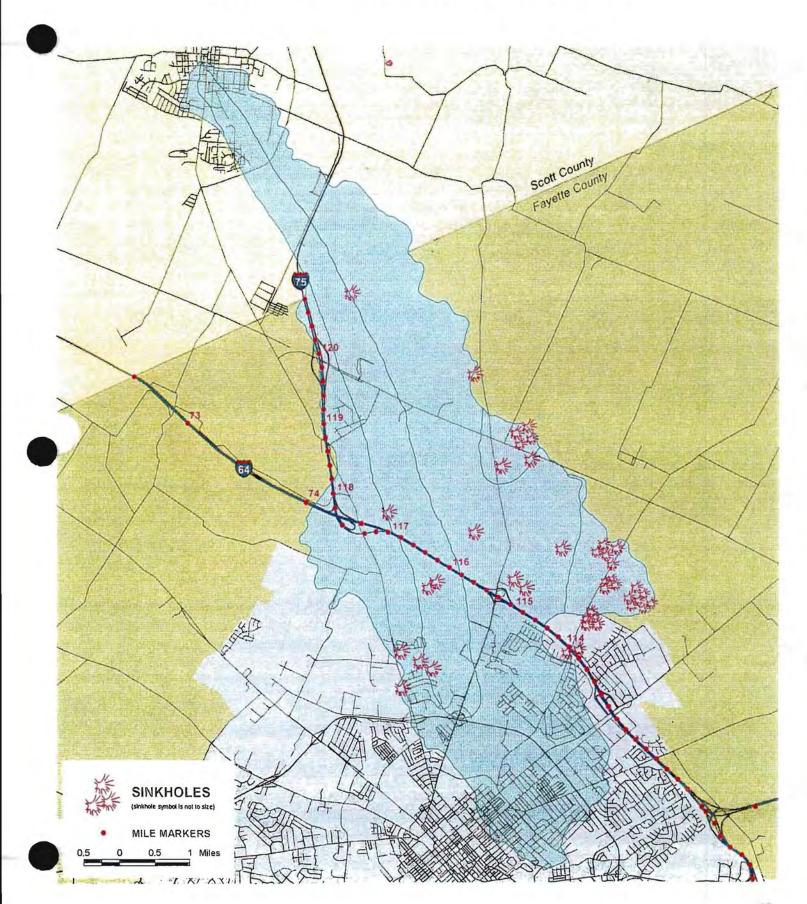
In Scott County, standard U.S.G.S. topographic maps and soil maps from the U.S. department of Agriculture, Natural Resources Conservation Service are used for sinkhole determination.

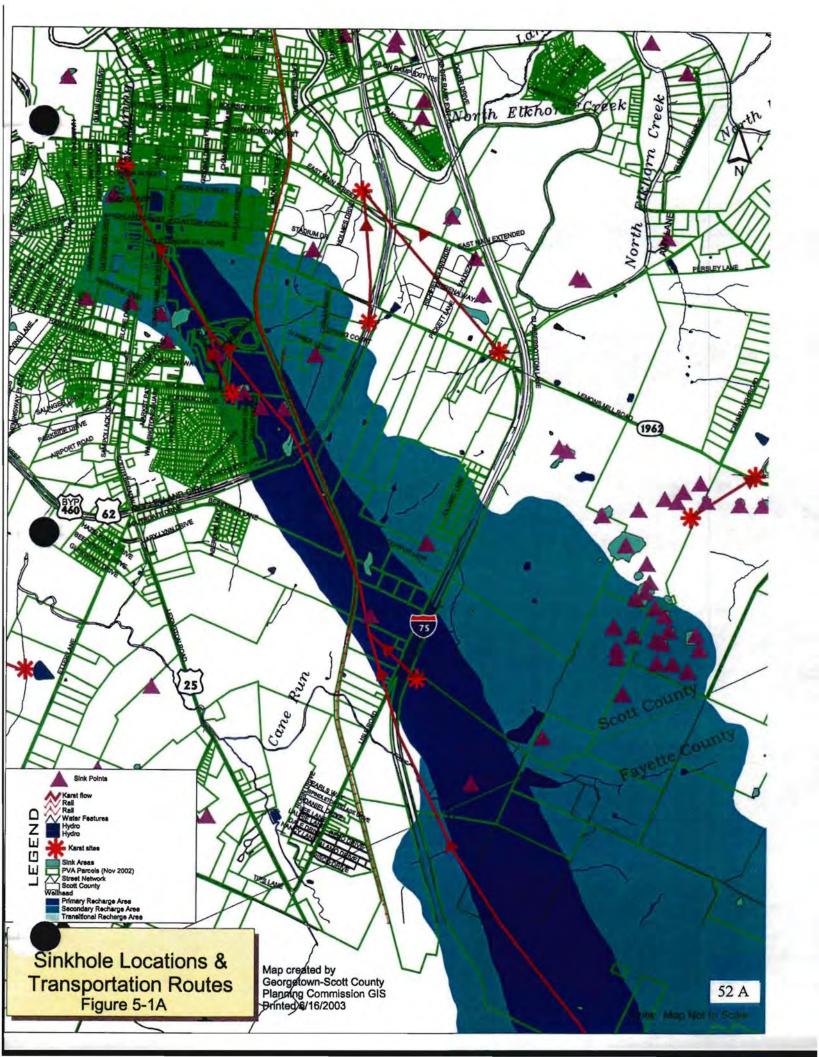
In addition to development, a significant potential threat to the groundwater system is found along the major and minor roads including Ironworks Pike, Russell Cave Road and Newtown Pike. Fifty-five of the mapped sinkholes in Figure 4-5 are located in the transportation corridor within the recharge area. Many of the mapped sinkholes are immediate and adjacent to state routes, and in some locations, the roadway bisects some of the sinkholes. A spill in these areas has the potential to result in direct groundwater pollution. Interstate I-64 & I-75 cross the Royal Spring Aquifer from mile marker 114 to mile marker 122. Sinkholes located along the interstate highway system are generally removed from the roadway. It is anticipated that any spill of material being transported on the Interstate would not have enough volume or flow capability to reach a sinkhole unless an accident occurred during a major storm event, or, in the case of a fire large volumes of water were used for fire control.

The interstate highway system also have potential for introducing contamination to the surface waters of Cane Run Creek that flows under the interstate at mile marker 116.2. Cane Run discharges directly into a series of sinkholes in the stream channel and this is the major recharge tributary of the Royal Spring Aquifer. Discharge from streams into sinkholes is not noticeable in times of seasonal high flow, as the water table is high, but in times of low flow during the summer months, the entire stream flow is discharged directly underground. During summer, no surface flow of the stream is evident for a significant portion of the stream. The Cane Run tributary is an example of stream disappearance in low flow conditions.

Four major rural arterials in the recharge area also have potential for direct groundwater access. These are found along Georgetown Road, Iron Works Pike and Russell Cave Road and Paris Pike. The locations of sinkholes and surface streams relative to the transportation routes are shown in Figures 5-1 and 5-1-A. A detailed sinkhole location map and property identification of sinkhole ownership in Fayette County is found in Appendix 5-1.

Hazardous transportation incidents, either rail or vehicular, present a problem that can be minimized with proper planning and emergency response. Both Scott County and Fayette County have emergency response teams that have been active players in the development of this plan. The Cane Run watershed has been delineated and surface features such as storm drainage outfalls and sinkholes have been mapped. A corridor advisory plan has been devised to make persons traveling the corridors aware of the watershed protection area.


5-2 Land Use & Contamination Potential


The Royal Spring Water Supply Protection Committee has spent a considerable amount of time delineating the aquifer recharge boundary and identifying land use in the recharge area.

Recognizing the potential for pollution presented by various types of land use provides an opportunity to better plan for watershed protection. Following are major categories of land use and potential sources of contamination.

Agricultural Use
Animal burial areas
Animal feed lots

FIGURE 5-1
Sinkhole Locations and Transportation Routes

Fertilizer storage/use Irrigation sites Manure spreading areas/pits

Pesticide use/storage Sinkhole refuse dumping Fuel storage & use

Commercial

Airports Auto repair shops Boatyards Construction areas Car washes Cemeteries Dry cleaners Gas stations Golf courses Jewelry/metal plating Laundromats Medical institutions Nurseries and lawn care Paint shops Photography establishments Railroad tracks and yards Research laboratories Scrap and junkyards Storage tanks

Industrial

Asphalt plants
Chemical manufacturing/storage
Electronics manufacture
Electroplaters
Foundries/metal fabricators
Machine/metalworking shops
Mining and metal drainage
Papermills
Petroleum production/storage
Pipelines
Septic lagoons and sludge
Storage tanks
Toxic and hazardous spills
Wells (operating & abandoned)
Wood preserving facilities

Residential

Fuel oil
Household hazardous products
Lawns care
Septic systems, straight pipes, cesspools
Sewer lines (broken)

Other

Hazardous waste landfill
Municipal incinerators
Municipal landfills
Open burning sites
Recycling/ reduction facilities
Road deicing operations
Road maintenance depots
Storm water drains & basins
Transfer stations.

Contaminants are delivered to the aquifer via either a point source or a non point source. A point source is a direct discharge such as a sewer pipe. Point sources are permitted through the Kentucky Division of Water and are regulated through the KPDES permit system. Unregulated point sources may exist when pipes leak or rupture. A non-point source does not have a direct point of discharge and includes sources such as runoff from a field, a road or golf course especially during and after a storm event. In a karst area, non-point sources are extremely important due to the fact that sinkholes provide direct access to the ground water.

The following are examples of point and non-point sources:

a. Point Source Delivery

- On-site septic or lagoon treatment systems
- Leaky tanks or pipelines containing petroleum products
- Leaks or spills of industrial chemicals at manufacturing facilities
- Underground injection of industrial wastes
- Municipal landfills
- Leaky sewer lines
- Chemicals used at wood preservation or wood reduction facilities
- Mining related activities
- Cemeteries
- Road salt storage areas
- Wells for the disposal of liquid wastes

- Spills related to highway or railway accidents
- Asphalt production and equipment cleaning sites

b. Non-point Source Delivery

- Fertilizer use on agricultural and residential lands and golf courses
- Pesticides use on agricultural and lands, golf courses and woodland areas
- Contaminants in rain runoff, and snow melt from a "first flush effect" on impervious areas
- Sludge disposal (land spreading sludge)
- Runoff of salt and debris from roads and highways

5-3 Royal Spring Aquifer Land Use and Materials Inventory

In the fall of 1996, a large-scale effort was initiated by the Wellhead Protection Committee to inventory the potential contamination sites in the Royal Spring Aquifer. Application for a Federal Government program grant was made through the Kentucky Division of Water to enlist twelve volunteer members of the Americorps National Civilian Community Corps for a month. The inventory was initiated by means of a questionnaire (see Appendix 5-2). Questionnaires were mailed to more than 2,200 residents and property owners located in the aquifer recharge area in both Fayette and Scott counties. The purpose of the questionnaire and letter was twofold. One was to notify and educate each person about the karst nature of the wellhead protection area and the susceptibility of the groundwater to contamination. The second was to solicit information about specific materials and installations on the property that might be a source of potential contaminants. The questionnaires were distributed prior to the arrival of the Americorps volunteers.

The role of the Americorps Volunteers was to follow up on any questionnaires not returned or for which there were questions, and to map out potential contaminant sites. In order to do this a strategic operations center for the processing of information was set up. Detailed maps for the area were prepared using large scale topographic and street maps along with aerial photographs. Questionnaire responses were located on the maps and telephone surveys undertaken to fill in the information. In some cases site visits were made. Completing information for the Primary Recharge Area (Area 1 on Figure 1-1) was the first priority. As Area I was mapped, complete information was mapped for the area at increasing distance from the primary Recharge Area. The area was increased out away from the core area.

The responses below reflect information received form thirty three percent of the landowners or residents in the recharge area.

Respondents to the survey were classified on a percentage basis:

- Residential 50%
- Commercial 23%
- Agriculture –10%
- Other 10%
- Industrial-5%
- Government 2%

Survey sites that reported gasoline/fuels fell within these storage categories

- Residential 0 gallons
- Commercial 5 or more gallons
- Agricultural 50 or more gallons
- Industrial less than 5 gallons
- Other 500 or more gallons

More than 500 gallons of gasoline were stored on site by 29 out of 727 respondents. Over half of these (16 out of 29 surveyed) indicated that they had groundwater protection plans. The other 13 had no groundwater protection plan. In reviewing the entire range of responses it was found that the following petroleum products were stored at various sites throughout the aquifer:

Petroleum Products

- Solvents 6,265 gallons
- Gasoline/fuels 21,500 gallons
- Diesel/heating oil 4,740 gallons
- Oil/grease/lubricants 10,810 gallons.

Other non-petroleum products were located in the aquifer. The survey found 36 responses out of 727 locations had storage tanks. Of these only 10 had groundwater protection plans. The remaining 26 locations had no plan.

Survey sites reported paints/dyes/stains fell within these storage categories

- Residential 0 gallons
- Commercial less than 5
- Agricultural zero gallons
- Industrial less than 5 gallons
- Other over 500 gallons

Other useful information that was ascertained about site locations that will be helpful in the prevention of groundwater contamination are:

Responses of importance

- Sinkholes –2%
- Wells 4%
- Septic Systems 26%
- Floor drains 4%
- Acids 25%
- Oil/water separators 3%
- Used antifreeze 9 %
- Fertilizers 10%
- Insecticides <1%
- Solvents-<2%

Property owners indicated that approximately 20 sinkholes existed at various sites in the aquifer area. (the actual mapping of sinkholes in the aquifer recharge area indicated that 55 sinkholes are present if Fayette County). Review of soil maps and topographic maps in Scott County indicates approximately 33 more sinkholes have been mapped. These areas are shown in Figure 4-5-A. One property owner responded that he had a sinkhole and an underground storage tank with over 500 gallons of fuel with no groundwater protection plan. The following breakdown of the 727 properties that responded to the questionnaire about groundwater protection plans are:

Sites with Groundwater Protection Plans

- Commercial 45 %
- Agricultural –23%
- Residential 16 %
- Industrial 11%
- Other 4%
- Government 1%

The notification and response of the property owners / business, commercial, and residential residents has been deemed a success in this phase of the protection of the Royal Spring Aquifer. A lot of information was generated about the aquifer and every parcel of land was notified of the importance to have groundwater protection plans and to be careful in everyday habits. Many of the people had no idea that the area was sensitive to pollution accidents.

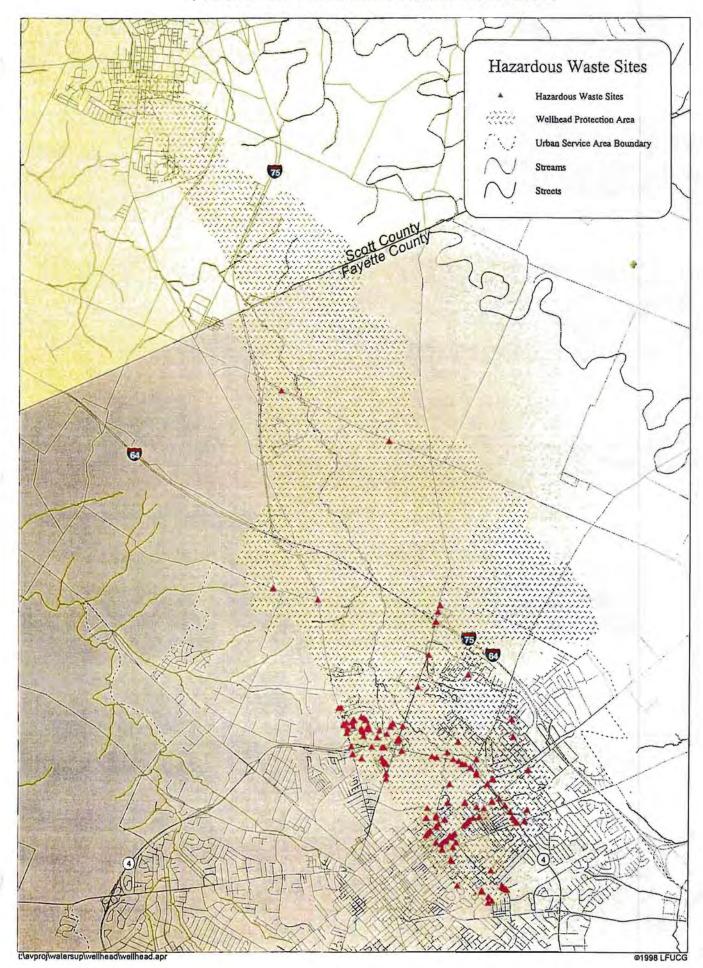
5-4 Public Meeting on Wellhead Protection

As part of the process for developing a wellhead protection plan, a public meeting was held at the Kentucky Horse Park in May 1998. This meeting provided an opportunity for the public to identify any potential threats to the aquifer perceived by the public and to provide input to the planning process. The location for the meeting was very appropriate in that the Horse Park is located entirely in the aquifer. Extensive notification for this meeting was made to both counties and public officials as well as public notification to both communities, and was well received. Minutes from the meeting are found in Appendix 5-3.

5-5 Existing records

The wealth of information on file with the Fayette County Division of Emergency and Environmental management, the Georgetown/Scott County Emergency Management Agency and the various state agencies combined with the 1996 survey of property owners in the wellhead protection area provides an understanding of current conditions and problems in the aquifer and watershed of Cane Run useful for planning and in reviewing future development in the aquifer. The Wellhead Protection Committee will investigate each project as to location in the aquifer area, the land use and the types of activities planned to identify land management practices to protect the environment and prevent pollution of the groundwater. Significant changes in existing urban and rural land use will be monitored to identify the need for different methods of protection.

Existing records maintained by the Division of Environmental and Emergency Management and the Lexington Fayette Urban County Fire Department for hazardous incident planning and response identified locations of potential contamination sources. These are shown in the following figures:


- Figure 5-2 & 5-2-A Hazardous Waste Generator Sites
- Figure 5-3 & 5-3-A Permitted KPDES Sites
- Figure 5-4 & 5-4-A Stormwater Hazards
- Figure 5-5 & 5-5-A Underground Storage Tanks
- Figure 5-6 & 5-6-A Hazardous Materials Storage Facilities

The actual site locations may be found in Appendix 5-4 to 5-5

• Hazardous waste generators

Review of records on file with the Cabinet for Natural Resources and Environmental Protection show there are approximately 522 facilities in Fayette County registered on the Resource Conservation and Recovery Act (RCRA) notifier's list. Approximately 299 of these facilities are

FIGURE 5-2 Hazardous Waste Generators

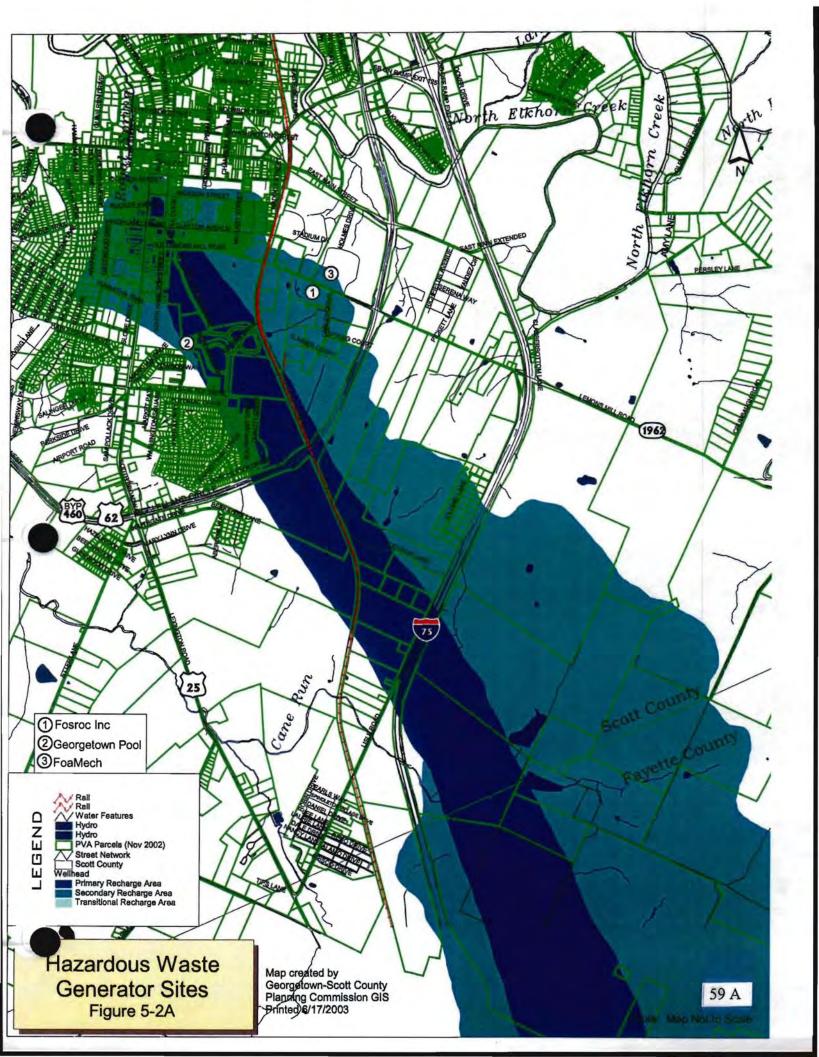
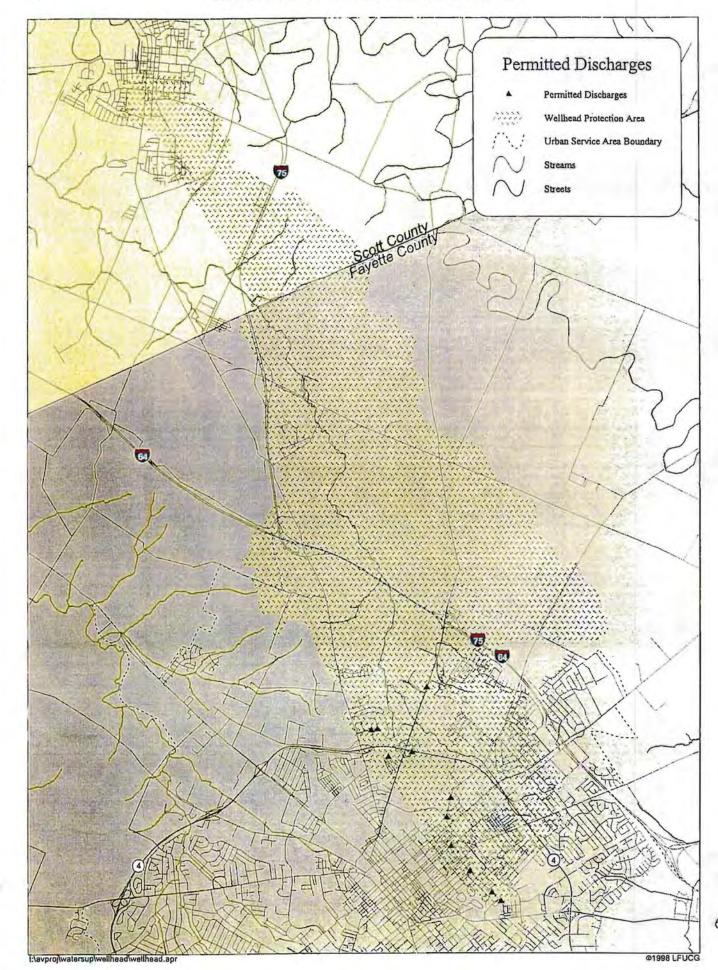



FIGURE 5-3 Permitted KPDES Sites

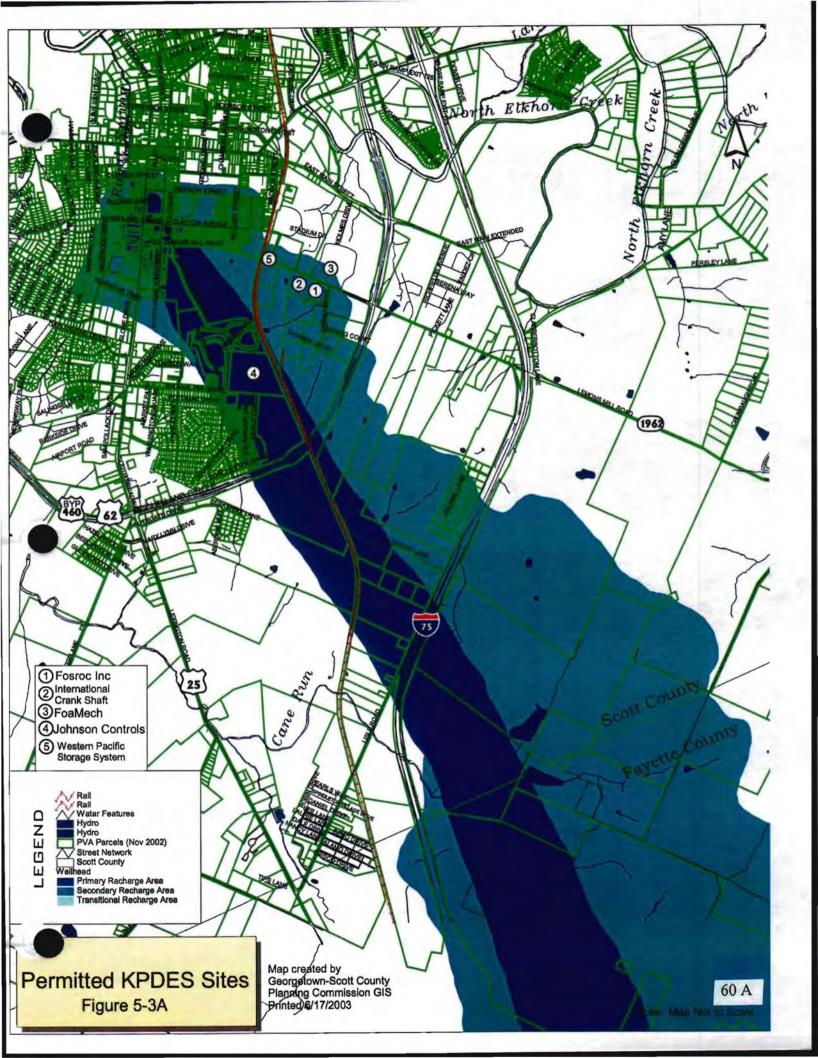
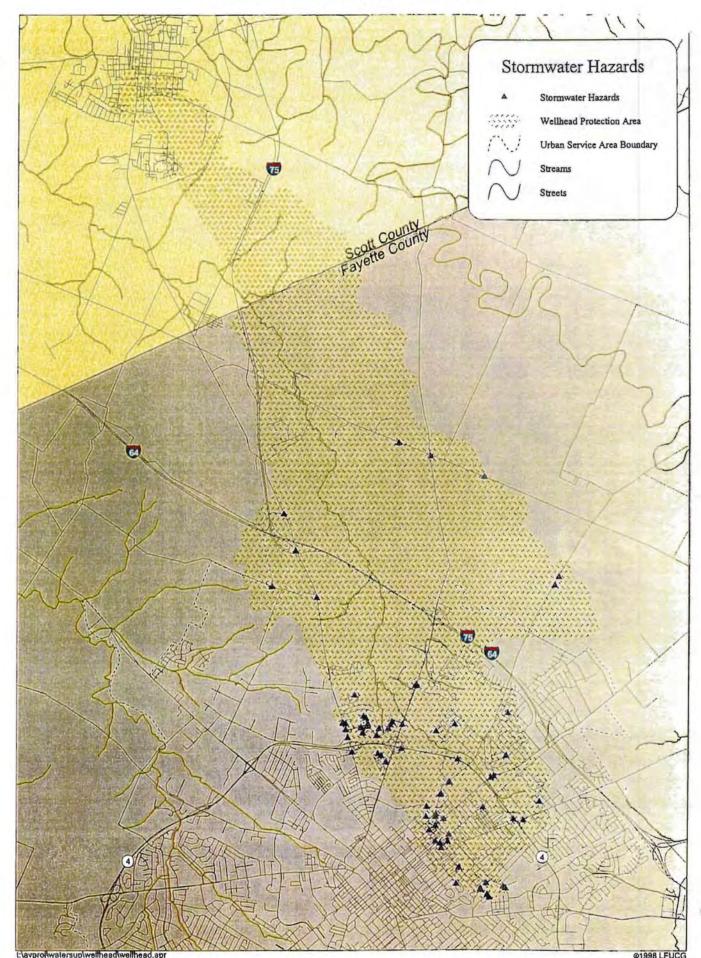
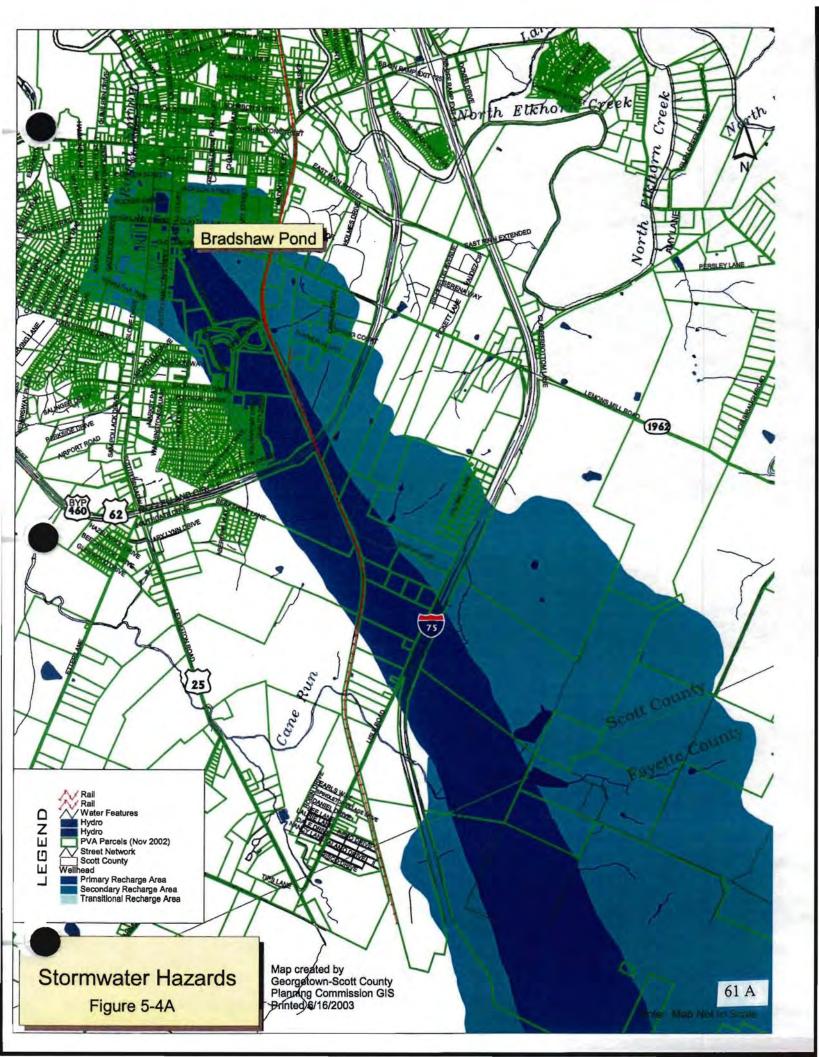
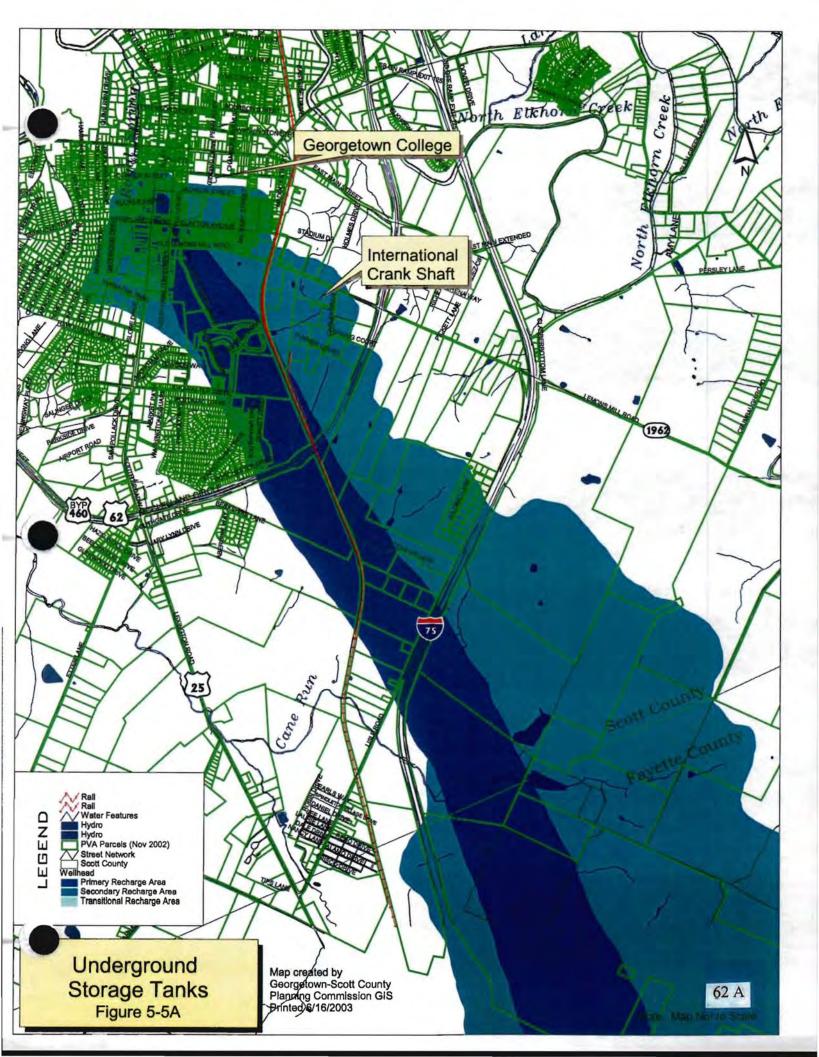



FIGURE 5-4 Stormwater Hazards





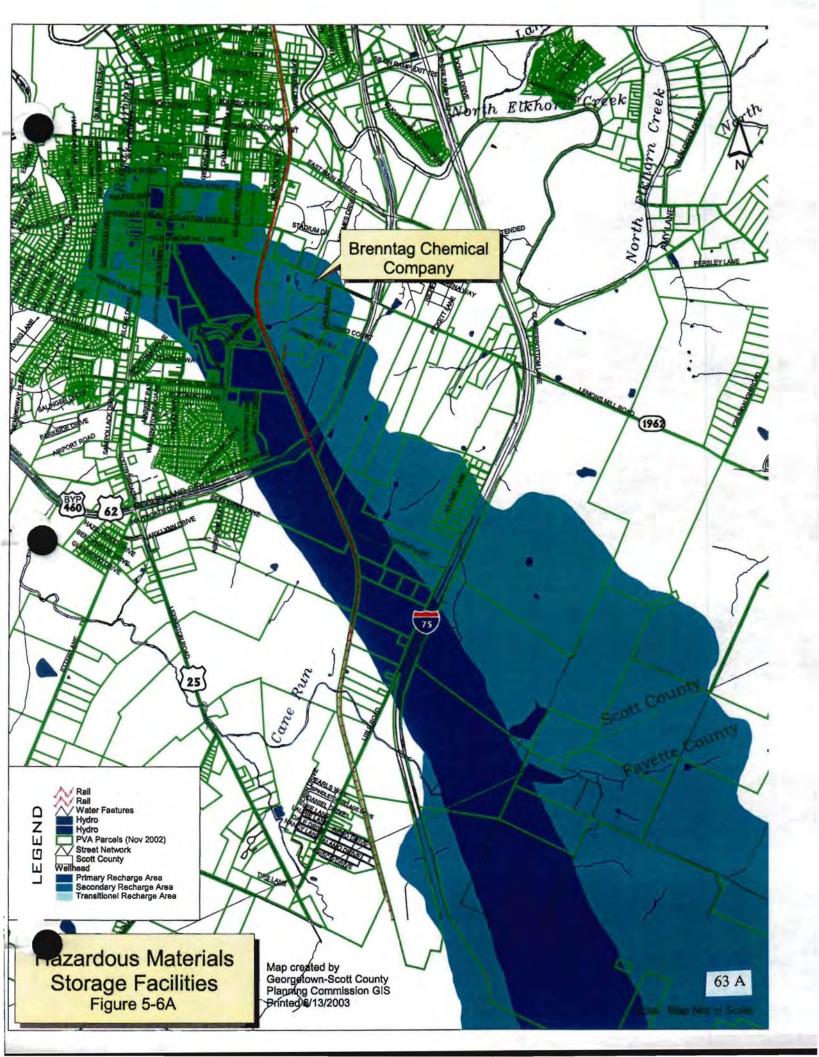


FIGURE 5-5 Underground Storage Tanks

not currently generating hazardous waste. Of the remaining facilities, 158 are limited quantity generators (generating less than 100 kg per month), 47 are small quantity generators (generating between 100 kg and 1000 kg per month), and 18 are large quantity generators (generating more than 1000 kg per month). Hazardous materials locations in the Royal Spring Aquifer for Fayette and Scott Counties are located in Appendix 5-4 & 5-5.

• Active or Inactive Underground Storage Tanks

Records on file with the Kentucky Division of Waste UST Branch indicate there are approximately 622 petroleum underground storage tanks (USTs) in Fayette County registered with the Cabinet. Based on Federal EPA estimates, it is believed 25% of UST systems have experienced some degree of petroleum release. Records on file with the Division of environmental and Emergency Management indicate there are 247 sites within Fayette County with active underground storage tanks registered with DEEM. This differs from the number of USTs registered with the Cabinet since DEEM registers USTs by site (one site may have multiple tanks) while the Cabinet registers each individual UST. Additionally, the universe of USTs required to register with DEEM is larger than those required to register with the Cabinet, since DEEM requires owners/operators of emergency generator STs, heating fuel USTs at business establishments and farm USTs to register.

CERCLA Sites

Review of records on file with the Division of Waste Management Superfund Branch indicate there are three active Comprehensive Emergency Response Compensation and Liability Act (CERCLA) sites in Fayette County. These include the US Federal Correctional Institute (KY0000102475) and the US Veterans Medical Center (KY5360900000) located at 3301 Leestown Road and Cooper Drive, respectively. There was no detailed information available on the third site, listed as Ohio River Flood (KY0001895770).

Underground injection wells

The Safe Drinking Water Act (SDWA) provides for the protection of underground sources of water through regulation of underground injection. The construction and use of any underground injection well requires a permit issued under the underground injection control (UIC) program, which in Kentucky is a federal program administered by Region IV EPA. The regulations for different types of injection wells vary. Injection wells are classified as follows:

Class I	Wells that inject hazardous waste or other industrial and municipal
	fluids beneath the lowest formation containing, within one quarter
	mile of the well bore an underground source of drinking water

(USDW).

Class II Wells that inject fluids for enhanced recovery of oil or natural gas

and for storage of hydrocarbons, which are liquid at standard

temperature and pressure.

Class III Wells that inject fluids for the extraction of minerals.

Class IV Wells used by generators of hazardous or radioactive wastes to

dispose of the material, generally above a formation containing, within one quarter mile of the well bore, a USDW, or an aquifer.

Class V Wells not included in the first four classes.

Elaine Conley of Region IV EPA, stated that EPA does not currently have a listing of UIC wells. There are no permitted underground injection wells in Fayette County according to Region IV EPA, however there are six known major outfalls where stormwater enter sinkholes within the county, which would be classified as Class V injection wells. Due to the availability of sanitary sewers within the Urban Service Area (where most businesses and homes are located) it is believed the number of UIC wells within Fayette County is limited. It is possible that some of these systems may serve more than 20 people per day and therefore would be considered a Class V injection well.

Dumps

Fayette County has several mechanisms in place to discourage illegal dumping. The LFUCG Division of Planning administers an ordinance which forbids the placement of trash, rubbish, fill or other debris within sinkholes. The LFUCG Division of Environmental and Emergency Management and the Lexington-Fayette Urban County Fire Department administer the Hazardous Materials Ordinance, which requires the environment be restored once a hazardous material (including petroleum) is released. The Lexington-Fayette County Health Department and the LFUCG Division of Code Enforcement also administer ordinances that forbid illegal dumping.

Government agency activities as well as citizen involvement in reporting illegal dumping locally,

prevent extensive dumping from being a significant problem in Fayette County. Although several sites are currently being monitored, there is only one known area within the county requiring cleanup, and it is not in the Wellhead Protection area.

5-6 Future Contamination Potential

In order to identify the potential for pollution with new land uses, it is necessary to continue an inventory process. It is intended to require that all new development in the aquifer protection area, in Fayette and Scott Counties be identified in the planning and zoning process as to the potential for contamination. In Fayette County, this is accomplished through the use of an *Environmental Review Form for existing site characteristics that is required for major subdivision and development plan applications* and completed for each proposed development at the beginning of the planning process (see Appendix 5-6). This form will aid in determining the potential for pollution for each plan that has to be approved in zone changes, subdivision plans and development plans. The inclusion of this information, up front, will allow timely decisions to be made in the planning process. Scott County would benefit from use of a similar form for planning purposes.

Pertinent to the Royal Spring Aquifer, the following items are required on the Subdivision & Development Plan Existing Site Characteristics Review Form for existing site characteristics:

- Proposed land use
- Location in the aquifer protection area (zone 1&2)
- Sinkholes located on site
- Any sinkholes with debris/rubbish on site
- Any springs on site
- Domestic water wells
- Septic tanks on site
- Underground fuel tanks on site
- Proposed hazardous materials on site
- Existing hazardous materials on site
- Is a sediment control plan required
- Sinkhole development plan required
- Groundwater protection plan required

Depending upon the type and location of any given development certain special development notes may be required for watershed protection. Section 9 covers the long range planning for the protection of the Royal Spring Aquifer.

5-7 Determining the Waste Hazard Potential

The hazard potential of a chemical is determined by a number of variables. These are:

mobility of product - The material must be able to enter the ground-water environment and travel with the ground water. Certain substances are essentially immobile (e.g., asbestos fibers) while others are highly mobile. Most substances fall between these extremes.

persistence - Some substances such as halogenated hydrocarbons decay or degrade very slowly and have a higher hazard potential than other equally toxic materials that decay more rapidly.

volume - Some substances, such as horse muck piles, are only moderately toxic but because they are produced in enormous quantities have a somewhat higher hazard potential.

concentration - Substances entering the ground-water environment in concentrations which could potentially endanger human health have a higher hazard potential. Concentration may decrease with dilution and attenuation but the amount of decrease at a given place depends, in part, on mobility and interaction with soils and aquifer material.

5-8 Emergency Planning and Response

Both Fayette County and Scott County have developed an emergency response planning initiative for the protection, health, and safety of county residents. Both organizations work independently in each county and coordinate activity when necessary. Both organizations have been active in the development of the Royal Spring Wellhead Protection Plan.

Georgetown/Scott County Emergency Management Agency (E.M.A.)

Created after the sever weather and in 1974, the Georgetown/Scott Co. Emergency Management Agency currently has a new state of the art Emergency Operations Center, Emergency

Management headquarters, a 38' Command Post vehicle, two response vehicles and a staff of 13 trained in various aspects of emergency response

The Georgetown/Scott County E.M.A. is part of a statewide comprehensive emergency management program for the Commonwealth, and through it an integrated emergency management system, to provide for adequate assessment, mitigation, preparation, response and recovery from the threats to public safety and the effects of destruction resulting from all major hazards. Some of these hazards include tornado, blizzard, ice storms, snowstorms, flooding, earthquakes, hazardous materials, or disaster or emergency occurrences that threaten life, property or the environment.

The Georgetown/Scott County E.M.A. is part of the Local Emergency Planning Committee. This committee helps to improve the quality of our community's chemical emergency response plans and to reduce chemical risks. By planning and ensuring that facilities that store extremely hazardous substances have done their required reporting helps in better preparation for a potential chemical accident.

A Hazardous Materials Ordinance (ordinance number 96-009 - Appendix 5-7) is in place for the purpose of protecting public health/safety and the environment in Scott County. This Ordinance provides local agencies and the community the ability to recoup costs from the responsible party of the release.

Fayette County Division of Environmental and Emergency Management (DEEM)

The local Division of Environmental and Emergency Management was initially established in 1985. This Division currently has two primary areas of responsibility. These are Emergency Management, and Environmental Protection. Hazardous materials management is the responsibility of the Lexington-Fayette Urban County Government Fire Department. The two areas relevant to wellhead protection, Hazardous Materials Management and Environmental Protection, are accomplished through several local ordinances and regulations. Chief among these is Section 16A, the Hazardous Materials Ordinance. This ordinance requires facilities which handle hazardous materials (including petroleum) to register with DEEM; establishes the

Technical Advisory Commission (TAC) to advise City Council on environmental issues; requires the environment be restored when a release occurs; requires Spill Prevention and Control Plans be developed by certain facilities; and establishes the local HazMat Response Team and HazMat coordinator. DEEM administers the local Underground Storage Tank regulations for commercial petroleum UST(s), nonpetroleum UST(s) and farm UST(s). These local regulations are considered to be more comprehensive, relative to installations than the existing state UST regulations, in the types of tanks regulated.

5-9 Municipal & Private Sewer Waste Systems

Municipal Sewer Waste Systems

Municipal waste systems have no receiving streams in the Royal Spring Aquifer Protection Zone. Fayette County has a class A sanitary sewer pump station with a 24 inch diameter force main to serve the Coldstream area located in Cane Run. This force main pumps to the Southern Railroad right-of-way, then follows the right-of-way to the Manchester Street Relief Sewer, which flows directly to the Town Branch Treatment Plant. To date, no sewage bypasses have occurred in this new system. This pump station will, in time, eliminate eight old pump stations, some of which are in the aquifer recharge area. Today some problems are encountered with the pump stations, manholes, sewer lines and overflow valves located in the recharge area. When a discharge occurs, the effluent generally discharges into the surface waters of Cane Run. Fortunately these occurrences are usually in a period of intense storm events with a significant amount of rainfall so dilution plays an important role in lessening the problem. At Royal Springs during an intense storm event, degradation in water quality of wastewater is not observed. Problems have been noted in the dry summer months, not related to infiltration but due to the lack of rain.

The Lexington Fayette Urban County Government is in process of developing a Sanitary Sewer Overflow plan to reduce sanitary sewer overflow from inflow and infiltration of water, inadequate sizing of sewer lines, and pump station malfunctions. The locations of the problem areas are shown in Figure 5-8, with street listings in Table 5-2.

TABLE 5-2 OVERFLOW PROBLEMS – FAYETTE COUNTY LOCATION ESTIMATE YEAR / FIX

Pump station problems		
Winburn Estates Pump stat	2002	
Winburn Pump Station	2004	
Throughbred Acres Pump	2004	
Sharon Village Pump Stati	2004	
Manhole problems 1510 Russell Cave Road	4	2004
1434 Edgelawn Ave	5	In progress
7 th & Jackson	12	current project
Lancaster Ave	12	current project
801 Marcellus	12	current project

Private Sanitary Waste Systems

Only one package treatment plant exists in the Royal Spring Aquifer Recharge Area. This treatment plant (KPDES permit number KY0048101) is located at the Kentucky Horse Park. The treatment plant serves the Kentucky Horse Park, Spindletop estates and the Council of State Government. The rated capacity for this plant is 150,000 gallons per day. It is currently (based on 1996 figures) having an average daily flow of 191,000 gallons per day, discharging over 40,000 gallons per day in excess of the rated capacity. The treatment plant excess is currently allowed to be spray-irrigated in certain areas of the Horse Park in lieu of discharge to Cane Run.

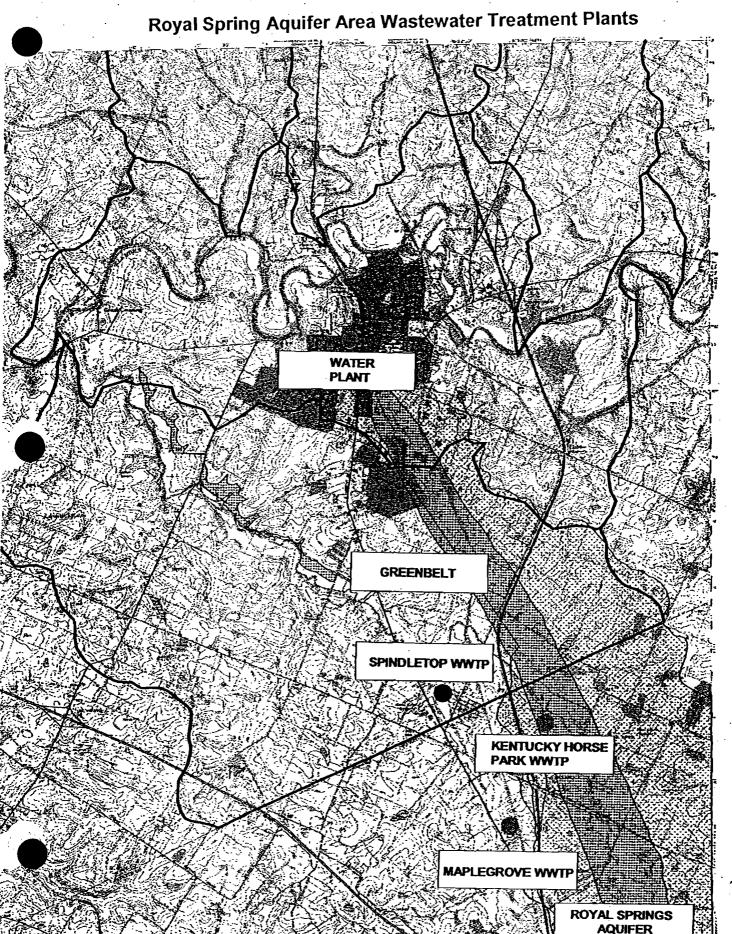
In the summer of 1998 the Kentucky Horse Park received notice of 7 violations from the Commonwealth of Kentucky Natural Resources and Environmental Protection Cabinet, Department for Environmental Protection with regard to the disposal of wastewater and horse muck. In 1999 an agreed order (Case No. DOW 98153) directed the Kentucky Horse Park to connect to the Lexington-Fayette Urban County Government sewer system by December 31, 2000.

Two other treatment plants, the Spindletop WWTP in Scott County and the Maple Grove Mobil Home Trailer Park WWTP in Fayette County are located near the aquifer zone. These are shown

in Figure 5-9. Both of these facilities are small producers. These treatment facilities are adjacent to but outside the aquifer recharge area and probably do not impact the aquifer. The Lexington Fayette County Health Department has indicated that they have not received any complaints in the last several years about these treatment facilities.

Sanitary sewer policy

Fayette County


Fayette County has a sanitary sewer policy that allows for development in the Urban Service Area subject to the availability of sanitary sewers. Section 201 of the Facilities Plan for Waste Water Treatment Works (1978) incorporated the desire of the Lexington Fayette Urban County Government to provide public treatment for persons using package plants to meet the mandated federal water quality standards. The adopted plan stipulates that all areas served by private treatment plants should be incorporated into the public system as private treatment plants are phased out.

5-10 Septic Systems & Soil Types

Groundwater contamination from failing septic systems and package treatment plant discharge is always a concern. In the Rural Service Area (RSA), past policy was to allow for development of septic systems on lots of ten acres or more. This regulation had been in effect since 1964. Prior to that time, septic systems were allowed on parcels as small as one acre in size in Fayette County. It was intended to maintain a density of 64 septic systems in any given square mile.

More recently, the minimum rural lot size for most of Fayette County's agricultural lands (zoned A-R) has been increased to forty acres. This allows for only 16 septic systems in a given acre. The Rural Land Management Plan, whose implementation is currently underway, has created a recommendation for a 40 acre minimum lot size in most of the Rural Service Area of Fayette County. This 40 acre lot size is to remain a zoning requirement while Fayette County explores the development of Purchase Development Rights (PDR) in the Rural Service Area.

FIGURE 5-8

In the Royal Spring Aquifer protection area, two soil associations are found the Maury-McAfee association and the Lowell-Loradale-Mercer association illustrated in Figure 5-9. The predominant soil type for most of the aquifer is that of the Maury-McAfee association. Each soil type in the aquifer has specific properties in terms of the treatment attenuation of effluent. The soil types may also vary in the absorption rate of effluent depending on the slope of the land and the physical properties of the underlying bedrock. A rock that is fractured, or a rock unit that contains sinkholes may have a different suitability for a septic tank drainfield or for land application of wastewater.

Septic systems utilize natural processes to treat and dispose of wastewater. All processes use the soil as a medium to assimilate and attenuate pollutants. Three of the most common systems are The conventional septic system, the vault system and an alternating drainfield system. Each system utilizes the principal of a separator or septic tank, a distribution box to direct the flow of liquid waste, and leachfield line(s) that runs into a drainfield or absorption field. The septic tank, separates solid and liquid waste. The heavier solids settle to the bottom to produce sludge while the liquid and lighter solids float to the surface. When properly working, bacteria in the septic tank break down the effluent and sludge. The liquid waste from the top of the septic system drains into a distribution box to the drainfield. The

drainfield provides the final treatment of the wastewater through soil filtration until it reaches the groundwater system.

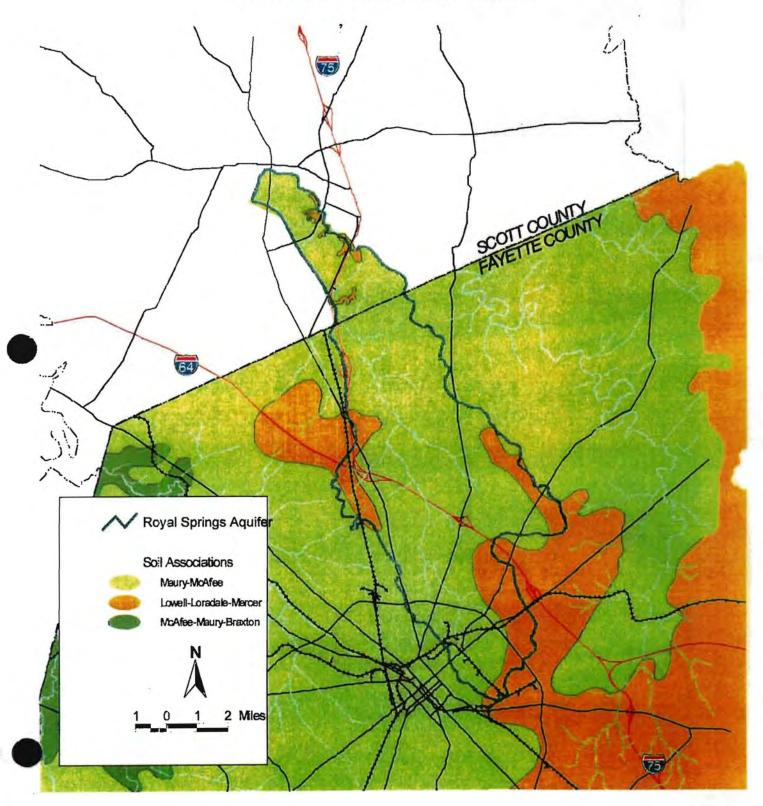

A number of problems can arise with septic systems. Preventive Maintenance and pumping out of the system to reduce the solid materials are often not done. When the septic tank becomes filled with solids, the system fails when the solids flow into the distribution box and the drainfield becomes clogged. Once the drainfield becomes clogged, septic treatment of the effluent no longer occurs. The effluent then breaks out of the system. In the Royal Spring Aquifer, the soils are thin and sinkholes are abundant. This permits a direct flow of contamination to the aquifer. Routine maintenance is one way to have a properly functioning system. The State of Kentucky does not have a mandatory cleaning schedule for septic tank systems, however it is recommended that septic systems be cleaned out every three to five years.

FIGURE 5-9: FAYETTE & SCOTT COUNTY PREDOMINANT SOIL TYPES

Soil associations adapted from September, 1967 map by KENTUCKY AGRICULTURAL EXPERIMENT STATION U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

Base data (excluding soil associations) was from digital information maintained by LFUCG GIS section.

Compiled by the Division of Planning, February, 2001.

Once a system becomes clogged, it is difficult to correct. Some of the new synthetic organic septic tank cleaners are very detrimental to ground water. One specific cleaner contains trichloroethylene (TCE) which is considered to cause cancer in laboratory animals. This product is known to readily leach from septic systems into the groundwater. While these cleaners may open up a septic system, they also can pollute the groundwater.

The State of Kentucky through 401 KAR 5:037 requires a generic groundwater protection plan for residential septic systems. This plan is found in Appendix 5-8. This septic system plan and brochure provides space for the residential owner to record vital information on each individual system and information on what to do and what not to do in the maintenance of a septic tank system. Some communities establish a septic system management service for septic tank inspections, tank pumping, water quality testing and system repair.

According to test results at Royal Spring, septic systems in the aquifer and land treatment of effluent at the State Kentucky Horse Park do not appear to be a problem at this time during high or regular flow of the aquifer. During periods of seasonal low flow, nitrates do increase in concentration at Royal Springs. This may be more problematic to the individual wells and springs in the aquifer system for individual properties utilizing the waters of the Royal Spring Aquifer.

Information has and will continue to be dispersed to landowners in the recharge area concerning their impact on water quality. The Scott County Conservation District granted the Royal Spring Water Supply Protection Committee \$2,000 for water quality educational materials to schools in the area. Other material is expected to be distributed concerning the protection of the water supply in Royal Spring including materials to landowners informing them of the proper maintenance of their septic systems.

5-11 Municipal & Private Landfills

There are currently two active (permitted) landfills in Fayette County. These are both operating as construction/demolition debris landfills. The LFUCG landfill is located on Haley Road

(permit # 034-00007). The second landfill located at 4400 Haley Pike is operated by Demolition Disposal Services (permit # 034-00040).

In addition to the two active landfills discussed above, there are five inactive landfills within the county. These are the Lexington City Incinerator Landfill (permit # 034-00001), the Avon Lexington Signal Depot (permit # 034-00002), Jacks Creek Pike Landfill (permit # 034-00003), City of Lexington Construction Demolition and Debris Landfill (permit #034-0005) and the City of Lexington Landfill (permit # 034-00006). The Lexington City Incinerator Landfill, the City of Lexington Construction Demolition and Debris Landfill, and the City of Lexington Landfill are all located north of Old Frankfort Pike between Forbes and New Circle Roads. The Lexington Signal Depot Landfill is located at Avon, while the Jacks Creek Pike Landfill is located in the vicinity of Raven Run Nature Sanctuary. No municipal landfill systems are located in the aquifer recharge area.

Any new municipal or private landfill would have to conform to a number of state and local regulations. An outline of Fayette County regulations may be found in Appendix 5-11.

There are no known existing hazardous waste sites in the Royal Spring aquifer.

5-12 Sinkhole Dumps

There are very few, if any, sinkholes in the recharge area being used as a dump sites. If any are detected, Scott County has the cost-share program in place to financially help landowners with the cleanup. The Scott County Fiscal Court has allocated funds through the Solid Waste Division and the Scott County Conservation District to address this problem. The district receives \$30,000.00 per year to fund projects that improve the quality of water in Scott County. Part of this money is used to clean out sinkholes that have been used as dump sites. All sinkhole cleanup projects are cost-shared at a rate of 50%, not to exceed \$2,000 per individual per year. The district has funded the cleaning up of two sinkholes and plans to increase this number as word of the program reaches more landowners.

Fayette County does not have a cost share program to clean out sinkholes. Today no sinkholes have been identified in the aquifer area as being a waste problem. In 1985 Fayette County

adopted, as part of the Land Subdivision Regulations, a sinkhole regulation which prohibited the filling of sinkholes with fill or debris (considered fill). Known areas of sinkhole debris have been cleaned up. The knowledge of the importance of the Royal Spring Aquifer over the past twenty-five years has also led to the closer scrutiny of environmental planning in the watershed.

5-13 Rural Non Point Source Pollution

Contamination from herbicides, fertilizers, & pesticides and from animal waste in the form of non point pollution is a factor when any large land area has cropland, pasture, or agricultural activity as the predominate land use. In the Royal Spring Aquifer, the predominant rural land use is that of equine industry and cattle pastures in Fayette County and pasture and row crops in Scott County, Figure 5-11 is an aerial photographic view of the Royal Spring aquifer (a portion. of the basin in the northern reaches of the aquifer does not have photographic coverage). In Fayette County, a major portion of rural land use is controlled by the University of Kentucky agricultural experiment station at Coldstream Farm and the State owned Kentucky Horse Park. Together all public lands in the Rural Service Area total over 3,267 acres or 42% of the rural land area. Generally in rural lands, stream bank erosion and erosion from crop tillage constitute a significant problem in terms of sediment migration and nutrient deposition. In-stream livestock watering and manure can contribute to high levels of nutrients and organic loading in runoff from these areas. The organic loading can also contribute to bacterial contamination and dissolved oxygen problems. Improper manure storage practices have been identified in the watershed in the past and remedial measures were initiated. The Kentucky Horse Park has stored a tremendous amount of horse muck on the property and this is a concern that has to be addressed. This was a concern brought up in the public meeting on wellhead in May 1998 (see appendix 5-3). The Lexington Fayette Urban County Government has developed a protection plan for the storage and handling of horse manure in commercial operations (this does not pertain to the Kentucky Horse Park as it is a State operation).

Pesticides used to control weeds and insects may contaminate the aquifer and groundwater wells in the area. At this time it is deemed that pesticide contamination is not a problem. Based on the State Division of Water performing pesticide tests for GMWSS at Royal Springs four times a

year. Each test has been negative with below detectable levels readings. Historically information on pesticides and groundwater contamination is scarce throughout the United States due to the extremely high cost for monitoring and analysis. Until about 1979 little was known about the movement of pesticides in the soils with regard to the groundwater system. Literature review has indicated that the type of aquifer that we have being a shallow aquifer with thin clay soils is not very good for the breakdown and degradation of pesticides. Once the pesticide reaches groundwater microbial activity decreases due to the low levels of organic material and the half-life greatly increases. Mobility will also greatly increase. Unfortunately in a karst area, such as we have, the potential for pollution is greater than in a non-karst area. Future development though in the aquifer area in terms of residential and business and commercial / industrial development the Coldstream Research Park and adjacent areas will probably see an increase in pesticide use.

Turbidity and stream bank erosion of Cane Run has been a minor problem in the past but potentially could increase with the Coldstream Research Park and adjacent areas. Turbidity, which is the measurement of suspended particles in the water, has not been a significant problem to date. Drinking water leaving the GMWSS water treatment plant is five times less than the required EPA MCL (0.5 NTU's) and has to date not exceeded 0.1 NTU's. Some erosion has taken place on Cane Run, and remedial work was initiated by a joint effort with the University of Kentucky and the Fayette County Natural Resources Conservation Service in the development of a stream bank restoration program. Portions of the stream banks were rebuilt. A major portion of the stream in the new Coldstream Park that will be under the ownership of the Lexington Fayette Urban County Government will be set aside as Greenspace and plans are being implemented for riparian restoration surrounding the stream banks.

A major restoration project of Cane Run using native Kentucky species is shown in Figure 5-12. The Lexington Fayette County Government intends to systematically restore riparian forests to the creek bank of Cane Run. This is a major step to improve the aquatic and wildlife habitat as well as helping to restore water quality to the stream. The reforestation project began in the spring of 1999.

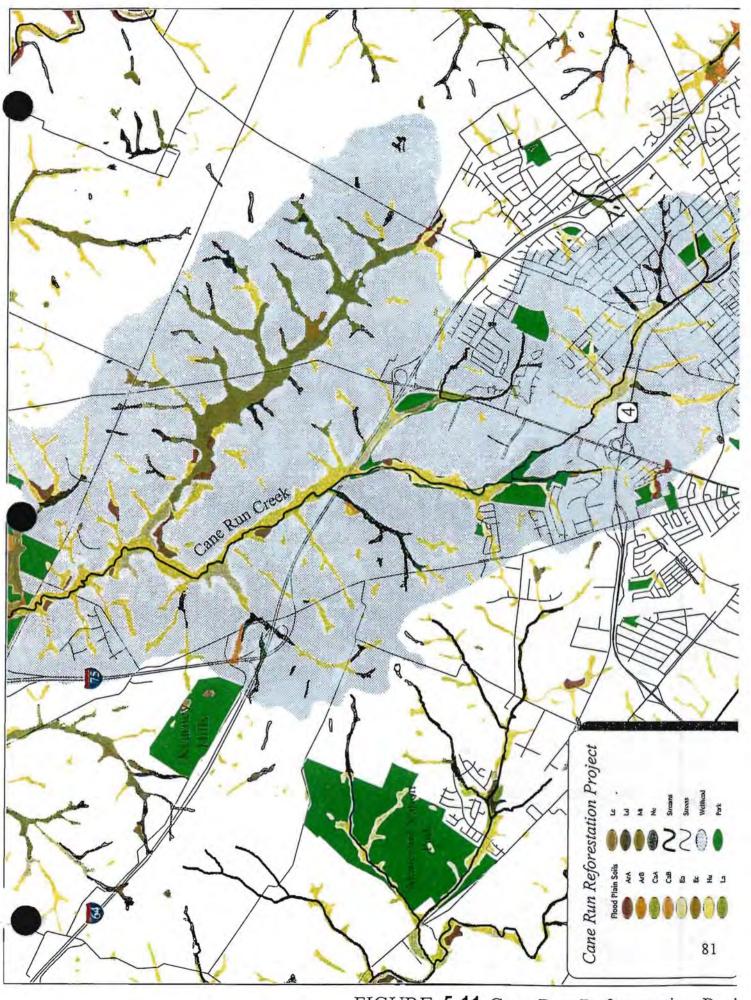


FIGURE 5-11 Cane Run Reforestation Proj

There are several federal, state, and local programs available to landowners to address natural resource issues and problems in the area. Scott County as well as Fayette County offers a number of programs that may be available to landholders for conservation programs through the Natural Resources Conservation Service (NRCS)*. Some of these programs are:

- 1. Environmental Quality Incentives Program (EQIP) is a federal cost-share program created to help reduce soil erosion and improve water quality. EQIP provides technical assistance, cost-share payments, incentive payments, and education to producers who enter into 5-10 year contracts based on conservation plans.
- 2. Conservation Reserve Program (CRP) is a federal program created to restore erodible land and protect environmentally sensitive areas. Cost-share and incentive payments are available.
- 3. Scott County Water Quality Cost-Share Program is a local cost-share program created to improve and protect water quality in Scott County. This program is implemented by the Scott County Conservation District and funded by the Fiscal Court. Cost assistance is provided to landowners to implement Best Management Practices on their land. Cost assistance is also offered for environmental education, research, and other projects that help improve water quality.
- 4. Kentucky Soil Erosion and Water Quality Cost-Share Program is a state program created to assist landowners in protecting soil and water resources in Kentucky. Priority is given to animal waste related problems. This program is a result of House Bill 377, which was passed by the 1994 General Assembly.
- 5. Wildlife Habitat Improvement Program is a Federal cost-share program administrated by the NRCS to enhance habitat on eligible land for: upland species, fisheries and other types of wildlife. It provides both technical assistance and cost-share payments to help establish and improve fish and wildlife habitat.
- 6. Land Acquisition/Easements For Elkhorn Creek is a grant from the Environmental Protection Agency (EPA). The purpose of this grant is to acquire land or easements along streams and sinkholes in the Elkhorn Creek Watershed. The purpose of this grant is to improve water quality by reducing contaminants from non-point source pollution.
- * For more information about these programs, contact the Natural Resources Conservation Service or the Scott and Fayette County Conservation Districts.

THIS PAGE LEFT INTENTIONALLY BLANK

Section 6. Land Use Evaluation

Land use, both existing and proposed, will be the key issue in the development of a wellhead protection plan for the Royal Spring Aquifer. A fundamental axiom of a public watershed management program in regard to a public water supply is that the raw water supply sources should be left undeveloped to the maximum extent possible. The Royal Springs Recharge area contradicts this axiom due to the intense development pressures upon the land in both Scott and Fayette County. The inclusion of one of the most traveled interstate highways bisecting the aquifer is a magnet for development. The State mandate for the Royal Springs Aquifer has dictated that a strong watershed management program be adopted.

The effects upon water quality are well known when land use changes are brought about through development. The following events usually occur:

- Increase in impervious area results in an increase in the runoff ratio
- Change in the natural stream channel occurs through an increase in runoff volume
- Change in the natural channel occurs through man made changes
- General channel instability increases
- Increased bank erosion occurs
- Channel movement occurs
- Altered floodplain / downstream flooding occurs
- Potential to transport increased loads of pollutants and contaminants
- New sources of pollutants and contaminants occur
- Loss of trees and stream ecology degradation result in decreased water holding capability

The greatest effect of land use changes with developing communities is the direct relationship between increases in impervious areas and stormwater pollutant concentrations. This generally results in elevated levels of the following:

- Nutrients
- Coliform counts
- Sediment loads
- Metals
- Pesticides

Land use analysis for this plan will look at the existing land use and the proposed land use at full development for the recharge area. The breakdown of each land use type will be an indicator of the potential for pollution. Both Scott, and Fayette County have adopted Comprehensive Land

Use Plans. In terms of land use Table 6-1 rates the intensity of land use by type of development. The least intense development is agriculture with a rating of 1. In contrast, heavy industrial land use has the highest intensity rating.

TABLE 6-1 INTENSITY OF LAND USE

- 1. Agriculture
- 2. Horse Farms
- 3. Low density residential
- 4. Medium density residential
- 5. High density residential
- 6. Very high density residential
- 7. Professional services
- 8. Office, industry and research parks
- 9. Retail trade
- 10. Highway-oriented commercial
- 11. Warehousing and wholesaling
- 12. Light industry
- 13. Heavy industry

6-1 Susceptibility Analysis

Contaminant identification and the potential for groundwater pollution are required to be assessed under the 1986 Amendment to the Safe Drinking Water Act. The process used to determine the potential for pollution is called "Susceptibility Analysis". The state and federal guidelines for this analysis are based upon the premise that the "susceptibility" of the public water system is the potential for a public water system to draw water that is contaminated at concentrations that would pose extraordinary treatment issues or public health concerns. A three-fold analysis of karst areas has been developed for susceptibility analysis. This analysis for the different types of land use in the aquifer area will allow Scott and Fayette County to draw conclusions about the risk posed to the Royal Spring aquifer and provide technical rational for management strategies needed to protect the source of drinking water.

The Environmental Protection Agency (EPA) recommends that in karst areas three factors be utilized for considering the potential for groundwater pollution. These are:

Contaminant Source Characteristics – threat to public health

- Proximity the closeness of contaminant to the water source
- Hydrologic Sensitivity the nature of groundwater flow

Step 1. Determine Contaminant Source Characteristics

Knowledge of the land use and the potential contaminant source, both in existing development and in future development, provide the basis for the type of land use controls necessary to prevent groundwater pollution. Regulatory and non-regulatory measures will be utilized to help prevent the degradation of the Royal Spring Aquifer. This step identifies the land use category and ranks the "use of the land" as to the potential for pollution based upon the general characteristics of a given land use. The Kentucky Division of Water has developed a contaminant value for ranking land use and the potential for groundwater pollution. The contaminant value is based upon the toxicity and mobility characteristics of the contaminants usually associated with a particular land use. Any given site may have a number of various potential contaminants.

Each land use type is given a contaminant value of 1 to 3. A ranking of 1 is considered low potential, while 3 may be considered a high potential for possible hazardous release. Two methods are utilized for ranking. One method is to rank permitted facilities based upon the type of permit issued. Table 6-2 shows the release value assigned according to this method. The likelihood of release value ranges from a 1 to 3. The second method looks at the types of contaminants historically associated with different land uses and assigns a contaminant value. Table 6-3 illustrates how contaminant values are assigned using this method. Each type of business is ranked based on a potential contaminant value. As with the permitted facilities a rank of 1 is a low risk with 3 being a high risk factor.

Step 2. Determine Proximity to the Water Source

The proximity or distance of a given release to the source of water for a community water supply is of primary importance in estimating its potential impact. Groundwater systems typically have three zones of protection based upon travel time to the point of withdrawal. Wellhead Protection Area 1 or zone 1 is a 180 day time of travel or a 400 foot radius, Zone 2 is a ten year travel time, and Zone 3 is the hydrologic boundary between water or groundwater sheds. Due to the *KARST* nature of the Royal Spring Aquifer, the entire recharge area is considered zone 3. The movement

of groundwater in a karst area may be as rapid as surface flow. It has been estimated that contaminants may reach Royal Spring in approximately 12 hours depending upon the flow of the aquifer. A proximity value of 3 is assigned to Royal Spring.

Table 6-2 Rating Likelihood of Release from Permit Information

Permitting Terminology	Likelihood of Release Value
Hazardous Waste TSD (Treatment, Storage	
or Disposal Facility)	
Without "corrective Action"	2
In "Corrective Action" or "Post Closure"	3
Registered Hazardous Waste Generator	
Without "corrective Action"	2
In "Corrective Action"	3
KPDES (discharge)	1
Known wastewater release without a permit	3
Federal Superfund site	2
State Superfund site	
Active	3
Closed	2
Petroleum Release site	
Active	3
Closed	1
Waste lagoon	3
Registered with Local Emergency Planning Commit	tee
With a contingency plan on file	2
Without a contingency plan on file	3

Step 3 Determine Hydrologic Sensitivity

Hydrologic Sensitivity is the ease of groundwater movement in a given system as it relates to travel time. The physical features of an aquifer or a groundwater system have to be analyzed. The physical characteristics of the system take into consideration the physical, chemical, geological, hydrological, and biological attributes of each given system. Karst geology presents special challenges not found in regular and confined aquifers. It has been found in the Royal Spring Aquifer that vertical and horizontal migration of surface to groundwater is extremely rapid via the sinkholes in Cane Run.

Due to the KARST nature of the Royal Spring Aquifer a hydrologic sensitivity value of 3 is assigned.

												·		,				
Contaminants of Concern	Acids	Bases	Chlorides	Fluoride	Fe/Mn	Other Metals	Nitrate	Pathogens	Pesticides and Herbicides	Petroleum Products (VOC'S)	Phenois	Radioactivity	Sodium	Solvents	Sulfate	Surfectants(Detergents)	SedimentTurbidity	Contaminant Value
												, (C						
Land Use Catagories		<u> </u>	<u> </u>	ļ	<u> </u>				ļ					ļ			<u> </u>	
	ļ	ļ	ļ. —	ļ	ļ	ļ	ļ		L.,		<u> </u>	ļ	ļ		ļ.,		ļ	
Above Ground Storage Tanks		 	 -	<u> </u>	<u> </u>	<u> </u>	1	 	X	X		<u> </u>	\ <u>\</u>				<u> </u>	3
Airport	<u> </u>	<u> </u>	ļ	_	<u> </u>	ļ	X	<u> </u>	X	Х		<u> </u>	Х					3
Non Point Sources of Pollution		├	<u> </u>												- 34		<u> </u>	
Abandoned Mine Lands	X	<u> </u>	ļ	ļ	X		الربا	ļ	 	<u>, , , , , , , , , , , , , , , , , , , </u>			الريب ا		Χ.	ļ	X	2
Agricultural Chemical Business		ļ		ļ			Χ		Х	X		ļ	Х			-	ļ	2
Agriculture					ļ		<u> </u>											
Hay and Pasture Land			<u> </u>			i	Χ	X					Χ					2
CRP Land			<u> </u>	<u> </u>				<u>. </u>			L						X	1
Row Crops							X	X	X	X			Х				Χ	3
Animal Feeding Operations			<u> </u>		ļ		Х	X					Х					2
Golf Course							X		Х									2
Lawn Care Chemical Use							Χ		Х	X						X		2
Logging and Timbering					L				L	X							Χ	1
Parks		<u>L</u> _															Χ	1
Recreational Space			ļ		L								_				X	1
Unmanaged Woodlands																	Χ	1
Septic Systems (Residential)			Х		Χ	X	X	X					Χ	X	,	X		2
Straight Pipe Sewage Discharge			Χ		X	Χ	X	Х					Χ	X		X		3
Sewage Lagoon/Sludge			X		X	X	X	Χ			_		X	Х		X		3
Hazardous Substance Sites										. ,								
Asphalt Plants										Х							•	2
Beauty Parlors		Х				Х								X		X		1.
Boat Repair Facilities						X				Χ	Х			Х		X		3
Car Repair Facilities						Х				X	X			Х		X		3
Car Washes			X			X				X			Х	Х				2
Cemeteries									Х							Х		2
Dry Cleaning Facilities														Х				3
Farm Machinery Repair Facilities		T				Х				X	Х			Х		X		3
Furniture Stripping/Painting	Х	X				Х												2
Gas Stations									Х	Х								3
Industrial Lagoons	X	X	Х	Х	Х	Х	X	X	Х	X	X	X	Х	Х	Х	Х	Х	3
Jewelry Metal Plating	X	Х		X	Х	Х							Х	Х		X		2
Junkyards (Salvage Yards)	X				Х	X								X	X			3
Laundromats								X						Х		X		2
Machine Shops	Х	Х				Х								Χ		Х		2
Medical and Veterinary Clinics					ı			Х				X		X		X		2
Photography Labs/Printers	X	X				Х								X		Х		2
Research Labs	Χ	X		Х	Х		Х	X	X	Х	X	Х		Х		Х		2

¹⁼Low 2= Moderate 3= High

^{*} General Catagories not differentiated

			des	өр		Other Metals	•	gens	ides and	F	ols.	Radioactivity	m	nts		Surfectants (Detergents)	SedimentTurbidity	Contaminant Value
Contaminants of Concern	Acids	Bases	Chlorides	Fluoride	Fe/Mn	Other	Nitrate	Pathogens	Pesticides Herbicides	Petroleum	Phenois	Radio	Sodium	Solvents	Suffate	Surfe	Sedin	Conta
Schools, Colleges, Universities	Х	X		Х	Х	T. Carrier	Х	Х	X	X	Х	Х	escenses.	X		X	16151666	2
Salt Domes	 ^	 ^`	X	 ^	 ^`	\vdash	 ^`	 ^	 ^`	X	 ^		X	-	X	 ^		1
Wood Preserving Facilities	 	 	 ^`	 	†	X		 	_	X	X	 	 ^`	X	X	X		2
Hazardous Material (Haz Mat)		 		 	<u> </u>	 ^``	 -			-			ļ	+	1			-
Haz/Mat Storage Facilities	X	X	X	X	X	X	X	X	X	Х	X	X	X	X	X	X	X	3
Haz / Mat Transfer Stations	X	X	X	X	X	x	X	X	X	X	X	X	X	$\frac{\hat{x}}{\hat{x}}$	x	X	X	3
Haz. Waster Generator and TSD	X	X	X	X	X	X	X	X	X	X	X	X	X	$\frac{\hat{x}}{x}$	X	$\frac{\hat{x}}{\hat{x}}$	X	3
Site	``		`		``													
Imporperly Abandoned Oil & Gas Well			X							X		X	Х					2
Improperly Abandoned Water Well					Х	X	X	Х										2
KPDES (Permitted Discharge) Sites	Х	X	Х	X	Χ	Х	X	X	X	X	X	Х	X	Х	Х	X	X	3
Mining and Quarrying	X				X	Х									X		X	2
Pipelines																		
Municipal Sewer Lines		Х	Χ	X	Х	X	Х	X	X	Х	X	Х	Χ	Х	Х	X	X	3
Oil Lines		<u> </u>								X								3
Natural Gas				ļ						X							·	2
Stormwater Drains/Detention Basins	· · · · ·		Х	<u></u>		X		X	X				Х	Х	٠.			2
Solid Waste Sites (Landfills)																		
Landfills (Contained)	X		X		X	X	X	X	Х	X	X	Х	Х	X	X		Х	3
Landfills (Non-Contained)	X	Х	X	X	Х	Х	X	X	Х	Х	X	X	Χ	Х	X	X	Х	3
Const., Demolition, Debris Landfills		 										-;					X	2
Illegal Dumps	X	X	X	X	X	Х	X	X	X	X	X	X	X	X	X	X	X	3
Special Waste Landfills	Х	Х	Х	Х	Χ	X	X	X	Х	Х	X	Χ	Χ	X	Х	X	X	3
Landfarms Superfund Sites	X	X	X	X	X	X	X	X	Х	Х	X	X	X	X	Х	- 	-	3
Superfund Sites Transportation Corridors	^-	-	 ^-	 ^- -	 ^-	Х	 ^-	 ^-	-	\vdash		<u> </u>		 ^-	-	X	X	3
Roads/Highways	X	X	X	X	Х	Х	X	X	Х	X	Х	X	X	X	Х	Х	X	3
Railroads	x	x	x	X	x	x	x	x	X	X	x	x	X	X	X	$\frac{\hat{x}}{x}$	x	3
Barge Traffic	$\frac{\hat{x}}{x}$	X	X	X	$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$	X	$\frac{\hat{x}}{x}$	X	X	$\hat{\mathbf{x}}$	X	X	X	$\frac{\hat{x}}{x}$	Ŷ	$\frac{\hat{\mathbf{x}}}{\mathbf{x}}$	$\frac{\hat{x}}{x}$	3
Underground Injection control Well																		
Class I	Х	Х	X	Х	X	Х			Х	X	X	Х	Х	Х	Х	X	Х	3
Class II			X		ļ i	<u> </u>	ļ	<u> </u>		X		Х	X	X				2
Class III			X			 				1			Х	1				2
Class V	Х	X	Х		X	X	X	X	Х	Х				X	Х	Х	Х	2
Petroleum Release sites									Х	Χ								3
Underground Storage Tank Sites									X	Х								3

¹⁼Low 2= Moderate 3= High
* General Catagories not
differentiated

Numeric Ranking & Susceptibility Ranking

Land use can be ranked based on potential for groundwater pollution using susceptibility analysis. Susceptibility Determination is calculated from the three factors described above and uses the following scale:

- Low risk 6-9
- Medium risk 10-14
- High risk 15-18

Susceptibility Determination:

The conversion and development of rural lands to a higher intensity land use in the Royal Spring Aquifer in both Fayette and Scott County is going to take place. Both counties are extremely aware of the potential for groundwater pollution. The utilization of the of Hydrologic Sensitivity chart found in Table 6-3 coupled with the 1995 land use for Fayette County has shown that only Greenspace and park uses of the land in the aquifer protection area have a low susceptibility ranking. All other land uses either have a medium or high susceptibility to the potential for groundwater pollution. Table 6-4 illustrates the general risk factor for different land uses in the Royal Spring Watershed Area in Fayette County.

6-2 Fayette County Land Use in the Royal Spring Aquifer

The aquifer protection area in Fayette County may be broken down into four basic land development configurations. The Rural Service Area, and three categories in the Urban Service Area: an area of urban development, a transition area of existing and new development, and a rural area that will be developed in the near future. Section 3 of this report has discussed the planning and land use aspects of Fayette County. The purpose of this section is to discuss the changes of land use that will occur with future development. Generally it may be assumed that a more intense development will occur in the urban areas, consistent with population growth. The Rural Service Area will also see change, but at a much slower pace. Table 6-5 illustrates the increase in the total land area for each type of land use designation. The table compares the developed acres for each land use category that was inventoried in 1995 and compares that to the potential of "full" development. It

TABLE 6-4 NUMERIC RANKING & SUSCEPTIBILITY RANKING FOR FAYETTE COUNTY

	Fayette	Fayette County			Factor	Factor	Hydro	Total	
CV	County	Land use	Acres	WHPA	Value	Proximity	Sens	Numeric	Susceptibility
RATING	Land Use	Туре			CV X 3	_X2	plus	Rating	Ranking
1	CC	Community Center	0	yes	6	4	3	13	med
2	CIR	Auto Circulation / parking	193.4	yes	9	6	3	18	high
3	EAR3	Expansion Area 3	0	yes	6	4	3	13	med
4	ED	Economic Development	0	yes	6	4	3	13	med
5	GS	Greenspace	7	yes	3	2	3	8	low
6	HC	Highway Oriented Commercial	255	yes	9	6	3	18	high
7	HD	High Density Residential	150.7	yes	6	4	3	13	med
8	HF	Horse Farms	256.2	yes	6	4 .	3	13	med
9	LD	Low Density Residential	980.3	yes	6	4	3	13	med
10	LI	Light Industrial	434.5	yes	9	6	3	18	high
11	MD	Medium Density Residential	723.1	yes	6	4	3	13	med
12	OPU	Other Public Uses	304.7	yes	3	2	3	8	low
13	ORP	Office Research Park	34.9	yes	9	6	3	18	high
14	PE	Schools	63.1	yes	6	4	3	13	med
15	PR	Parks	370.8	yes	3	2	3	8	low
16	PS	Professional Service Office	96.5	yes	6	4	3	13	med
17	RSA	Rural Service Area	10,117.00	yes	6	4	3	13	med
18	RT	Retail Trade & Personal Services	155	yes	6	4	3	13	med
19	RTHD	Retail Trade / High Density	0	yes	6	4	3	13	med
20	SP	Semi-public Facilities	329.9	yes	6	4	3	13	med
21	U	Utilities	14		9	6	3	18	high
22	VAC	Vacant Land	1,560.30	yes	6	4	3	13	med
23	VHD	Very High Density Residential	3.7	yes	6	. 4	3	13	med
24	ww	Warehouse & Wholesale	189.8	yes	9	6	3	18	high
		TOTAL	16,239.90						

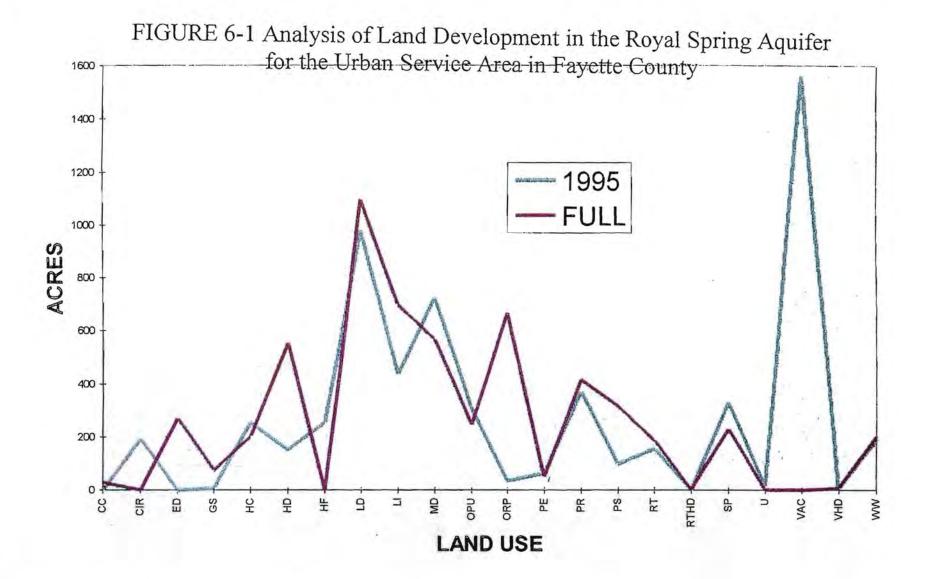
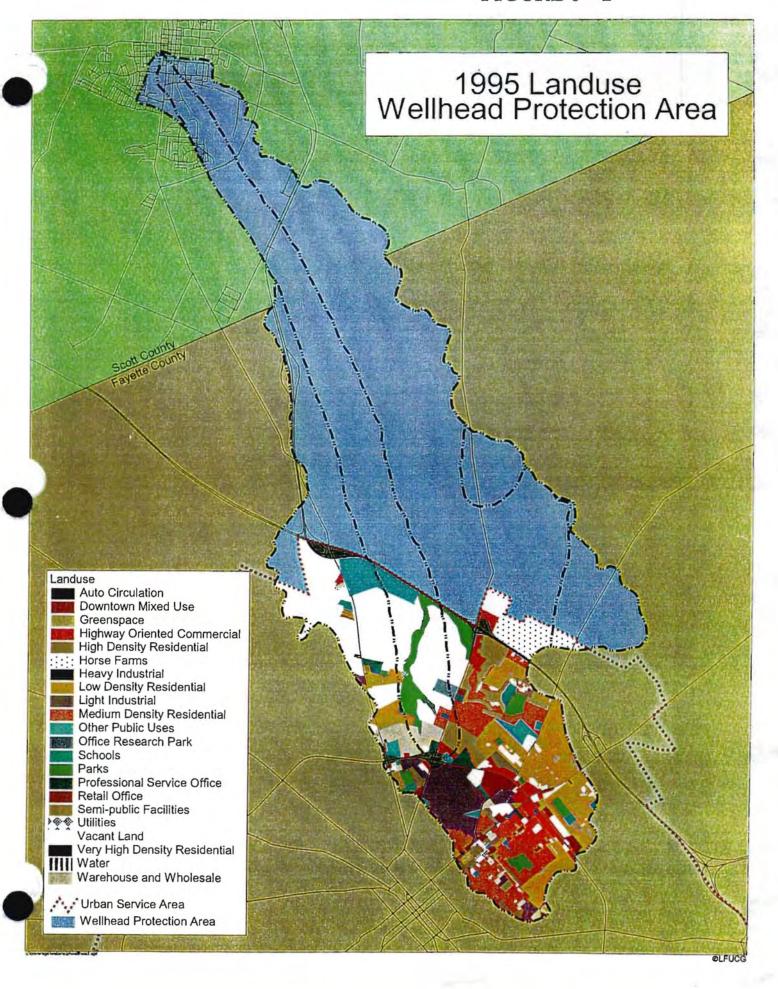

CV= contaminant value

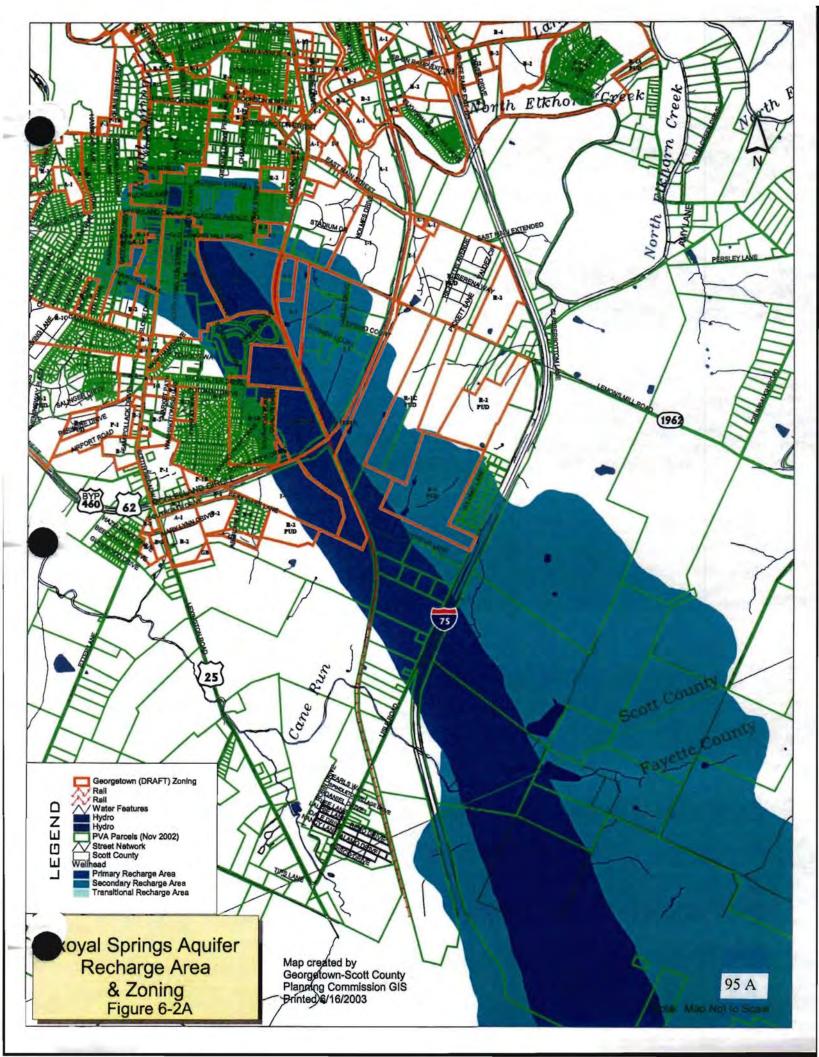
TABLE 6-5 EXISTING AND FUTURE LAND USE IN THE URBAN SERVICE AREA

	LAND USE / ROYAL SPRINGS AQUIFER		
Landuse	Nagar En	Acres	Acres
Code	Category	1995	FULL DEV.
CC	Community Center	_	28.5
CIR	Auto Circulation / parking	193.4	
EAR3	Expansion Area Residential	-	0
ED	Economic Development	-	271.1
GS	Greenspace	7.0	73.2
HC	Highway Oriented Commercial	255.0	201.9
HD	High Density Residential	150.7	554.1
HF	Horse Farms	256.2	
LD	Low Density Residential	980.3	1,097.0
LI	Light Industrial	434.5	697.6
MD	Medium Density Residential	723.1	567.9
OPU	Other Public Uses	304.7	245.6
ORP	Office Research Park	34.9	666.8
PE	Schools	63.1	48.6
PR	Parks	370.8	415.5
PS	Professional Service Office	96.5	317.9
RSA	Rural Service Area	10,117.0	10,117.7
RT	Retail Trade & Personal Services	155.0	188.5
RTHD	Retail Trade / High Density		2.2
SP	Semi-public Facilities	329.9	231.2
J	Utilities	14.0	•
VAC	Vacant Land	1,560.3	-
VHD	Very High Density Residential	3.7	7.0
W	Warehouse & Wholesale	189.8	201.7
	TOTAL	16,239.9	15,934.0

will be noted that some discrepancy exists in the total number of acres between the two figures for 1995 and full development. This is due to the calculation method and changes in terminology in some of the land use designation. The differences for purposes of this report are insignificant.

An analysis of these figures is shown in Figure 6-1 graphs the 1995 land use categories for Fayette County and the land use with development as shown in the 1996 Comprehensive Plan.




The full development potential is important to this plan in that the intensity of land use will be an indication of the potential pollution problems that could occur. The higher intensity of land use, the higher the potential for pollution. Density in terms of degree of development usually indicates more impermeable surface area and more business and commercial development.

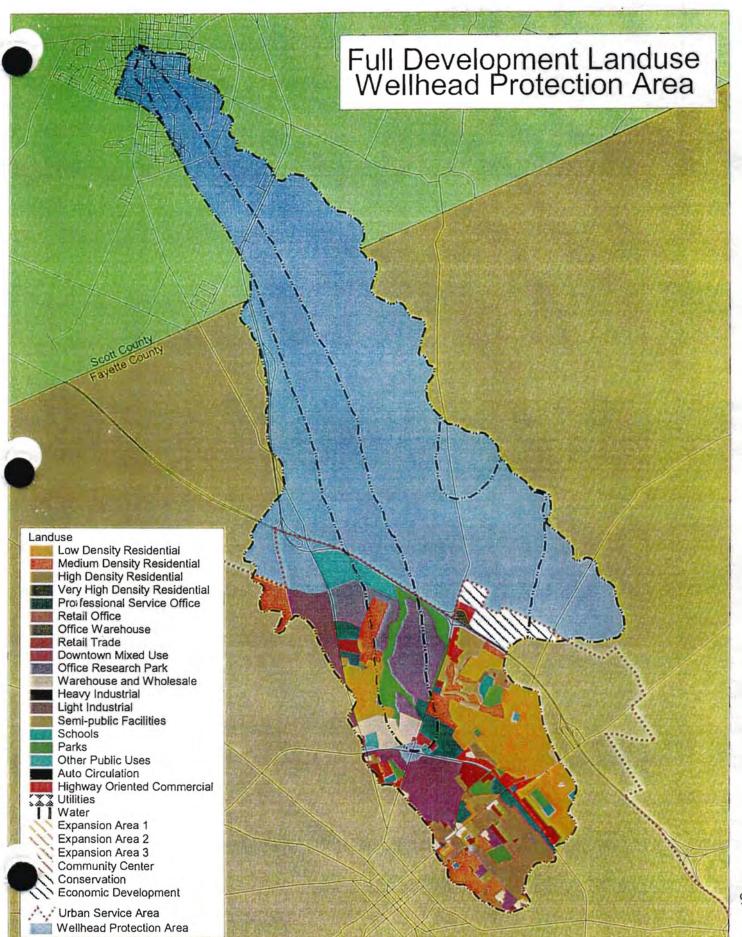

a. Urban Service Area – to be developed

Figure 6-2 and 6-2-A depicts the 1995 Land Use Categories in the Wellhead Protection Area FOR Fayette County. The comparison of Figure 6-2 with Figure 6-3 entitled Full Development Land use Wellhead Protection Area illustrates future development. The area in purple is included in the Rural Service Area. The major increase in the land use types in the Royal Spring Aquifer area in Fayette County will be that of High and Low Density Residential development, Office Research Park development, Professional Service Office, Parks and Semi-public Facilities. Figure 6-2-A illustrates the development potential for Scott County as shown in the draft Zoning Map for the Royal Springs Aquifer Recharge Area. In Fayette County the comparison between the existing 1995 and full development may be easily illustrated in Figure 6-4. In Fayette County, it has been recognized for over twenty years that the recharge area for Royal Spring is important to protect, and special attention has been given to help protect this area. In the development of the Coldstream Research Park over ten years ago, methods were introduced in the form of development plan notes for aquifer protection. The acquisition and development of Cane Run Park that includes the stream of Cane Run, the direct stream for recharge of the aquifer was also in part to protect the aquifer. In Scott County Figure 6-4-A illustrates the comparison of land use types in the aquifer while Figure 6-5-A illustrates the land use character in the aquifer. The rural land use is predominately agricultural with the exception of two rural residential developments, the Cassidy Heights and the Lowell Siders Property.

b. Urban Service Area – developed/residential & business, commercial, & industrial
The developed urban areas in the Urban Service Area include many older urban areas close even
to downtown Lexington. The potential problem areas contain many acres of business,
commercial and industrial locations. A number of unsewered areas occur in the older residential
sections of the aquifer area. Problems have occurred in the older sections of the aquifer area with
sewage overflows. One notable problem is located on Grantchester Road. A twelve-inch pipe
overflows during intense storm events. The State requires that a twenty-year sewer maintenance

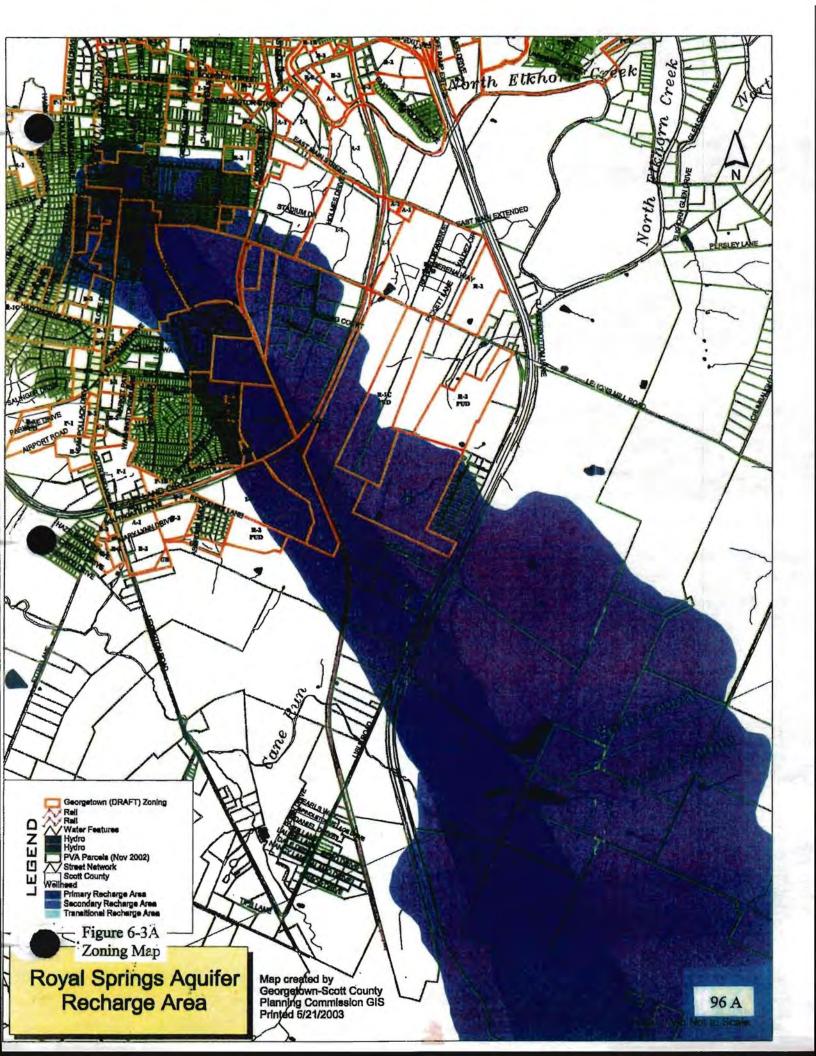
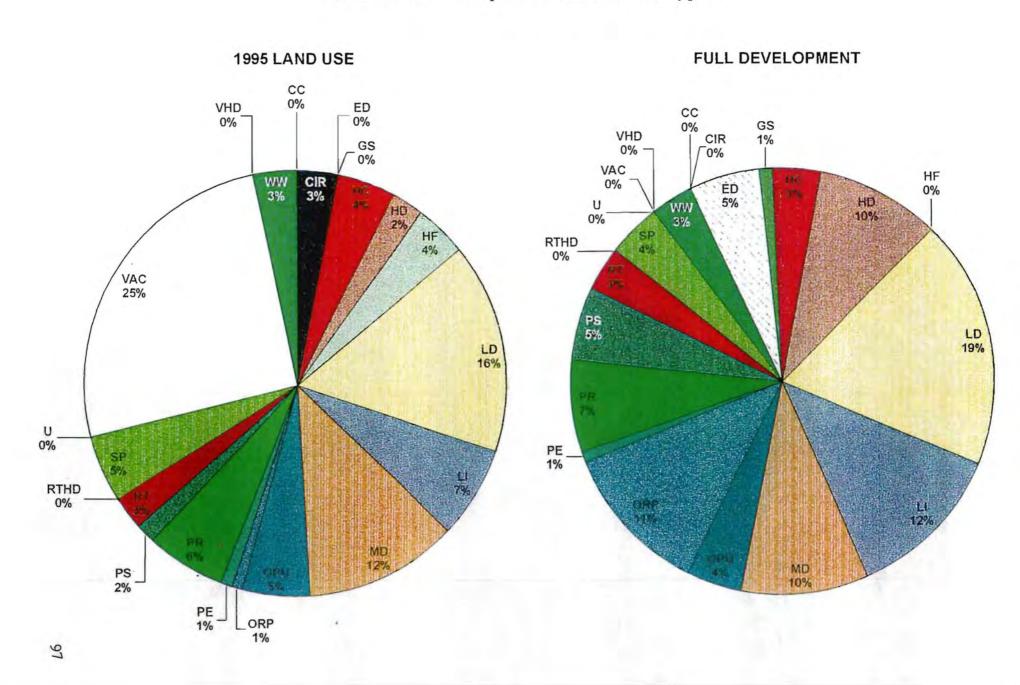
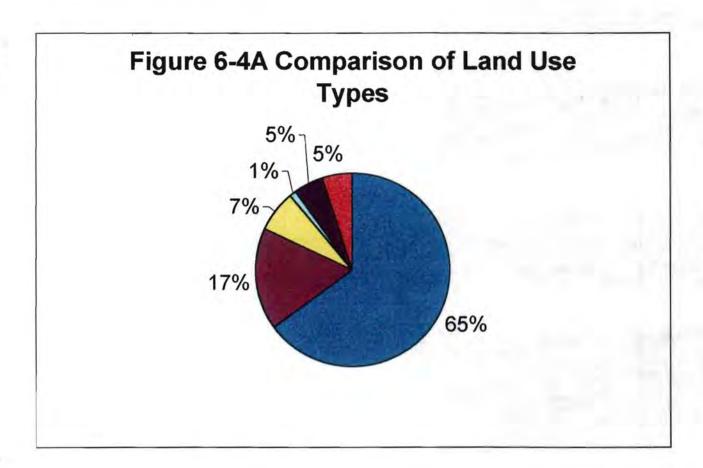
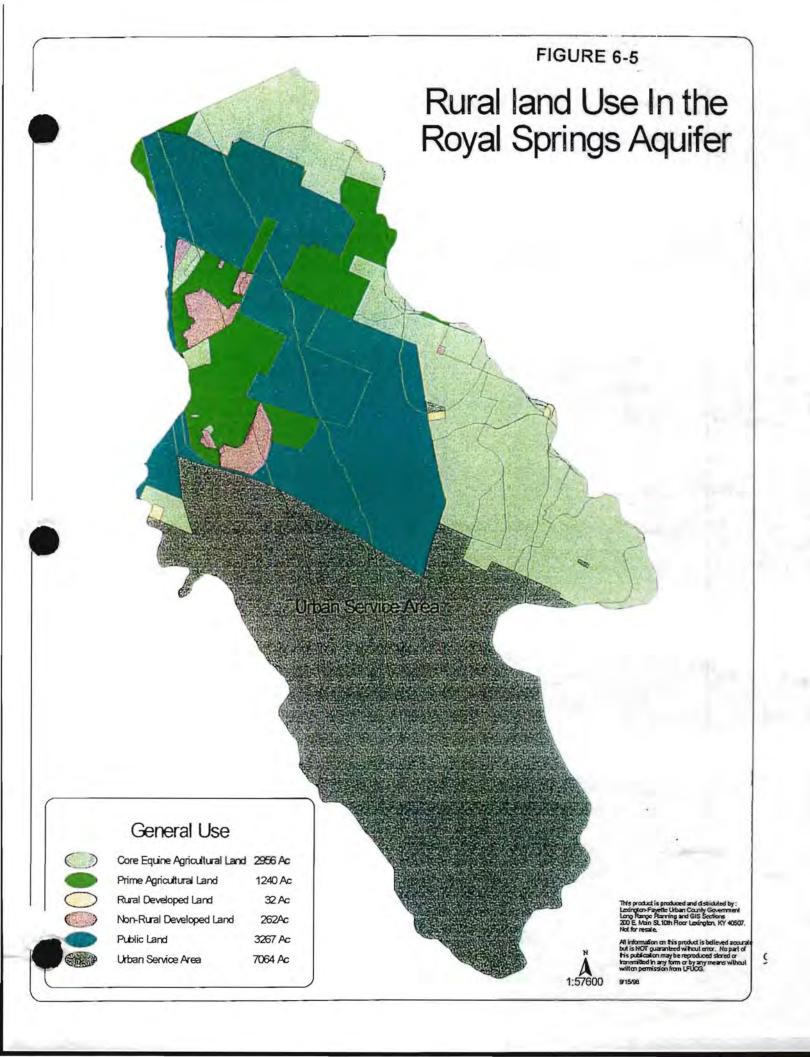
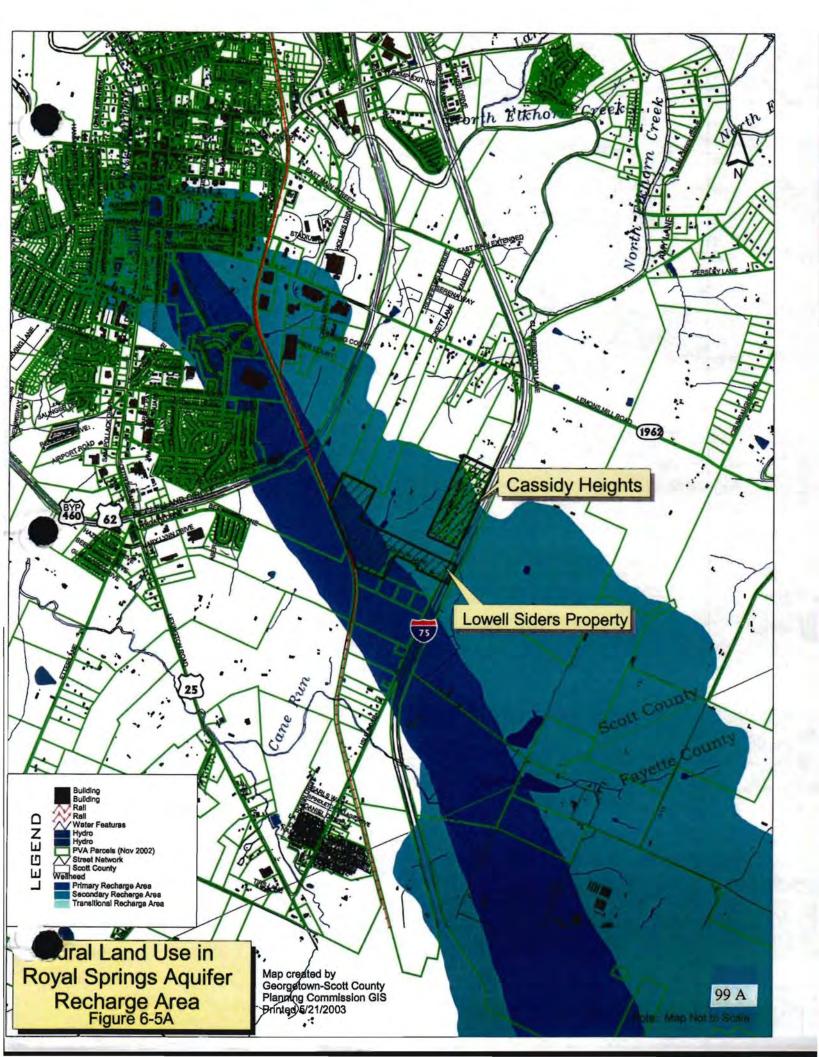




FIGURE 6-4. Comparison of Land Use Types

Agriculture (A-1)	65 %
Industrial (I-1)	17 %
Residential (R-2)	7 %
Residential (R-1C)	1 %
Residential (R-2 PUD)	5 %
Residential (R-1D)	5 %

plan be developed. Lexington is in the process of locating these problem areas and is developing a remedial plan to address this issue. The problem of sanitary sewer discharge during storm events of high rain and infiltration of sanitary sewer pipes is mitigated in part by the dilution action of the storm event. Stormwater runoff is also an issue that is in the process of being addressed. Both of these critical issues are being studied and analyzed and will be included in updates of this plan.


c. Rural Service Area


Fayette County enacted a Rural Service Area Land Management Plan for the Rural Service Area of Fayette County. The Lexington Fayette Urban County Government has adopted this plan. Section IV pages 5-9 includes guidelines for development in the aquifer recharge area. This Section is found in Appendix 6-1. The LFUCG council has also enacted a special ordinance, Chapter 26 of the code of ordinances, to establish the Fayette County Rural Land Management Board. One of the duties of this board is to establish a program to preserve and manage agricultural, rural and natural lands.

The Wellhead Protection Area is also addressed in this ordinance and may be found in Appendix 6-2. Currently in the Rural Service Area, residential development is generally limited to lots of forty acres or more. Also, a Purchase of Development Right Program (PDR) is to be investigated. If the PDR effort fails and development is once again allowed on rural lots of ten acres in size, it should be the recommendation of this committee that no septic systems should be allowed on any future lot smaller than ten acres.

Figure 6-5 entitled Rural Land Use in the Royal Spring Aquifer Area in Fayette County illustrates the rural land. The land use category of Core Equine Agricultural Land and the Prime Agricultural Lands account for 4,196 acres or 54% of the rural area in the aquifer. Rural Development Land accounts for 32 acres, and Non-Rural Developed Land occupies some 262 acres.

Public Land owned either by the University of Kentucky, The Kentucky Horse Park, or other public agencies accounts for 3,267 acres or 42% of the rural area in the aquifer. The public lands and the prime agricultural and horse farms that already exist in Fayette County in the Rural

Service Area amount to 96% of the area. It is not anticipated that the rural character of the landscape will change that much over the next twenty years except for the possibility of urban development of farm land in large lot holdings.

6-3 Scott County Land Use in the Royal Spring Aquifer

The 1996 Comprehensive Plan for Scott County was adopted and is currently in effect. Scott County has an Urban Service Boundary (USB) that contains 23.3 square miles. The City of Georgetown contains 16.5 square miles. The Comprehensive Plan also has a Protection Area (PA) for the Royal Spring Aquifer. The following guidelines pertain to development:

- Development within the USB is dependent upon the extension of sanitary sewer.
- The majority of property contained within the USB and Protection Area (PA) is currently developed. The remaining property outside of the USB but within the PA is primarily agricultural. Other Urban uses within the Protection Area:
 - 1. Lowell Siders property 11 single family residential / 62.6 acres
 - 2. Cassidy Heights 38 single family residences / 55 acres
- Rural development outside USB minimum of 5 acres for septic tank
- The Scott County Zoning Ordinance, Zoning & Subdivision Regulations, and the Comprehensive Plan recommends clustering to preserve rural lands / 1.0 acre lot minimum, 4 acres reserved for agricultural / open space. For more information on Scott County cluster development see Appendix 6-3.

6-4 Mutual Systems - Transportation / Rail Interstate / local

In Fayette County it is not anticipated that any new major roads will be developed except for the Viley Road extension that is now called Citation Boulevard. This road extension crosses the main channel of Cane Run at the Coldstream Research Campus, and is expected to be almost extensively utilized by commercial traffic. The design of the road does take into consideration the potential environmental danger of accidental spills and surface runoff into the stream.

Other projects in the area include major existing road improvements. The major planned improvement in the aquifer is a widening of U.S.25 (Georgetown Road) between the Urban

Service Areas of Georgetown and Lexington. Fortunately, one half or more of this corridor lies west of the wellhead protection area.

Section 7. Water Use in the Aquifer

The Royal Spring Aquifer is the predominant water source for the city of Georgetown and Scott County. It is not anticipated that this source of water will be utilized for any other domestic public water supply. Today the Georgetown Municipal Water and Sewer Service Department supplies some 8,000 customers in Georgetown and Scott County. This aquifer has provided water for Scott County for over two hundred years. Fayette County utilizes the Kentucky River as the primary source of water for its municipal area.

Water quality problems with the aquifer have occurred very infrequently in the past. Ten years ago, a significant benzene contamination problem occurred in the aquifer. Royal Spring had to be shut down for about ten months until the quality of the water improved through recharge and the natural flushing of the spring. The contaminant leak was never found and it was suspected that an underground storage tank was creating the problem. In response to this occurrence, an air stripping tower was installed to remove any residue petroleum product left in the water.

The aquifer and any groundwater source is extremely valuable as a water supply. In reviewing the records of groundwater wells in Fayette County, it was noticed that the number of wells as a water source are diminishing. The 1990 census indicates a decline of about half the number of households that utilize water wells from the 1980 census in Fayette County. A groundwater survey of 1,700 property owners in Fayette County, conducted by the University of Kentucky in 1988, identified approximately 70 wells, with 31 located in the Royal Spring WHPA. As the number of wells is diminished, the dependence upon the regional water suppliers goes up

Agricultural water use in the aquifer may pose a problem with water supply in low flow conditions. In a drought situation where agricultural crops require some irrigation to control loss, the competition for water in the aquifer may present a problem. It is understood that in the drought of 1988 a severe problem occurred with Elkhorn Branch and the withdrawal of water from the stream for irrigation purposes. The State Division of Water had to curtail water withdrawal from the stream. This situation could also occur with golf courses depending upon the location of the course, and the depth and number of water wells. The Kentucky Division of

Water has the opportunity to monitor the number of permits issued and regulate the amount of water to be withdrawn.

Section 8. Management of the Wellhead Protection Area

8-1 Management Approach

The Kentucky Division of Water has adopted the boundaries of the Royal Spring Aquifer as a wellhead protection area to meet the federal requirements for the protection of a sole source aquifer. The designation as a wellhead protection area defines the need for land use planning. The policy of the local government(s) should be to insure that the aquifer will not suffer degradation of the water quality or quantity of the aquifer as suburban and urban development occurs.

The implemented land use plans should strive to meet the intent of the wellhead protection plan. The administration of land use policies should have as an objective the maximum preservation and protection of the undeveloped rural lands overlying the aquifer. Comprehensive watershed rules and regulations regarding land development in the Cane Run Watershed and the Royal Spring Aquifer should be developed and adopted. Existing regulations can and should be rigorously enforced.

The protection of the aquifer will require that new ideas be adopted by the three governmental entities of Fayette County, Scott County and the city of Georgetown. The basic policy should be an antidegradation policy for the aquifer. To do this the public policy objective should be to insure that land use overlying the aquifer will not subject the groundwater to pollution. The local governments should insist on the use of best management practices to preclude the introduction of pollutants into the aquifer regardless of the cost to the community. Land use controls, both urban and rural, can play a large role in the protection of the watershed. It is unrealistic to assume that zero degradation will occur in the aquifer due to the pressures of agricultural production, growth and development. Non degradation though is possible through tradeoffs in total watershed management by not allowing total development of both the urban and rural areas.

8-2 Responsibility for Wellhead Protection

The Georgetown Municipal Water and Sewer System is responsible for coordinating efforts with other state and local agencies and monitoring the status of the programs which protect the groundwater quality of the Royal Spring Wellhead Protection Area. The three local governments are responsible for assuring future urban or suburban development in the ground-water basin does not degrade the quality of the Royal Spring Aquifer. Further, they have the responsibility to enforce their ordinances relative to storm water runoff, storage and handling of hazardous waste, and sinkhole dumping and development. The creation of the Royal Spring Groundwater Protection Committee is one of the first steps to achieve this goal. Each member of that committee is charged with the responsibility of evaluating the hydrology of the aquifer and identifying potential problems that can occur. Whether it is with new development or a response to a hazardous incident, each member is charged with a responsibility to inform, as necessary, the elected officials of potential problems. On going creativity in the design and review of new development and change is the key to accomplishing groundwater protection. The public and property owners also bear some responsibility, thus the importance of education.

8-3 Public Education and Resources

Education is one of the most effective methods of protecting groundwater by encouraging responsible behavior from the general public. Everyone realizes that a water supply is critical to everyday living. Water pollution in a sole source aquifer means community problems and increased water billing for water treatment, or reliance on another source of water.

The following have been developed for countywide (Scott and Fayette County) distribution. Some of the ideas have already been implemented.

Water protection signs

In 1996, Georgetown, Scott, and Fayette Counties participated in the Kentucky Natural Resources and Environmental Protection Cabinet "Water Supply Protection Area" sign project, funded through a federal pollution prevention grant.

The Kentucky Division of Water and the Kentucky Division of Transportation working together with the multi-jurisdictional efforts of Georgetown and Scott and Fayette Counties in the Royal Spring Aquifer project provided the materials and manpower to place signs along the major transportation routes crossing the watershed. Approximately twenty-five signs have been installed and have helped to create an awareness of the sensitivity of this aquifer. By alerting the public to report spills to a designated emergency number. Nationwide, over 270 public water supply systems have posted signs under this federal grant.

Opportunities and Tools for Public Education

Many opportunities arise to increase the public awareness about the necessities of protecting our groundwater and about the various government agencies in Scott and Fayette Counties. Examples of these are:

- Displays for Earth Day or other local environmental day events
- Speakers for open public meetings of groups living in the recharge area such as neighborhood associations
- Letters to landowners about water supply protection
- Articles in newspapers and media press kits
- Wellhead plan fact sheet or brochure on topics such as properly maintained septic tanks, sinkhole cleanup, reporting spills, storage tank requirements and groundwater protection plans

Materials developed by the Kentucky Division of Water:

- Wellhead brochure
- Slide show on Royal Spring
- News release about wellhead protection
- Wellhead protection fact sheet
- Color Slide of Wellhead Protection Area
- 911 & 1-800 number for reporting spills
- List of Wellhead Protection program partners
- Wellhead protection resources available to landowners facts sheet

Wellhead Protection Programs

- Sinkhole cleanup funds
- Cost-share programs
- Reduction of soil erosion (Environmental Quality Incentives Program)
- Restoration of Erodiable Land (Conservation Reserve Program)
- Reduction of Agricultural Non-point Source Pollution (Water Quality Incentive Program)
- Best Management Practices Implementation (Scott County Water Quality Cost-Share Program)
- Soil & Water Protection from Animal-Waste Related Problems (Kentucky Soil Erosion and Water Quality Cost-Share Program)
- Land Acquisition/Easements for Elkhorn Creek (EPA & LFUCG Div. of Parks & Rec.)
- Household Hazardous Waste Program (Fall Haul Program)

Environmental Review Forms

Areas of special concern are those where hazardous materials are stored or areas where there is the potential for sudden discharge, such as a loading dock at an industrial site. New urban and rural development is also a concern. The adoption of an Environmental Review Form in Fayette County (see appendix 5-6) for each new development during the planning process can provide information to the planning agencies for the development of best management practices and guidelines for identification of potential contamination sources and pathways. Areas of agricultural development such as animal feed lots or intense poultry or swine feedlots should not be allowed in the aquifer. Scott County has not adopted a written form, but the elements indicated on the form are reviewed for development in the Royal Spring Aquifer.

Disposal of hazardous materials

The disposal of hazardous materials is well regulated in both Fayette and Scott County. Part of the education process will be to insure that both communities are vigilant in the awareness that accidents as well as illegal dumping can occur. It is important that detection and remedial cleanup are done in a timely fashion and that all parties are notified immediately as to the problem.

8-4 Wellhead Protection Area: Best Management Strategies

The term best management strategies in regard to the protection of the Royal Spring Aquifer is designed to be flexible when examining the environmental attributes of the land given the type of proposed development and the potential for pollution. Various parameters will be utilized in the review process. The following list contains a sampling of thought provoking land use qualities or potential pollution activities that need to have questions asked concerning the location. If problem areas cannot be relocated, then formulation of best management practices for each type of problematic land use should be developed. This list is not all-inclusive, but points in the direction of the many activities that come into play when trying to make a decision on best management practices.

- Placement of water wells in the aquifer
- Septic systems location and operation, existing and new development
- Class V Underground Injection Wells
- Feedlots & animal waste stockpiling areas
- Illegal dumping sites
- Above and below ground storage tanks
- Municipal sewage lines & disposal treatment facilities
- Chemical storage both farm and industry
- Industrial and auto salvage yards
- Car and commercial truck washes, terminals and service areas
- Funeral homes, morgues and animal hospitals
- Cemeteries, expansion or new facilities
- Sinkholes & other karst areas, as a direct link to the groundwater system
- Potential for accidental spill locations, interstate, bridges, roadway curves etc.
- Drainage structures, existing and proposed rerouting of stream channels
- Stream & channel hydraulic changes through existing and new development
- Water & sediment movement both agricultural and urban

Many potential problems can be alleviated through good long range planning. The location of the aquifer is known and the potential entrances for pollution are generally understood, therefore

most problems can be overcome with proper planning. It is inherent in the planning process for plan reviewers to be aware of the potential problems for pollution. The following concepts need to be related to the planning process:

- Develop emergency response plans to accidental & other spills: on site & off site
- Recognize the pollution potential for each type of land use
- Develop site preparation & analysis techniques for each site depending on land use of that site
- Develop equilibrium concepts & stream disturbance minimization guidelines
- Develop streambank erosion control guidelines for both agricultural & urban areas
- Large lot development in rural areas / minimum ten acres or more, no clustering
- Create and develop riparian restoration stream bank restoration projects for streams in the aquifer
- Develop an official overlay zoning district or administrative overlay district for the aquifer

One of the best methods for identification and the environmental controls that might be necessary is the use of the Standard Industrial Codes for determining a potential hazard rating. Is the site in question near Cane Run, a sinkhole, or other drainage way? Does the site have a great potential for pollution, is it an asphalt plant, or a massive poultry or swine operation? Is a rural equine or cattle operation going to change in a drastic way, for instance, a commercial poultry or swine operation that will generate an extensive amount of animal waste. These are questions answered when the Environmental Review Form is submitted with the filing of a subdivision or development plan application or zone change.

Because the Royal Spring aquifer is recharged by direct stream flow, the development of stormwater quantity and quality Best Management Practices (BMPs) should be undertaken.

8-4.1 BMP's for Activities Impacting Ground-water Quality

Impact 1: Loss of Channel Capacity from Stream Bank Erosion

Mitigation should occur through the capture, storage, and release of a volume of water proportional to the impervious area. Infiltration practices should be implemented so that a portion of the additional runoff infiltrates into the ground.

Impact 2: Peak Flow Increases

Detention ponds should be designed and constructed so that peak flows after development are no greater than before development based on 10-year and 100-year storms.

Impact 3: Capacity of the Drainage Network

The development should be designed so that capacities of the newly designed and existing components of the drainage system are not exceeded. Criteria, based on 10-year and 100-year storms, vary with road inlets, storm sewers, culverts, and open channels.

Impact 4: Floodplain Area Increases

Developments should be designed to prevent an increase in the floodplain elevation and associated area. The floodplain area may increase in areas dedicated as a part of a regional stormwater management system.

Impact 5: Protection of Structures from Flooding for the 100-Year Storm

All structures should have the first floor elevations set at least two feet above the 100-year flood water surface elevation.

Impact 6: Destruction of Riparian Vegetation

No disturbances should be allowed in the post-development floodplain. Where disturbances are necessary, BMPs to mitigate the impacts should be designed and constructed.

Impact 7: Decreases in Base Flow

It is important that the base flow of the aquifer does not diminish by having runoff diverted outside of the ground-water aquifer.

Impact 8: Bottom Scour from Culverts

The design velocity at the culvert outlet should be reduced to match the natural stream velocity.

Impact 9: Increased Chemical Toxicity

Propose limits on land uses that might have an adverse impact on the water quality in the aquifer. Limit the development of land that might have an adverse impact on water quality or recharge capabilities in the aquifer protection area.

Impact 10: Nuisance Growth of Aquatic Plants

Riparian areas should be the focus of efforts to create rural greenways. Where possible, without creating interference with agricultural operations, these areas should be left in their natural state, or enhanced with eco-sensitive riparian plantings to improve water quality and create habitat areas.

Impact 11: Increased Bacteriological Content

In the rural lands, there should be a review of infrastructure requirements for potential future growth areas, including a 201-type sewer analysis for lands developing adjacent to sewered areas. In areas still served by septic tanks, analysis should be initiated for remedial action where failing septic systems are identified.

Impact 12: Increased Presence of Petroleum Products

Bioretention and infiltration practices are the preferred BMPs. Other BMPs such as wetland ponds, wet ponds, and dry extended detention ponds may be used but require varying water quality volumes. Runoff from commercial, industrial, and institutional rooftops, storage areas, and parking lots serving more than four dwelling units should be pretreated before discharge.

Impact 13: Sediment Deposition in Aquifer Conduits

Strong inspection guidelines for sediment control during construction in adjacent stream areas should be initiated. Areas of significant stream channel sediment deposition that creates an impact upon the stream corridor or impacts sinkholes in the stream channel should be earmarked for removal.

Impact 14: Increased Suspended Solids Concentration

Buffer zones and building setbacks should be developed to protect riparian areas within the Rural Service Area. Floodplain areas should be left in their natural state except where necessary to alleviate flooding conditions. Riparian buffer areas should be created adjacent to streams to improve water quality and protect stream areas from improper encroachment.

Impact 15: Decreases in Water Reservoir Storage Capacity

Non-structural and structural erosion and sediment control BMPs should be designed and constructed in accordance with an approved erosion and sediment control plan.

8-4.2 Monitoring of Surface and Groundwater

Surface Waters

The Lexington-Fayette Urban County Government (LFUCG) has been monitoring the conditions of the waters of the Commonwealth of Kentucky since it first applied for a stormwater discharge permit in 1992. The permit number is #KY00002. This permit serves the purposes of characterizing and quantifying urban sources of non-point source pollution through stormwater runoff from properties within the urban services boundaries of Fayette County.

The stormwater permit was required as part of the Water Quality Act of 1987. Medium sized cities with populations greater than 100,000 and less than 250,000 which had separate storm sewer systems were required to apply for permits as a phased approach to the management of water quality within the United States. Earlier legislation and programs (1972 Clean Water Act and the National Pollutant Discharge Elimination System (NPDES)), focused on removing point sources of water pollution. The 1987 stormwater permitting requirements were designed to manage non-point source water pollution from various industrial and municipal activities.

The emphasis of the storm-water monitoring program, which has been performed for the LFUCG by Commonwealth Technology, Incorporated (CTI), has evolved over the past six years. Initial sampling involved sampling during rain events and checking for "dry weather" flows from storm sewer out falls. Currently, sampling has been expanded to chemical constituent sampling of

outfalls and streams, dry and wet weather, and sampling of the aquatic communities, fish and macroinvertebrates, as well. In the Royal Spring Aquifer the Georgetown Municipal Water & Sewer Service Administration has developed a stream sampling plan for the Royal Spring Aquifer. A summary of both of these plans may be found in Appendix 8-1

Groundwater

Water resources are essential for community growth and development. The water quality of the Royal Spring Aquifer is of high quality and meets or exceeds federal standards in every category. A significant number of tests are performed each year to ensure that the water leaving the GMWSS plant is of the highest quality. Each year approximately 24,000 tests are run on finished water to ensure a quality product. In 1997 and 1998 GMWSS, had no violations of Federal or State standards. The finished water quality standards are presented in Appendix 8-2 Royal Spring Finished Water Quality Analysis.

8-5 Watershed Protection Measures

The Lexington Fayette Urban County Government is in the process of exploring ways to develop better water resource protection measures. The ultimate goal is to provide better protection to existing developed streams and also to provide best management practices and controls to streams in the developing areas of our community. The inter-governmental approach is working to make the community and government agencies more aware of the necessity of water shed protection. This is being accomplished by a number of committees that have been set up to at various environmental concerns. The interaction of these committees together helps to bring together a total package of the environmental needs of our community. An Urban Forester has been hired to provide long range planning, which in part will deal with riparian reforestation. Engineering, Planning, Building Inspection, as well as the Greenspace Commission, Stormwater Commission, Environmental Commission. Tree Board, Royal Spring Water Supply Protection Committee as well as other government and community agencies are working together to create watershed awareness.

8-6 Regulatory Management Strategies

From a review of reports on wellhead protection areas, it is clear that land use restrictions are the best method for the control of groundwater pollution. Groundwater management must begin at the local level in terms of land use decisions and permits. The local management agencies of Fayette and Scott County and the city of Georgetown have to work together to develop a program of land use management for groundwater protection. Strategies have to be developed that incorporate both pollution control for point sources and resource protection for non point sources. Land design and management techniques are recognized as one of the most effective and important approaches to preventing and controlling pollution. The element of resource protection recognizes that land and natural resources perform critical environmental functions. These functions may be groundwater recharge, water quality improvement, erosion control, wildlife habitat, storage of floodwaters, and the scenic beauty of our equine and agricultural lands.

8-6.1 Royal Spring Aquifer Point Source Control Recommendations

Point source criteria for the reduction of groundwater pollution in the Royal Spring Aquifer should address the following:

- All wastewater discharges should be treated to a level sufficient to achieve water quality standards for fish and aquatic life as well as recreation.
- Wastewater facilities planning should be conducted in the non sewered urban areas to provide a timetable for an extension of public sewer service
- New or additional wastewater discharges, public or private, municipal or industrial, will
 not be permitted unless consistent with 201 facilities planning
- Wastewater facilities planning, both public and private including septic tank fields, shared systems, and clustered housing utilizing wetland systems should address the land use geologic and hydrologic effects of the proposals
- Point source management should address source control including bypasses, correction of excessive infiltration and inflow problems

Non point source runoff from developed urban areas generally contains more organic material. In general these materials usually contain the following:

- Vegetation (leaves, grass clippings, yard & garden debris)
- Traffic and traffic accident related debris
- Deicing and use of salt material in the winter
- Erosion & sediment buildup from construction
- Pet wastes
- Lawn and garden fertilizers and pesticides

Transportation of material is facilitated by the impervious surfaces and storm-water drainage systems carrying the materials to the receiving streams. Impervious surfaces include asphalt roads and driveways as well as compaction of entire subdivisions for building lots in clay based soil. Storm water cannot be absorbed by the compacted soils resulting in increased runoff. Questions have been voiced about the detention of storm water from large developments in the karst areas. One question that remains unanswered is whether natural sinkhole areas that have been a direct link to the aquifer are changed resulting in less water to recharge the aquifer. The thought is that development has not had a significant impact due to the large amount of land left in rural areas. Organic enrichment of the urban storm-water drainage systems and our streams from pollutants such as sediment, nutrients, organic matter, toxic materials, and bacteria can result in an elevated oxygen demand and create depressed levels of dissolved oxygen in stream channels, which affects aquatic life. This is especially true in the hot summer months during low flow conditions. The simple act of creating hydrologic diversions in the stream channel to produce a ripple effect have immense benefits for improvement of the dissolved oxygen content of the receiving stream.

Management practices must be developed and adopted by both Fayette and Scott Counties to better address the degradation of our streams. A significant number of approaches can be used to improve the hydrologic and water quality impacts of urbanization and to control the non-point sources of pollution. Two areas should be investigated: better methods for source control after development and design, management and development of the stormwater drainage system itself before development. Many of these solutions have to start at the source of the problem, the urban and rural waterway and the methods through which we develop our subdivisions. Riparian

management of the existing urban and rural streams in both pre and post development stage should be required.

8-6.2 Royal Spring Aquifer non-point source control recommendations:

- Drainage from roofs, driveways, and parking lots should be directed towards grassed or vegetative areas, rather than being directed towards paved areas or stormsewers.
- Street sweeping in the recharge area should be on a regular basis, at least once a week in industrial areas and biweekly to monthly in residential areas.
- Drainage design practices should utilize the natural open channel drainage system utilizing detention and infiltration areas and natural greenways in the new developing areas.
- Sediment and erosion control ordinances should be upgraded to better address stormwater management in the aquifer recharge area.
- Specific watershed stormwater runoff plans for individual industrial areas should be developed for each specific type of new development
- Specific stormwater runoff plans for existing industrial areas should be reviewed for best management practices to upgrade individual facilities.
- Notification of all large-scale development in the aquifer should require notification to the manager of the Georgetown Municipal Water & Sewer Service.
- In areas of development adjacent to Cane Run and area tributaries, the use of infiltration trenches and trash racks on discharge points should be mandatory.
- Storage sites for road salts should not be allowed in the recharge area.
- Land use practices and urban drainage systems should be designed to minimize the potential for toxic or hazardous materials being discharged or washed off the land surface into the surface waters.

Each different type of land use has a different pollution potential. The development of best management practices has to look at the total environmental picture to be effective. The development of the plan for aquifer protection has been very intensive in its efforts to look at the existing land uses and pollution potential in the aquifer. In the development of a long range plan for development the following concerns can be addressed from the gathered data:

- New developing areas in the Wellhead Protection Area
- Determine risk factors based upon different types of land uses: Business, Commercial,
 Industrial, Residential, Agricultural etc.
- Intense agricultural uses in the rural area
- Proposed urban development design aquifer friendly development
- Improvement of existing land use controls in the Wellhead Protection Area
- Development of a contaminant source map what exists
- Development of a potential source of contamination map problem areas
- Develop sinkhole cleanup & restoration program
- Existing urban development, can drainage patterns be improved

8-6.3 The Development Process - Best Management Practices

The Lexington Fayette Urban County Government has been working with the firm of Commonwealth Technology to address and provide information on better management of stormwater in Fayette County. The following guidelines may be adapted to the Royal Spring Aquifer for the management of stormwater runoff.

Designing Progressive Programs for Urban Watersheds

A stormwater management program encompasses many concepts and requirements. Three items, though, are essential to a good program - stream protection requirements, water quantity requirements, and water quality requirements. These items are essential elements of a progressive and effective program to mitigate the stormwater impacts associated with urban development.

Stream protection requirements should include clearly defined limits on construction in streams.

Only the following should be allowed:

- roadways and utilities that cross at angles within 10 degrees of being perpendicular to the stream or flood plain,
- sanitary sewers, constructed outside the horizontal limits of the 10-year storm, with manhole covers set at an elevation one foot higher than calculated for the 100-year storm.

Any excess material from excavation of the sewer should be removed from the post development floodplain,

- storm sewer pipe outlets where the outlet terminates at the edge of the post-development floodplain,
- · regional flood control basins,
- other flood control practices that do not disturb below the normal top of bank of the stream, and
- water quality practices that do not disturb below the normal top of bank of the stream.

If no alternatives to construction in the streams or floodplain exist, construction should only be allowed if the area can be enhanced or mitigation work is done in another area.

The disturbance of ground cover poses a problem in the new developing lands. Sediment and erosion control and vegetation clearing are the two major problems. These two factors usually accompany stream channelization. Both counties should adopt a comprehensive watershed management plan for the aquifer that will address the following:

- Natural landform characteristics
- Landform grading & revegetation
- Storm drainage issues
- New or expanded package treatment plants
- Wetland treatment systems & alternative systems unless shown to be compatible in karst areas

8-6.4 Fayette County Rural Service Area Land Management Plan

In April 1999 Fayette County adopted the Fayette County Rural Service Area Land Management Plan. The development of this plan was deemed necessary by the community to better plan for development in the rural areas of Fayette County. A significant portion of the Royal Spring Aquifer is located in the Rural Service Area (RSA) of Fayette County. Up until the adoption of this plan rural subdivisions were allowed in ten-acre lots. This was allowed by the "10-acre rule" adopted in 1964 by the Fayette County Health Department for the treatment of sewage by septic tanks. The development in the rural areas has been rapidly advanced in the past years. The

population of Fayette County has risen from 111,500 people in 1958 to an estimated 250,000 persons this year. The development of rural land has also increased significantly in the 1990's. From 1990 to 1998 429 rural residential lots were created in the (RSA) utilizing 4,740 acres of land. This amount of land was equivalent to the total amount of developed land in the Urban Service Area in the same time period. At the present time residential development in the Rural Service Area is limited to forty-acre lot development. In the Royal Spring Aquifer in the Rural Service Area it is estimated that about 4,200 acres of prime agricultural land exist.

In terms of urban development in the rural area the major question is how do we provide for sewer treatment? In a karst area of thin clay soils and poor percolation the systems are prone to failure. Hence the original 1964 requirement for ten acre lots, to allow for dispersion of effluent through dilution and low density.

One method for the preservation of farmlands is through the clustering of residential areas. Some suggestions have been made that the clustering of residential units may be an answer to the utilization and consumption of rural land for residential development. The clustering of homes though provides for a concentrated amount of sewage.

At the present time the requirement of forty acre lots for residential development will probably preclude or slow down rural development. If the requirement of forty acres reverts back to ten acres or allows clustering then the committee should recommend that no lots smaller than ten acres be allowed to be developed in the recharge area unless they are provided with municipal sewers.

8-6.5 Official Overlay Zoning District or Administrative Overlay District for the Aquifer

In many areas of the country communities are developing a planning tool called overlay zoning districts to combat the pollution of groundwater aquifers. The major targets are septic systems and chemical storage facilities. Once the zone of influence or contribution is identified for the aquifer the overlay-zoning district is created. The creation of this district permits special development guidelines or even prohibits certain land uses that could be potentially harmful to a given area in the case of a hazardous event. The development of a comprehensive set of

guidelines usually places restrictions upon certain types of land uses such as gas stations, sewage treatment plants, landfills, industry that utilize, store, or dispose of hazardous materials. Large lot zoning in rural areas is also used to decrease the density of septic tanks.

With the zoning amendments that have followed Fayette County's Rural Land Management Plan, large lot rural zoning regulations are largely in place for much of the aquifer. A successful PDR program will augment this approach. However, in Kentucky, local jurisdictions are limited in their use of zoning to regulate agricultural uses, both by provisions of KRS Chapter 100 (the zoning enabling legislature) and by Kentucky's "Right to Farm" law.

8-7 Best Management Practices (BMP's)

- Aquifer wide considerations, from a broad perspective, are important and should be the context from which many resource based land development decisions are made.
- Impacts resulting from stormwater related input to the groundwater aquifer and stream baseflow may have serious and far-reaching consequences for aquifer recharge.
- Post development uncontrolled runoff rapidly increases and peaks out at a runoff rate level which is considerably higher than the peak rate of runoff for predevelopment.
- A conservation or natural approach to site design will be utilized suggesting an array of non-structural conservation techniques
- The use of vegetative swales and buffer strips can provide a significant water quality benefit in addition to reducing the total volume of stormwater runoff.
- Conservation design approaches reflect a totally different philosophy towards site design, which integrates stormwater into the very core of site design, as opposed to being considered an afterthought to site design.

Operation and maintenance of structural stormwater management practices is a significant responsibility if long term performance of the practice is to occur. There is little incentive, under the existing approach to stormwater management, to leave trees in a given location, to establish a riparian restoration, or to maintain low areas as wetlands.

Special Notes: Royal Spring Aquifer Management

Underground storage tanks: No underground storage tanks shall be installed in the aquifer recharge area unless they meet the Lexington-Fayette Urban County Government underground tank installation guidelines. These guidelines require installers to utilize double walled tanks and double walled piping for petroleum storage facilities. Facilities with underground tanks must register with the Lexington-Fayette County Government through the Division of Environmental and Emergency Management (DEEM) prior to operation and development a Spill Prevention Control Plan. DEEM must be notified of tank closures. DEEM acts as the State Fire Marshall's representative in Fayette County and inspects and certifies each phase of the installation process.

Hazardous materials storage: Any development that will include or have the potential to include significant quantities of hazardous materials in Fayette or Scott County shall require the developer of each parcel to provide to the respective Planning Divisions and the GMWSS written identification of and management plans for the storage of hazardous materials. Applicable local, state or federal environmental laws or regulations define these materials. These may also include other substances, which due to its quality or quantity may in the opinion of each Emergency Management Division present a substantial risk of pollution in the event of an accidental spill, which will be created, stored, and/or utilized within its facilities.

Section 8-8 Future Management Plans: The developer shall require the owner or lessee of each parcel to provide to the respective Emergency Management Divisions plans for the control and containment of accidental spills or leakage, especially in loading dock and transfer areas, before the final record plat is approved by the respective Planning Agencies. Each owner shall consult and coordinate the formulation of such plans with the LFUCG Division of Environmental and Emergency Management or the Georgetown/Scott County Emergency Management Agency.

The Planning Divisions of each county shall require the owner or lessee of each parcel to provide detailed design plans and written maintenance / management plans for the retention of the "first flush" storm water runoff. The detailed design plans and written maintenance / management plans will be a condition of final plat approval. "First flush" in this case will be considered the first 1/4" of rainfall. This plan shall provide for a combination of trash racks on surface inlets.

Sedimentation, filtering, and/or other acceptable means of reducing the "first flush" pollutants from impervious surfaces must be shown on the plan.

In addition to the requirements above, the owner or lessees of each parcel shall be required to comply with all applicable local, State, and Federal Hazardous Materials regulations.

Special notes regarding stormwater management will be required for each development. The developer, owner, lessee agrees that they will comply with all ordinances or regulations that are in place. The developer, owner or lessee agrees to provide the Planning Commission, for information purposes, copies of the approved containment facilities design and management plans prior to the issuance of a building permit. Nothing contained in the above notes shall be construed so as to abrogate any additional rights and responsibilities either Planning Commission in Scott or Fayette County.

- There shall be trash/grating racks or other devices on storm sewer inlets to minimize potential for debris to enter the waterways.
- Pond/detention areas shall also have capability of treating "first flush" of storm water from parking areas.
- Any underground storage tanks shall have active monitoring and secondary containment as mandated by all Federal, State and the Lexington-Fayette Urban County Government underground tank installation guidelines.
- The development property is located in the Royal Spring Aquifer Recharge Area. As such the developer will submit detailed design plans and written management plans for the control and containment of accidental spills or leakage, in hazardous materials storage areas and in the loading docks and transfer areas. These plans should be submitted to the respective Division of Environmental and Emergency Management for review and comment.

Section 9 Long Range Planing for Wellhead Protection

9-1 Scott & Fayette County long range planning regulatory & non regulatory management tools

This document is a tool for the planning processes for both Scott and Fayette Counties. It is important because it raises the level of awareness and cooperation for the protection of the aquifer to a new level of understanding. One of the challenges of this plan will be to provide workable mechanisms to ensure aquifer protection.

The study has pointed the way for a concentrated watershed / aquifer management area. Policies related to land use guidance through comprehensive planning is the best method to address water quality issues. In both counties the aquifer extends under three principal areas. These are:

- The rural agricultural areas
- Existing developed urban areas
- New developing areas from rural agricultural lands

To make this wellhead protection program work both Fayette and Scott County must be willing to make a long-term commitment to the protection of the Royal Spring Aquifer. The quality of the Royal Spring Aquifer as a public water supply cannot be understated. The importance of the aquifer as an independent water supply to the numerous farm and residential wells is also of primary concern to both counties. The only available options for protecting the aquifer is to either limit future development in the catchment area of the ground-water basin, or to require best management practices for ground-water pollution control. While the number of water wells has been declining in the aquifer, it still provides water to the individual rural property owner residential, equine or farm use. The quality of the water in the aquifer to date has been exceptional. However the rate of development of agricultural land to non-agricultural uses is alarming.

A number of land use management techniques are available that are relevant to wellhead protection. Each county must select and adopt methods for management techniques best suited to the individual county and its existing or proposed enforcement regulations to carry out these protection plans. Financial resources as well as staff capability has to be assessed. The

committed involvement of both counties is critical in the development of the aquifer protection plan.

9-2 Selecting management strategies

The direction of the community cannot be changed overnight, but it is thought that the process of compiling this document is a great stride towards protecting the aquifer. Sensible new development and design controls along with good emergency response to a hazardous incident will go a long way to the preservation of the aquifer and groundwater quality. Comprehensive planning must take into consideration the urgent need for groundwater protection. As development pressures increase management alternatives may have to require the adoption of more stringent regulations. The following criteria are recommended when evaluating proposed development projects:

- Public opinion
- Financial and social costs
- Business and industrial costs
- Agricultural interests
- Authority to enforce compliance

The last item, authority to enforce compliance, is one of the most important issues in the aquifer protection program. Unless a program is developed for the coordination of efforts for land use and land development with Best Management Practices, by both counties, then the protection of ground-water quality will be difficult. The following criteria must be evaluated for enforcement compliance:

- Legal authority
- What actions are required for groundwater protection?
- Who is responsible in the respective communities for groundwater protection?
- Development of intergovernmental coordination between communities
- Is funding required
- Governmental and planning support for regulation
- Multi agency cooperation among all agencies concerned with environmental protection

Management alternatives may be selected based upon the degree of threat for each type of planning area for example rural agricultural areas versus new development on agricultural lands.

9-3 Level of involvement

The level of involvement in the protection of the aquifer may be different depending upon not only the location in the catchment basin, but also the land use classification. Three types of programs have been identified:

- Low involvement program
- Medium involvement program
- High involvement program

The first type of program involves the adoption of policy statements as stated in the plan chapter on goals and objectives. This is a very low key process that is mostly an educational program. The basic response is to let people know that a wellhead protection area exists. An illustration of this is the sign placement program adjacent to the interstate and state roads throughout the aquifer. This type of program has little regulation and bases its strength on notifying the public. This type of program works well with a majority of one type of land use. Such as agrarian production of equine, cattle or row crop production where numerous wells are utilized. The property owners in the aquifer are the beneficiaries of the protection program since they utilize the water from the aquifer.

The second program is the medium involvement program. At this stage water monitoring for quality and greater public participation in a watershed / aquifer management program is initiated. Land use is closely looked at with regard to potential site location problems such as the number of and septic tank locations, private package treatment plants, storage of hazardous materials and other potential high risk generators.

The third stage, or high involvement program, in the development of the aquifer plan is one that regards the total land use setting. Due to the complexity of the area this type of program will focus on voluntary and mandatory regulations depending on the potential for development, existing development, transportation hazards and again the potential for pollution generators. In the Royal Spring Aquifer we are at the medium and high stages of the program. The rapid development of the two communities of Georgetown and Lexington expanding towards each other with a major interstate and rail line in between both communities compounds the protection problem. In the Royal Spring Aquifer many issues come into play. The land use patterns,

pressure for development, expanding the transportation system and the anticipated increase flow of traffic, all elements have the potential for future contamination of the aquifer.

9-4 Future Development Programs

In Section 2 of this report two goals and four objectives are outlined to protect the Royal Spring Aquifer. To further theses goal and objectives the following planning practices should be developed:

- Establish standards to be met by both Fayette and Scott County to ensure the protection of the groundwater quality within the Royal Spring Aquifer.
- Define the types of land use activities that are compatible and/or incompatible for areas of protection in the Royal Spring Aquifer.
- Emphasize the importance of non-point pollution controls in the Royal Spring Aquifer.
- Integrate, and support the enforcement of existing statutes, codes and regulations designed to regulate potentially contaminating activities and protect water quality.
- Define zones of land use planning management and protection in the Royal Spring Aquifer to insure adequate protection of the groundwater quality of the Royal Spring Aquifer.

Section 10. GEORGETOWN MUNICIPAL WATER & SEWER SERVICE (GMWSS)

DROUGHT MANAGEMENT/ SPRING CONTAMINATION PLAN

SECTION 10-1: Existing Raw Water Sources

- 1. Royal Spring The primary source of raw water for the Georgetown Water Treatment Plant (WTP) is Royal Spring, which is located adjacent to the WTP. Three vertical turbine pumps at the mouth of Royal Spring are used to pump raw water to the treatment plant. The three pumps have the capacity to supply the WTP at its rated capacity. The water from Royal Spring varies both in quality and quantity. The capacity of Royal Spring is difficult to determine due to lake of historical flow data and the high variability of flow. Estimated flow from the Spring ranges from 0.5 mgd during dry periods to 50 mgd during periods of precipitation. During the drought of 1988, the Spring even stopped flowing for a short period of time. The quality of water is steadily declining and will continue to decline as the recharge basin for the Spring is developed. The recharge basin for the Royal Spring, as identified by Dr. John Thrailkill in Groundwater in the Inner Bluegrass Karst Region, Kentucky, includes the upper watersheds of Cane Run and North Elkhorn Creek. During periods of high precipitation, the Spring reacts like a surface water supply and is very turbid. At the present, the water withdrawal permit for the WTP indicates a withdrawal of 2.0 mgd from Royal Spring.
- 2. North Elkhorn Creek The pool above Wallace Dam on North Elkhorn Creek is used as an emergency raw water supply. Raw water pumps at the dam are used to pump raw water to the WTP. The pool behind Wallace Dam is estimated to be 33 million gallons. During low precipitation periods water is withdrawn from North Elkhorn Creek for irrigation by farmers, causing the creek to stop flowing. The quality of water from North Elkhorn Creek will also be subject to degradation as the potential for degradation in watershed is developed. Turbidity of the water varies with flow, typical of any surface water supply. The Kentucky Division of Water had stated that the raw water supply from the creek shall be utilized in emergency situations and only with prior approval of the Division of Water. At the present, the water withdrawal permit for the WTP indicates a withdrawal of 2.0 mgd from North Elkhorn Creek.

SECTION 10-2: Existing Supplemental Water Supplies

1. Frankfort Interconnect - On April 23, 1990, Georgetown Municipal Water & Sewer Service (GMWSS) and the Frankfort Electric and Water Plant Board entered into an agreement that allowed GMWSS to construct, at its expense, a pump station and 16" water line for the purpose of conveying water purchased from Frankfort to the GMWSS water system. This agreement allowed GMWSS to purchase 1,000,000

gallons of water per day and an additional 1,300,000 gallons per day if it is available. GMWSS purchased an average of 381,802 mgd from Frankfort over the last twelve (12) months.

Frankfort is currently undergoing system improvements that will allow them to supply ever larger amounts of water to GMWSS in the near future. GMWSS is investigating the possibility of adding an additional pump at the Frankfort pump station to allow pumping of larger amounts of treated water through the 16" line.

2. <u>Kentucky American Interconnect</u> - On October 18, 1996, GMWSS and the Kentucky American Water Company entered into an agreement that allowed GMWSS to purchase a minimum of 1,350,000 gallons of water per calendar month from a 12" connection located on Burton Road. A total of 660 gallons per minute (gpm) is available from this connection.

SECTION 10-3: Determining Ability to Meet Customer Demand

Raw Water Flow

To assess the impact that precipitation will exert on the recharge area of the Royal Spring, GMWSS will continuously monitor flow from the Royal Spring. This will be accomplished in the following manner:

- 1. <u>Internet Sites</u> Information on Royal Spring stream flow measurements at the GMWSS WTP is available at this web address:
 - a. http://wwwdkylsver.er.usgs.gov/ This server is maintained by the United States Geological Survey and provides data from the gauging station below the weir at the WTP. Information that is available includes data on stream flow in cubic feet per second and stage elevation above datum (Figure 1 & 2). This server also contains 5-day precipitation data for the Cane Run in Fayette County, which is the prime recharge source for the Royal Spring (Figure 3).
 - b. http://www.crh.noaa.gov/lmk/ This is a web site for the National Weather Service office in Louisville. This location offers detailed precipitation totals for the past 24 hours are regional, state and county levels (Figure 4).

<u>Usable Raw Water Flow</u> - The USGS gauging station is not an accurate reference when calculating customer demand to be met by the Royal Spring. This is the result of Spring flow being diverted to the WTP sedimentation basins **before** measurements at the USGS site. The

basins measure 215 feet x 40 feet x 8 feet and contain approximately 6 feet of 386,000 gallons of usable water.

To determine the amount of impounded Spring flow that is obtainable for treatment, the water plant operator measures water depth in the basins and subtracts 2 feet from the whole. Then, the overall dimensions of the basins are multiplied by 7.48 gals/ft₃ to provide the total gallons available.

<u>Supplementary Flow</u> - To maintain customer demand during periods of reduced flow from the Royal Spring, the Frankfort Interconnect Pump Station will be operated at varying flow settings. An additional benefit of operating the interconnects is that the flow from the Spring is not stressed and allows the aquifer to recharge. Pumping from the interconnects will be operated on the following schedule.

- 1. When the water level in the sedimentation basins is 2 feet below normal capacity for five consecutive days, then operate the interconnects at low speed for every hour the water plant is operational.
- 2. When the water level in the sedimentation basins is 3 feet below normal capacity for five consecutive days, then continuous 24-hour operation at low speed is necessary. When possible, alternate the operation of the interconnects at low speed.
- 3. At any time the water level in the sedimentation basins is 4 feet below normal capacity, operate the interconnect pumps at high speed on a continuous basis.

Future Supplemental Water Supplies

- 1. GMWSS and Kentucky American have signed an agreement to install a dry connection in Georgetown between the two systems in the area of the First National Bank in Georgetown. This agreement will benefit both systems in the event of an unforeseen water shortage and/or drought situation. The connection would be made between two existing 16" lines in close proximity to each other.
- 2. The Scott County Reservoir is in the planning stages and will benefit GMWSS at such time as it is built.
- 3. The Louisville/Lexington pipeline is also in the planning stages and will benefit GMWSS at such time as it is built.

SECTION 10-4: Emergency Plans: Water Shortage Response Plan and Supply Contamination Response Plan

Precipitation in Kentucky has an annual average of 45-50 inches. During rainfall and snow melt, the karst aquifer that supplies the Royal Spring is recharged by the Cane Run and associated feeder streams. However, extended droughts can severely affect the water flow into the recharge

aquifer and as a consequence, reduce the discharge of the Royal Spring. Although contamination of the recharge area will not diminish the flow from the Spring, the impact of such a catastrophic event would effectively terminate the water supply to Georgetown/ Scott County.

Under the water resources policy of the Commonwealth, as stated in KRS 151.110, the state has the statutory responsibility "to provide for the adequate disposition of water among the people of the Commonwealth entitled to its use during severe droughts or times of emergency..." However, it is the local community that is best able to determine and coordinate an appropriate response to water shortages.

All of the water utilities operating in the Commonwealth of Kentucky are required by regulations promulgated by the Kentucky Division of Water to have a volume of stored water that is equal to the amount of water the utility produces or sells in a 24 hour period. All of the water utilities operating in Scott County meet this requirement. Subsequently, in the event of an occurrence that may contaminate the county's source of water supply, Georgetown could shut-down its water intake until the threat had passed, provided the threat is less than twenty-four hours in duration.

In addition, each county's Emergency Management Agency (EMA) has also written an Emergency Response Plan that discusses how the county will deal with a possible threat to the county's water supply. Scott County not only has an Emergency Response Plan, but also an Emergency Operation Plan for Water Management. Scott County's State-approved Emergency Response Plan addresses the ways that accidental contaminant releases will be handled. Among the topics included in this plan are: identification of the appropriate response agencies, methods of protecting citizens from the contaminants, mitigation measures, and hazard alleviation. The appropriate response depends largely upon the source and type of the hazard. For example, the local fire department may send firefighters trained in handling hazardous materials to clean up gasoline spilled by a tanker truck during an accident. The fact that a spill may or may not be in a water supply protection area does not necessarily affect the way the response is handled, at least in clean-up, mitigation, and alleviation. Thus, a separate component of the local Emergency Response Plan does not exist that specifically discusses how to respond to potential contaminant releases in a water supply protection area.

The local Emergency Management Director will notify Kentucky Division of Emergency Management (formerly DES) officials of any such shutdown that has the potential to last longer than 24-hour reserve water supply. The State DEM has established procedures whereby emergency supplies of water for personal use can be trucked into the community.

If the Georgetown Municipal Water & Sewer Service (GMWSS) makes the decision to quit pumping water from the Royal Spring because of a potential or actual contamination event, the Division of Water will be consulted before any resumption in withdraws. Other affected agencies would also be contacted.

Kentucky Division of Water regulations require water systems to have a volume of stored, potable water which is equal to the amount of water the utility purchases or produces in a 24-hour period. However, should there be a shortage lasting longer than one day, (caused by such factors as a major line break or water treatment plant shutdown) the water system will implement

measures in accordance with the 1988 Kentucky Water Shortage Response Plan. That plan provides a guide for local officials and water system managers to use in developing their own response plans. As noted in that guide, the Natural resources and Environmental Protection Cabinet has established a two-level Drought Notification System consisting of a Water Shortage Watch and a Water Shortage Warning. When a Watch has been issued, local governments and water utility managers should determine the need for local response and make necessary preparations should a shortage occur. When a warning has been issued by the Cabinet, local officials and water systems should already have adopted water shortage response mechanisms and be in one of four phases of actual response.

Although designed for drought situations, the response plan developed by GMWSS could be implemented in response to other situations which result in limitations on either the supply of raw water or the ability to distribute treated water. The response plan consists of four stages of water shortage severity, with specific response measures for each stage. The stages are based solely on the availability of treated water from both the Frankfort Plant Board and the Kentucky-American Water Company. At the present time and capacity, the maximum amount of treated water that can be purchased by GMWSS form both sources is 3.21 million gallons per day (MGD).

- · Advisory phase
- Alert phase
- Emergency phase
- Water rationing phase

A water shortage advisory should be declared by GMWSS when the daily purchase of treated drinking water to meet customer demand is 40% of the 3.21 MGD or 1,284,000 gallons.

An alert phase should be declared by GMWSS when the daily purchase of treated drinking water to meet customer demand is 60% of the 3.21 MGD or 1,926,000 gallons.

An emergency phase will be issued by GMWSS when the daily purchase of treated drinking water to meet customer demand is 70% of the 3.21 MGD or 2,247,000 gallons.

The water rationing phase will be implemented by GMWSS when the daily purchase of treated drinking water exceeds 70% of 3.21 MGD.

Likewise, the responses to each water shortage level become increasingly stringent as the ratio of demand to available water supply increases. In the <u>advisory phase</u>, GMWSS and local officials will:

- Issue a water shortage advisory
- Set conservation goals and prepare for a decreasing water supply
- Inform the public about the potential problem
- Request voluntary conservation

GMWSS and local officials will respond to the <u>alert phase</u> with the following measures:

- Issue water shortage alert
- Set more stringent voluntary conservation goals for all classes of water use
- Ban all non-essential uses of water, monitor compliance, enforce when necessary
- Inform the public about the problem

In the emergency phase, GMWSS and local officials will:

- Issue a water shortage emergency declaration
- Set more stringent conservation goals for all water use classes
- Ban all non-essential uses of water and restrict Class II (socially and economically important) water uses; monitor; enforce as necessary

During the <u>rationing phase</u>, GMWSS and local officials will declare:

- Mandatory allocation of water to Class I (essential) and Class II users
- Water pricing to encourage conservation
- monitoring of compliance, enforcement as necessary

Water Conservation Class System: According to water shortage response phase¹

Essential Water Users (Class I)

The following users of water, listed by site or user type, are essential

Domestic:

 water necessary to sustain human life and the lives of domestic pets, and to maintain minimum standards of hygiene and sanitation

Health Care Facilities:

• patient care and rehabilitation

Water Hauling:

sales of domestic use where not reasonably available elsewhere

Public Use:

- fire fighting
- health and public protection purposes, as specifically approved by health officials and the local governing body

Socially or Economically Important Uses of Water (Class II)

The following uses of water listed by site or user type, are socially or economically important.

Domestic:

• personal, in-house water use including kitchen, bathroom and laundry

Water Hauling:

• non-domestic, when other sources are not reasonably available elsewhere

Commercial and Civic Use:

- commercial car and truck washes
- Laundromats
- restaurants, clubs and eating places
- schools, churches, motels/hotels and similar commercial establishments

Outdoor Non-Commercial Watering:

- minimal watering of vegetable gardens
- minimal watering of trees where necessary for their survival

Outdoor Commercial or Public Watering (using conservation methods and when other sources of water are not available or feasible to use):

- agriculture irrigation for the protection of food and fiber or the maintenance of livestock,
- water by arboretums and public gardens of national, state, regional or community significance where necessary to preserve specimens,
- watering by commercial nurseries where necessary to maintain stock,
- watering where necessary to establish or maintain revegetation or landscape plantings required pursuant to law or regulation,
- watering of woody plants where necessary to preserve them,
- minimal watering of golf courses

Recreational:

 operation of municipal swimming pools and residential pools that serve more than 25 dwelling units.

Air Conditioning:

- refilling for startup at the beginning of the cooling season,
- · makeup of water during the cooling season,
- refilling specifically approved by the health officials and the local governing body, where the system has been drained for health protection or repair services.

Non-Essential (Class III):

Any waste of water, as defined herein, is non-essential. The following uses of water, listed by site or user type, are also non-essential.

Public Use:

- use of fire hydrants (excluding Class I and Class II uses), including use of sprinkler caps, testing fire apparatus and fire department drills,
- flushing of sewers and hydrants except as needed to ensure public health and safety as approved by GMWSS and local officials.

Commercial and Civic Use:

- serving water in restaurants, clubs or eating places, except by customer request, failure to repair a controllable leak,
- increasing water levels in scenic and recreational ponds and lakes, except as necessary to support fish and wildlife.

Ornamental Purposes:

• fountains, reflecting pools and artificial waterfalls.

Outdoor Non-Commercial Watering:

- use of water for dirt control or compaction,
- water of annual or non-woody plants other than vegetable gardens,
- watering of lawns, parks, golf course fairways, playing fields and other recreational areas,
- washing sidewalks, walkways, driveways, parking lots, tennis courts or other hard surfaces,
- washing down buildings or structures for purposes other than immediate fire protection,
- flushing gutters or permitting water to run or accumulate in any gutter or street.

Outdoor Commercial or Public Watering:

- expanding nursery facilities, placing new irrigated agricultural land in production, or planting of landscaping except when required by a site design review process,
- use of water for dirt control or compaction,
- watering of lawns, parks, golf course fairways, playing fields and other recreational areas,
- washing sidewalks, walkways, driveways, parking lots, tennis courts or other hard surfaces,
- washing down buildings or structures for purposes other than immediate fire protection,
- flushing gutters or permitting water to run or accumulate in any gutter or street.

Recreational uses other than those specified as Class II.

Non-commercial washing of motor and other vehicles.

Air-conditioning (see also Class II purposes)

refilling cooling towers after draining.

¹Kentucky Water Shortage Response Plan. Kentucky Resources and Environmental Protection Cabinet, Department for Environmental Protection, Division of Water. Frankfort, KY. Revised June 1988. Response Phases

GMWSS SOURCE WATER TO MEET CUSTOMER DEMAND

SOURCE	WATER AVAILABLE (MGD)
Frankfort Plant Board Interconnect	3.0 ¹
entucky American - Burton Road	0.212
Kentucky American - Champion Way	Undetermined ³
Royal Spring	+26.0 ⁴

TRIGGER CONDITIONS FOR RESPONSE PHASE (WATER PURCHASE)

Frankfort Plant Board Interconnect	3.0 mgd
Kentucky-American - Burton Road	0.21 mgd
TOTAL TREATED WATER FOR IMMEDIATE USE	3.21 mgd

PHASE	% OF PURCHASE	GALLONS PER DAY
Advisory	40 of 3.21 mgd	1,284,000
Alert	60 of 3.21 mgd	1,926,000
Emergency	70 of 3.21 mgd	2,247,000
ationing	>70 of 3.21 mgd	+2,247,000

¹ Should be available with new pumps January 1, 2000.
² More available if needed.
³ Water available at the time of request by GMWSS.

⁴ Based on maximum historical amount from Royal Spring.

GMWSS RESPONSE PHASES Water Conservation and Water Emergency Management

	ADVISORY PHASE	ALERT PHASE	EMERGENCY PHASE	WATER RATIONING PHASE
TRIGGER ONDITIONS	40% of customer demand met by water purchase	60% of customer demand met by water purchase	70% of customers demand met by water purdhase	>70% of customer demand met by water purchase
MERGENCY MEASURES	Eliminate outside water sprinkler between Noon and 6:00 p.m. Request voluntary	Prohibit car washing except when a bucket is used Allow lawn watering	Prohibit all outside watering Serve water in restaurant	Enact conservation pricing Begin mandatory allocation
	reductions in water use Broadcast Public Service Announcements encouraging water conservation	every fifth day No use of fire hydrant except for fire fighting Odd/even schedule for watering trees, shrubs and gardens	only on request	of water immedicately reduce usage by 25 percent Set new conservation goals and monitor all shortage- related activities; enforce as necessary
ORMATION	Announce measures at	Announce measures at	Announce measures at	Announce measures at
& PUBLIC DUCATION	GMWSS Board Meeting	GMWSS Board Meeling	GMWSS Board Meeing	GMWSS Board Meeing
	Remind all customers through billing notice	Remind all customers through billing notice	Provide conservation awareness information	Provide conservation awareness information
	Provide conservation awareness information	Provide conservation awareness information	Notify residential customers by radio/ TV/newspaper	Notify residential customers by radio/ TV/newspaper
		Notify residential customers by radio/ TV/Newspaper		

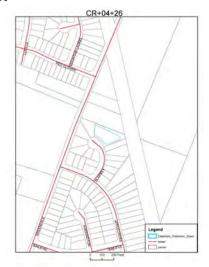
APPENDIX C

Add Forebay

Add Micropool

Repair Bank/Channel Erosion

Basin ID #: CR+04+11 **Property Owner:** Rood & Riddle Partners Address of Basin: 2150 Georgetown Road **Type of Basin:** Detention Basin Basin Acreage: 1.45 acres Drainage Area Land Use: Equine Hospital Grounds **Drainage Acreage:** 12.5 acres Adjacent Land Use: Residential, Park FEMA 100-year Floodplain: No **Utility Issues: None** Channel Length: No channel present **Retrofit Options:** \boxtimes **Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER** Remove Concrete Bottom **Public Education**


Additional Comments: Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

Litter Control

Bank Stabilization

Opportunity to Retrofit Limited Due to Site Issues

<u>Basin ID #:</u> CR+04+26 <u>Property Owner:</u> Cutter Homes, LTD

<u>Address of Basin:</u> 1332 Blarney Court <u>Type of Basin:</u> Detention Basin

Basin Acreage: 0.43 acres **Drainage Area Land Use:** Residential

<u>Drainage Acreage:</u> 6.4 acres <u>Adjacent Land Use:</u> Residential, Industrial

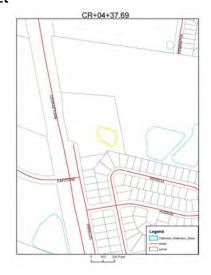
<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> Overhead Lines

Retrofit Options:

Channel Length: Approx. 90 feet

	Extend Detention		Infiltration
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
\boxtimes	<u>Channel Condition</u>		Naturalized Basin
	Add Meanders/Modify Internal Design		OTHER
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Repair Bank/Channel Erosion	Оррс	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is flat and open, tree planting to enhance and improve water infiltration may be beneficial. Additionally, there is heavy sediment accumulation and growth in northern half of the concrete channel (as seen in picture). Removing the concrete channel would provide additional detention.


Basin ID #:CR+04+37.18Property Owner:Rood & Riddle PartnersAddress of Basin:2150 Georgetown RoadType of Basin:Detention BasinBasin Acreage:1.24 acresDrainage Area Land Use:Equine Hospital GroundsDrainage Acreage:2.3 acresAdjacent Land Use:Residential, ParkFEMA 100-year Floodplain:NoUtility Issues:NoneChannel Length:No channel present

Retrofit Options:

	Extend Detention		Infiltration
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	Channel Condition		Naturalized Basin
	Add Meanders/Modify Internal Design		OTHER
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Renair Bank/Channel Frosion	Onno	artunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

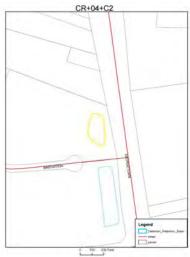
<u>Basin ID #:</u> CR+04+37.69 <u>Property Owner:</u> Highlands Baptist Church

<u>Address of Basin:</u> 2032 Parallel Road <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 0.40 acres <u>Drainage Area Land Use:</u> Church

<u>Drainage Acreage:</u> 2.4 acres <u>Adjacent Land Use:</u> Residential, Equine Hospital

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> Overhead Lines


Retrofit Options:

Channel Length: No Channel Present

	Extend Detention	\boxtimes		Infiltration
	Modify Riser			Tree Planting
	Increase Embankment Height			Rain Garden
	Excavate Bottom			Bioretention
	Change Geometry			Other Filtering Practice
	<u>Channel Condition</u>			Naturalized Basin
	Add Meanders/Modify Internal Design			<u>OTHER</u>
	Remove Concrete Bottom			Public Education
	Add Forebay			Litter Control
	Add Micropool			Bank Stabilization
	Repair Bank/Channel Erosion		Орро	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is flat and open, tree planting to enhance and improve water infiltration may be beneficial. Additionally, because run-off from the parking lot flows directly into the basin via a drainage swale, constructing a rain garden at the end of the drainage swale may be beneficial.

Basin ID #: CR+04+C2 **Property Owner:** Webasto Sunroofs, Inc. Address of Basin: 2201 Innovation Drive Type of Basin: Retention Pond Basin Acreage: 0.69 acres **Drainage Area Land Use:** Industrial **Drainage Acreage:** 1.2 acres Adjacent Land Use: Industrial, Road FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** None **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Increase Embankment Height Rain Garden **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER** Remove Concrete Bottom **Public Education** Add Forebay Litter Control **Bank Stabilization** Add Micropool Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Additional Comments:</u> No retrofitting opportunities observed during inspection. However, there was moderate algal growth around the periphery of the pond. The installation of an aerator/fountain may be beneficial.

Basin ID #: CR+04+C3

Address of Basin: 2000 Capstone Drive

Basin Acreage: 1.64 acres

Drainage Acreage: 30.9 acres

FEMA 100-year Floodplain: No

Channel Length: Approx. 295 feet (Main Channel)

Property Owner: CQ Landlord Multi, LLC

Type of Basin: Detention Basin

Drainage Area Land Use: Industrial

Adjacent Land Use: Industrial, Road

Utility Issues: Overhead Lines

Retrofit Options:

		Extend Detention	\boxtimes		<u>Infiltration</u>
		Modify Riser			Tree Planting
		Increase Embankment Height			Rain Garden
		Excavate Bottom			Bioretention
		Change Geometry			Other Filtering Practice
\boxtimes		<u>Channel Condition</u>			Naturalized Basin
		Add Meanders/Modify Internal Design			OTHER
	\boxtimes	Remove Concrete Bottom			Public Education
		Add Forebay			Litter Control
	\boxtimes	Add Micropool			Bank Stabilization
		Repair Bank/Channel Erosion		Орро	rtunity to Retrofit Limited Due to Site Issues

Additional Comments: Because the basin is flat and open, tree planting to enhance and improve water infiltration may be beneficial. For additional water quality improvement, in lieu of removing the concrete channels, a micropool could be constructed to create an area where sediment settling can occur prior to water exiting the basin. Lastly, there is heavy sediment accumulation and growth in the eastern channel (as seen in picture). Removing this concrete channel would provide additional detention.

Channel Length: Approx. 275 feet (Grassy Channel)

<u>Basin ID #:</u> CR+04+C8 <u>Property Owner:</u> Rood & Riddle Partners

<u>Address of Basin:</u> 2150 Georgetown Road <u>Type of Basin:</u> Detention Basin

Basin Acreage: 0.80 acres **Drainage Area Land Use:** Equine Hospital Grounds

<u>Drainage Acreage:</u> 7.1 acres <u>Adjacent Land Use:</u> Residential, Park

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> None

Retrofit Options:

	Extend Detention	\boxtimes		<u>Infiltration</u>
	Modify Riser		\boxtimes	Tree Planting
	Increase Embankment Height			Rain Garden
	Excavate Bottom			Bioretention
	Change Geometry			Other Filtering Practice
	<u>Channel Condition</u>			Naturalized Basin
	Add Meanders/Modify Internal Design			OTHER
	Remove Concrete Bottom			Public Education
	Add Forebay			Litter Control
	Add Micropool			Bank Stabilization
П	Repair Bank/Channel Erosion		Орро	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

Basin ID #: CR+04+C9 **Property Owner:** Webasto Roof Systems, Inc. Address of Basin: 2200 Innovation Drive Type of Basin: Retention Pond Basin Acreage: 1.41 acres **Drainage Area Land Use:** Industrial **Drainage Acreage:** 15.3 acres Adjacent Land Use: Industrial, Road FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** None **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER** Remove Concrete Bottom **Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Additional Comments: No retrofitting opportunities observed during inspection.

5050 101 | Legard | L

<u>Basin ID #:</u> CR+04+C10 <u>Property Owner:</u> Robbin Bond

Address of Basin: 1832 Arbor Station Way Type of Basin: Detention Basin

Basin Acreage: 0.51 acres **Drainage Area Land Use:** Residential

<u>Drainage Acreage:</u> 2.2 acres <u>Adjacent Land Use:</u> Residential

FEMA 100-year Floodplain: No Utility Issues: None


Channel Length: Approx. 205 feet

Retrofit Options:

		Extend Detention		<u>Infiltration</u>
		Modify Riser		Tree Planting
		Increase Embankment Height		Rain Garden
		Excavate Bottom		Bioretention
		Change Geometry		Other Filtering Practice
\boxtimes		<u>Channel Condition</u>		Naturalized Basin
		Add Meanders/Modify Internal Design		OTHER
		Remove Concrete Bottom		Public Education
		Add Forebay		Litter Control
		Add Micropool		Bank Stabilization
	П	Repair Bank/Channel Frosion	Oppo	ortunity to Retrofit Limited Due to Site Issues

Additional Comments: Abundant sediment and debris has completely filled the lower portion of both concrete channels within the basin causing the water to flow outside the concrete channels and deposit significant sediment along the channels. Additionally, the outlet structure is approximately 90-95% clogged with sediment. Maintenance is recommended to remove the sediment. Once the maintenance is completed, a micropool could be constructed to create an area where sediment settling can occur prior to water exiting the basin.

Basin ID #: CR+04+C11 **Property Owner:** Belmont Farm H.O.A., Inc. Address of Basin: 2440 Prescott Lane **Type of Basin:** Detention Basin Basin Acreage: 0.50 acres **Drainage Area Land Use:** Residential **Drainage Acreage:** 2.9 acres Adjacent Land Use: Residential, Park FEMA 100-year Floodplain: No **Utility Issues: None Channel Length:** Unknown **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER** Remove Concrete Bottom **Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Additional Comments: No retrofitting opportunities observed during inspection.

Basin ID #: CR+05+47.69 **Property Owner:** James and Monica Tucker Address of Basin: 1765 Gerald Drive **Type of Basin:** Detention Basin Basin Acreage: 0.40 acres Drainage Area Land Use: Residential, Commercial **Drainage Acreage:** 5.5 acres Adjacent Land Use: Residential, Winburn Middle School FEMA 100-year Floodplain: No **Utility Issues:** Overhead Lines **Channel Length:** No Channel Present **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention Other Filtering Practice **Change Geometry Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

CR+05+C2

<u>Basin ID #:</u> CR+05+C2 <u>Property Owner:</u> University of Kentucky

Address of Basin: 1801 Newtown Pike Type of Basin: Retention Pond

<u>Basin Acreage:</u> 3.60 acres <u>Drainage Area Land Use:</u> Hotel, Road

<u>Drainage Acreage:</u> 68.9 acres <u>Adjacent Land Use:</u> Commercial, Road, Industrial Park

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> None

Retrofit Options:

Channel Length: None

	Extend Detention		Infiltration
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	Channel Condition		Naturalized Basin
	Add Meanders/Modify Internal Design		<u>OTHER</u>
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Repair Bank/Channel Erosion	Орро	rtunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> No retrofitting opportunities observed during inspection. However, moderate algal growth was present in the northeastern portion of the pond. An aerator (fountain head) is present, but was not operating the day of the inspection. In order to lessen the growth of algae and improve the water quality, it may be beneficial if the aerator is operating.

Basin ID #: CR+05+C3 **Property Owner:** University of Kentucky Address of Basin: 1516 Bull Lea Road Type of Basin: Retention Pond Basin Acreage: 1.69 acres **Drainage Area Land Use:** Institutional, Industrial Park **Drainage Acreage:** 19.1 acres Adjacent Land Use: Industrial (Research) Park FEMA 100-year Floodplain: No Utility Issues: Electric, Sewer **Channel Length:** None **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay **Litter Control** Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Basin ID #:</u> CR+05+C6 <u>Property Owner:</u> University of Kentucky

<u>Address of Basin:</u> 1500 Bull Lea Road <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 0.49 acres <u>Drainage Area Land Use:</u> Institutional, Industrial Park

<u>Drainage Acreage:</u> 2.4 acres <u>Adjacent Land Use:</u> Institutional, Industrial Park, Road

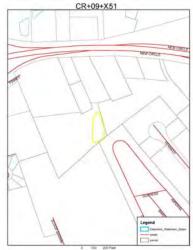
<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> None

Retrofit Options:

Channel Length: Approx. 180 feet

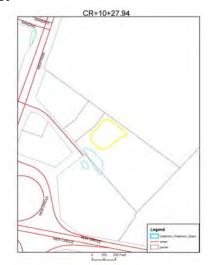
	Extend Detention		Infiltration
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	<u>Channel Condition</u>		Naturalized Basin
	Add Meanders/Modify Internal Design		<u>OTHER</u>
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Repair Bank/Channel Erosion	Орро	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.



Basin ID #: CR+05+W5 Property Owner: LFUCG Address of Basin: 1875 Newtown Pike **Type of Basin:** Retention Pond Basin Acreage: 0.94 acres Drainage Area Land Use: Med. Tech College, Industrial Park **Drainage Acreage:** 12.7 acres Adjacent Land Use: Road, Industrial Park FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** None **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Increase Embankment Height Rain Garden **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay **Litter Control** Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Additional Comments: No retrofitting opportunities observed during inspection. However, on the day of the inspection (June 14, 2013), an extremely dense algal matting was covering approximately 90-95% of the pond surface and no aeration system was present. As a result, the pond may be eutrophic. In order to reduce the amount of algae and improve the quality of water within the pond, the installation of aerators could be considered.



Basin ID #: CR+09+X51 **Property Owner:** William R. Clem Address of Basin: 1040 West New Circle Road Type of Basin: Detention Basin Basin Acreage: 0.46 acres Drainage Area Land Use: Industrial **Drainage Acreage:** 20.3 acres Adjacent Land Use: Residential, Industrial, Park FEMA 100-year Floodplain: No **Utility Issues:** None Channel Length: Approx. 190 feet **Retrofit Options:** \boxtimes **Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Additional Comments: Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

Basin ID #: CR+10+27.94 Property Owner: C2 Land L P

Address of Basin: 775 Newtown Court Type of Basin: Detention Basin

<u>Basin Acreage:</u> 1.06 acres <u>Drainage Area Land Use:</u> Commercial, Hotel, Parking

Lot

Adjacent Land Use: Commercial, Roads

<u>Channel Length:</u> Approx. 260 feet (Main Channel)

Retrofit Options:

Drainage Acreage: 5.0 acres

FEMA 100-year Floodplain: No

	Extend Detention			Infiltration
	Modify Riser			Tree Planting
	Increase Embankment Height			Rain Garden
	Excavate Bottom			Bioretention
	Change Geometry			Other Filtering Practice
	<u>Channel Condition</u>			Naturalized Basin
	Add Meanders/Modify Internal Design			OTHER
	Remove Concrete Bottom			Public Education
	Add Forebay			Litter Control
	Add Micropool			Bank Stabilization
	Repair Bank/Channel Erosion	П	Орро	rtunity to Retrofit Limited Due to Site Issues

Additional Comments: For water quality improvement: In lieu of removing the concrete channels, a micropool could be constructed to create an area where sediment settling can occur prior to water exiting the basin (especially since one inlet drains directly from parking lot). Additionally, there is a rectangular discharge basin behind the dam that is enclosed by Gabion baskets. The discharge basin is currently full of sediment and appears to be preventing a constant flow from the outlet and causing back-up. Conducting periodic maintenance and removing the sediment from the discharge basin to ensure water is draining properly from the outlet may be beneficial.

Property Owner: Consolidated Baptist Church Basin ID #: CR+10+X28 Address of Basin: 1625 Russell Cave Road **Type of Basin:** Detention Basin Basin Acreage: 0.83 acres Drainage Area Land Use: Church Grounds and Parking Lots **Drainage Acreage:** 6.7 acres Adjacent Land Use: Commercial, Residential FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** No Channel Present **Retrofit Options:** \boxtimes **Extend Detention Infiltration Modify Riser** Tree Planting Increase Embankment Height Rain Garden **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin OTHER** Add Meanders/Modify Internal Design **Remove Concrete Bottom Public Education** Add Forebay **Litter Control** Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

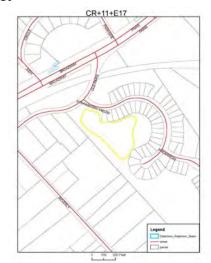
Property Owner: Consolidated Baptist Church Basin ID #: CR+10+X29 Address of Basin: 1625 Russell Cave Road **Type of Basin:** Detention Basin Basin Acreage: 0.98 acres Drainage Area Land Use: Church Grounds and Parking Lots **Drainage Acreage:** 2.9 acres Adjacent Land Use: Commercial, Residential FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** No Channel Present **Retrofit Options:** \boxtimes **Extend Detention Infiltration Modify Riser** Tree Planting Increase Embankment Height Rain Garden **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin OTHER** Add Meanders/Modify Internal Design **Remove Concrete Bottom Public Education** Add Forebay **Litter Control** Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

Basin ID #: CR+11+06.77 **Property Owner:** LFUCG Address of Basin: 525 Rogers Road **Type of Basin:** Detention Basin Basin Acreage: 0.81 acres **Drainage Area Land Use:** Park, Residential **Drainage Acreage:** 9.6 acres **Adjacent Land Use:** Residential FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** Approximately 170 feet **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Basin ID #: CR+11+07.71 **Property Owner:** LFUCG Address of Basin: 525 Rogers Road **Type of Basin:** Detention Basin Basin Acreage: 0.79 acres **Drainage Area Land Use:** Park, Residential **Drainage Acreage:** 75.8 acres **Adjacent Land Use:** Residential FEMA 100-year Floodplain: No **Utility Issues:** None Channel Length: Approx. 360 feet **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Basin ID #: CR+11+07.93 **Property Owner:** LFUCG Address of Basin: 525 Rogers Road **Type of Basin:** Detention Basin Basin Acreage: 0.72 acres **Drainage Area Land Use:** Park, Residential **Drainage Acreage:** 47.3 acres **Adjacent Land Use:** Residential **Utility Issues:** None FEMA 100-year Floodplain: No Channel Length: Approx. 460 feet **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**



Basin ID #: CR+11+33 **Property Owner:** LFUCG Address of Basin: 1701 Silver Lane **Type of Basin:** Detention Basin Basin Acreage: 0.54 acres **Drainage Area Land Use:** Residential **Drainage Acreage:** 36.1 acres **Adjacent Land Use:** Residential FEMA 100-year Floodplain: No **Utility Issues:** None Channel Length: Approx. 120 feet **Retrofit Options:** \boxtimes **Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial.

Basin ID #: CR+11+E17

Address of Basin: 100 Strawberry Fields Road

Basin Acreage: 2.32 acres

Drainage Acreage: 51.2 acres

FEMA 100-year Floodplain: No

Channel Length: Approx. 360 feet

<u>Property Owner:</u> Old Paris Place Open Space

Maintenance Association, Inc.

Type of Basin: Detention Basin

Drainage Area Land Use: Residential

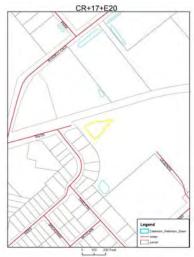
Adjacent Land Use: Residential

Utility Issues: Overhead Lines

Retrofit Options:

	Extend Detention		<u>Infiltration</u>
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	<u>Channel Condition</u>		Naturalized Basin
	Add Meanders/Modify Internal Design		OTHER
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Renair Rank/Channel Frosion	Onno	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial. Additionally, there is moderate to heavy sediment accumulation in the lower portion of the concrete channel. Periodic maintenance to remove the sediment could be beneficial.



Basin ID #: CR+11+E24 **Property Owner:** Transylvania University Address of Basin: 450 Radcliffe Road Type of Basin: Detention Basin Basin Acreage: 0.65 acres Drainage Area Land Use: Park **Drainage Acreage:** 10.4 acres **Adjacent Land Use:** Commercial, Residential FEMA 100-year Floodplain: No **Utility Issues:** Overhead Lines **Channel Length:** No Channel Present **Retrofit Options:** \boxtimes **Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water quality infiltration may be beneficial.

Basin ID #: CR+17+E20 **Property Owner:** Lexington Properties, LLC Address of Basin: 207 Legends Lane **Type of Basin:** Detention Basin Basin Acreage: 0.42 acres Drainage Area Land Use: Legends Stadium and Northland Shopping Center Parking Lots **Drainage Acreage:** 8.6 acres Adjacent Land Use: Commercial, Residential FEMA 100-year Floodplain: No **Utility Issues:** Electric **Channel Length:** No Channel Present **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Increase Embankment Height Rain Garden **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** X **OTHER** Add Meanders/Modify Internal Design **Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Additional Comments:</u> Moderate trash and debris are deposited in basin by the run-off from the surrounding parking lots. Therefore, periodic trash removal may be beneficial.

<u>Basin ID #:</u> CR+17+X5 <u>Property Owner:</u> LFUCG

<u>Address of Basin:</u> 438 Cane Run Road <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 1.20 acres <u>Drainage Area Land Use:</u> Park, Residential, Commercial

<u>Drainage Acreage:</u> 69.5 acres <u>Adjacent Land Use:</u> Residential, Commercial

<u>FEMA 100-year Floodplain:</u> Yes <u>Utility Issues:</u> Sanitary Sewer

Retrofit Options:

Channel Length: Approx. 280 feet

		Extend Detention		<u>Infiltration</u>
		Modify Riser		Tree Planting
		Increase Embankment Height		Rain Garden
		Excavate Bottom		Bioretention
		Change Geometry		Other Filtering Practice
\boxtimes		Channel Condition		Naturalized Basin
		Add Meanders/Modify Internal Design		OTHER
		Remove Concrete Bottom		Public Education
		Add Forebay		Litter Control
	\boxtimes	Add Micropool		Bank Stabilization
	П	Renair Bank/Channel Frosion	Oppo	artunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is flat and open, tree planting to enhance and improve water infiltration may be beneficial. Additionally, because the concrete channel discharges stormwater directly into a tributary of Cane Run Creek without any treatment (as seen in photo), a micropool could be constructed to create an area where sediment settling can occur prior to water flowing directly into the creek.

Basin ID #: CR+18+11.92 **Property Owner:** LFUCG Address of Basin: 1670 Old Paris Road **Type of Basin:** Detention Basin Basin Acreage: 1.17 acres **Drainage Area Land Use:** Park **Drainage Acreage:** 74 acres **Adjacent Land Use:** Residential FEMA 100-year Floodplain: No **Utility Issues:** None **Channel Length:** No Channel Present **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

<u>Basin ID #:</u> CR+18+18.33 <u>Property Owner:</u> North Limestone, LLC

<u>Address of Basin:</u> 1624 Old Paris Road <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 0.78 acres <u>Drainage Area Land Use:</u> Commercial, Residential

Drainage Acreage: 15.6 acres **Adjacent Land Use:** Commercial, Residential

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> Sanitary Sewer

Retrofit Options:

Channel Length: Approx. 300 feet

		Extend Detention	\boxtimes		Infiltration			
		Modify Riser		\boxtimes	Tree Planting			
		Increase Embankment Height			Rain Garden			
		Excavate Bottom			Bioretention			
		Change Geometry			Other Filtering Practice			
\boxtimes		Channel Condition			Naturalized Basin			
		Add Meanders/Modify Internal Design			<u>OTHER</u>			
		Remove Concrete Bottom			Public Education			
		Add Forebay			Litter Control			
	\boxtimes	Add Micropool			Bank Stabilization			
		Renair Rank/Channel Frocion		.	rtunity to Retrofit Limited Due to Site Issues			

Additional Comments: There is heavy sediment accumulation and growth in the eastern portion of the concrete channel. Periodic maintenance and sediment removal may be beneficial. Additionally, because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may also be beneficial. Lastly, in lieu of removing the concrete channel, a micropool could be constructed to create an area where sediment settling can occur for water quality improvement prior to water exiting the basin.

<u>Basin ID #:</u> CR+18+25.16 <u>Property Owner:</u> LFUCG Housing Authority

<u>Address of Basin:</u> 120 Rosemary Avenue <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 0.50 acres <u>Drainage Area Land Use:</u> Residential

<u>Drainage Acreage:</u> 2.0 acres <u>Adjacent Land Use:</u> Commercial, Residential

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> None

Retrofit Options:

Channel Length: Approx. 320 feet

	Extend Detention		<u>Infiltration</u>
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	<u>Channel Condition</u>		Naturalized Basin
	Add Meanders/Modify Internal Design		<u>OTHER</u>
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
П	Repair Bank/Channel Erosion	Оррс	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is relatively flat and open, tree planting to enhance and improve water infiltration may be beneficial. Additionally, there is moderate to heavy sediment and trash accumulation in the northern portion of the concrete channel (as seen in picture). Periodic maintenance to remove sediment and trash from the channel may be beneficial.

<u>Basin ID #:</u> CR+18+27.94 <u>Property Owner:</u> Bellerive Development Company

Address of Basin: 1610 Bryan Station Road Type of Basin: Detention Basin

<u>Basin Acreage:</u> 0.80 acres <u>Drainage Area Land Use:</u> Commercial, Parking Lots

<u>Drainage Acreage:</u> 12.8 acres <u>Adjacent Land Use:</u> Commercial, Road

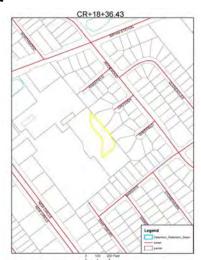
<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> Overhead Lines

Retrofit Options:

Channel Length: Approx. 240 feet

	Extend Detention		<u>Infiltration</u>
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	<u>Channel Condition</u>		Naturalized Basin
	Add Meanders/Modify Internal Design		<u>OTHER</u>
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Repair Bank/Channel Erosion	Орро	rtunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> There is significant sediment accumulation immediately around the inlet located on the southeastern portion of the basin preventing flow into the basin (as seen in picture). Maintenance and sediment removal may be beneficial. Additionally, run-off from the adjacent parking lots has deposited a moderate amount of litter into the basin. Periodic trash removal may be beneficial as well.



C MIC S			ł X		1 10 20 Feet			
<u>Basin</u>	ID#:	CR+18+28.33		<u>Property Owner:</u> KY District Church of the Nazarene,				
<u>Addr</u>	ess of	Basin: 1725 Bryan Station Road		Inc.				
Basin	Acre	age: 0.44 acres			Basin: Detention Basin Be Area Land Use: Church Parking lot, Residentia			
<u>Drain</u>	nage A	Acreage: 7.5 acres	<u>A</u>	<u>djace</u> ı	nt Land Use: Residential			
FEM/	<u> 100-</u>	-year Floodplain: No	<u>U</u>	tility I	ssues: None			
<u>Chan</u>	nel Le	ength: No Channel Present						
Retro	ofit Op	otions:						
		Extend Detention			<u>Infiltration</u>			
		Modify Riser			Tree Planting			
		Increase Embankment Height			Rain Garden			
		Excavate Bottom			Bioretention			
		Change Geometry			Other Filtering Practice			
		<u>Channel Condition</u>			Naturalized Basin			
		Add Meanders/Modify Internal Design			OTHER			
		Remove Concrete Bottom			Public Education			
		Add Forebay			Litter Control			
		Add Micropool			Bank Stabilization			
		Repair Bank/Channel Frosion		Oppo	rtunity to Retrofit Limited Due to Site Issues			

<u>Additional Comments:</u> Because the basin is flat and open, tree planting to enhance and improve water infiltration may be beneficial.

<u>Basin ID #:</u> CR+18+36.43 <u>Property Owner:</u> ERP Bryan Station, LLC

<u>Address of Basin:</u> 1660 Bryan Station Road <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 0.64 acres <u>Drainage Area Land Use:</u> Commercial, Parking Lots

<u>Drainage Acreage:</u> 7.4 acres <u>Adjacent Land Use:</u> Commercial, Residential

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> Water (Fire Hydrants), Overhead Lines

Retrofit Options:

Channel Length: Approx. 280 feet

	Extend Detention		Infiltration
	Modify Riser		Tree Planting
	Increase Embankment Height		Rain Garden
	Excavate Bottom		Bioretention
	Change Geometry		Other Filtering Practice
	Channel Condition		Naturalized Basin
	Add Meanders/Modify Internal Design		<u>OTHER</u>
	Remove Concrete Bottom		Public Education
	Add Forebay		Litter Control
	Add Micropool		Bank Stabilization
	Renair Bank/Channel Frosion	Oppo	rtunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> No retrofitting opportunities observed during inspection. However, heavy sediment accumulation around the inlet on the southeastern portion of the basin is preventing continuous flow into the basin (as seen in picture). Maintenance conducted that will enhance the flow from the inlet may be beneficial.

Repair Bank/Channel Erosion

Opportunity to Retrofit Limited Due to Site Issues

Basin ID #: CR+18+T1 **Property Owner:** LFUCG Address of Basin: 1440 Edgelawn Avenue **Type of Basin:** Detention Basin Basin Acreage: 2.67 acres Drainage Area Land Use: Commercial, Residential **Drainage Acreage:** 171.1 acres Adjacent Land Use: Commercial, Residential FEMA 100-year Floodplain: No **Utility Issues:** Overhead Lines, Sanitary Sewer Channel Length: Approx. 600 feet **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** \boxtimes Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization**

<u>Additional Comments:</u> Significant trash has accumulated within the southern portion of the basin. Periodic trash removal may be beneficial.

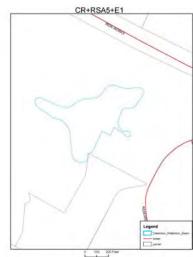
<u>Basin ID #:</u> CR+25+Z1 <u>Property Owner:</u> LFUCG

<u>Address of Basin:</u> 816 Magoffin Street <u>Type of Basin:</u> Detention Basin

<u>Basin Acreage:</u> 1.07 acres <u>Drainage Area Land Use:</u> Residential, Road, Train Tracks

<u>Drainage Acreage:</u> 38.1 acres <u>Adjacent Land Use:</u> Residential

<u>FEMA 100-year Floodplain:</u> No <u>Utility Issues:</u> Gas, Sewer, Overhead Lines


Channel Length: Approx. 180 feet

Retrofit Options:

	Extend Detention	\boxtimes		<u>Infiltration</u>
	Modify Riser			Tree Planting
	Increase Embankment Height			Rain Garden
	Excavate Bottom			Bioretention
	Change Geometry			Other Filtering Practice
	<u>Channel Condition</u>			Naturalized Basin
	Add Meanders/Modify Internal Design			<u>OTHER</u>
	Remove Concrete Bottom			Public Education
	Add Forebay			Litter Control
\boxtimes	Add Micropool			Bank Stabilization
	Repair Bank/Channel Erosion		Орро	ortunity to Retrofit Limited Due to Site Issues

<u>Additional Comments:</u> Because the basin is flat and open, tree planting to enhance and improve water infiltration may be beneficial. Additionally, in lieu of removing concrete channel, a micropool could be constructed to create an area where sediment settling can occur for water quality improvement prior to water exiting the basin.

Basin ID #: CR+RSA5+E1 **Property Owner:** Commonwealth of Kentucky Address of Basin: 3572 Iron Works Pike Type of Basin: Retention Pond Basin Acreage: 5.64 acres **Drainage Area Land Use:** Institutional **Drainage Acreage:** 32.6 acres Adjacent Land Use: Institutional, Soccer Complex FEMA 100-year Floodplain: No **Utility Issues: None Channel Length:** None **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Increase Embankment Height Rain Garden **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

Additional Comments: No opportunities for retrofitting observed during inspection.

Basin ID #: CR+RSA11+E3 **Property Owner:** Edward T. Saad Address of Basin: 1800 Sahalee Drive Type of Basin: Retention Pond Basin Acreage: 2.30 acres **Drainage Area Land Use:** Residential, Horse Farm **Drainage Acreage:** 53.2 acres Adjacent Land Use: Residential, Horse Farms FEMA 100-year Floodplain: No **Utility Issues: None Channel Length:** None **Retrofit Options: Extend Detention Infiltration Modify Riser** Tree Planting Rain Garden Increase Embankment Height **Excavate Bottom** Bioretention **Change Geometry** Other Filtering Practice **Channel Condition Naturalized Basin** Add Meanders/Modify Internal Design **OTHER Remove Concrete Bottom Public Education** Add Forebay Litter Control Add Micropool **Bank Stabilization** Repair Bank/Channel Erosion **Opportunity to Retrofit Limited Due to Site Issues**

APPENDIX D

The following is an overview of some of the applicable laws and ordinances within the LFUCG Code of Ordinances and City of Georgetown Code of Ordinances that apply to watershed management. This summary is not comprehensive, but is intended to provide an overview of some of the protections in place.

I. Riparian Areas

Per LFUCGs Code (Chapter 12: Housing, Article 3: Riparian Areas), "any person whose property contains a riparian area...[to] create a buffer area bordering the riparian area upon obtaining a permit from the Division of Environmental Services. Such a buffer area shall be exempt from the nuisance provisions of chapter 12 provided that the area is properly maintained as defined herein and acceptable species of vegetation are utilized." In this way, natural riparian areas may be maintained without being cited for a penalty nuisance provisions. The maximum area for such a riparian zone is "twenty-five (25) feet from the edge of the wetland, river, stream or lake, unless a larger area is approved by the urban forester and so designated on the permit."

Per Georgetown Code Section Chapter 8: Flood Prevention, Article I, Division 5: Provisions for Flood Hazard Reduction, riparian zones are to be maintained within 25 feet of "mean high water level of the channel," and impacts to the riparian zone during construction must be restored upon completion of the construction. Also Chapter 19: Utilities says riparian zone or vegetative buffer strips shall be "preserved within at least 25 feet of the mean high water level of the channel," with native vegetation preferred.

2. Privately-Owned Detention and Retention Basins

The purpose of Division 2 of Article X, Chapter 16 is to set forth ordinances that will ensure compliance with LFUCG's MS4 permit regulations by clarifying the roles of the private property owner and LFUCG in managing stormwater control devices including detention basins and retention ponds. The ordinance requires that these control structures be properly maintained, both through structural repairs and non-structural maintenance. The ordinance also prohibits structures such as fences, gazebos, swimming pools, and sheds from being located in a detention basin or retention pond.

In an area where a public easement exists, the property owner and LFUCG share responsibility for the basin or pond. The property owner is responsible for non-structural maintenance such as mowing, litter removal, algae removal, tree limb removal, and landscaping. LFUCG is responsible for structural maintenance such as repairing severe erosion, removing excess silt, and removing large debris. LFUCG also repairs any structures that are failing, such as concrete flumes or pipes. In an area without a public easement, the property owner is responsible for all non-structural and structural maintenance of the basin or pond. All structural and non-structural maintenance of stormwater control devices on commercial or industrial property is the responsibility of the property owner and manager.

3. Industrial and High-Risk Commercial Stormwater Runoff

Chapter 16, Article X, Division 3 specifically allows LFUCG to regulate industrial and high-risk commercial facilities to develop and implement SWPPPs and monitoring plans, even if they are not otherwise required to have this information. The purpose of this program is to reduce pollutant

loadings and improve the quality of stormwater runoff discharged from these areas into the local waterways.

A SWPPP is more detailed than a BMP Plan, Groundwater Protection Plan (GPP), or Spill Prevention Control and Countermeasure (SPCC) Plan. According to LFUCG's website, the four main objectives of a SWPPP are to identify pollutant sources, control the sources, document the control methods, and integrate pollution prevention.

4. Erosion and Sediment Control

Soil erosion from construction sites contributes to the impairment of the floodplain, increased road maintenance costs, clogging of storm sewers, degradation of land surfaces and streams, flooding, and dusty conditions when eroded material on streets dries. Significant erosion results from rainfall and runoff over unprotected soil. Erosion is increased by intense rainfalls, long slopes, steep slopes, and lack of adequate vegetative cover. These conditions are in part caused by or aggravated by improper construction, grading, or excavation, which results in removal of natural ground cover without taking appropriate steps to control erosion problems. The intent of Chapter 16, Article X, Division 5 is to reduce soil erosion in Fayette County and to provide procedures for submission, review, and acceptance of erosion and sediment control plans and applications for land disturbance permits prior to soil disturbance.

The ordinance covers control measures such as installation of silt fences, construction entrances, seeding and mulching, proper disposal of trash, curb and surface inlet protection, inspection of controls, street cleaning, drainage alteration, and snow fences for construction sites of various sizes and disturbance limits. The ordinance also includes enforcement measures and penalties for violations.

5. Water Quality Management Fee

Under Chapter 16, Article XIV, a water quality management fee is imposed on every parcel of land within the water quality management area except undeveloped parcels, railroad tracks, and federal, state, or urban county streets and roads. Single-family homes and duplexes will pay \$4.32 per month, while apartment complexes and non-residential properties will pay the fee based on the total amount of impervious surface on their properties. Impervious surfaces are areas such as roofs, parking lots and driveways that do not infiltrate water when it rains. The ordinance establishes a Water Quality Fees Board and a stormwater projects incentive program.

The Stormwater Quality Projects Incentive Grant Program provides financial assistance for projects in the community that improve water quality, address stormwater runoff and educate the public about these issues. LFUCG's Division of Water Quality will receive the applications and make recommendations for project selection. Projects will be ranked based upon project impact, project team and other factors. The Water Quality Fees Board reviews all recommendations and makes the final selection on all grant awards. Because neighborhoods and institutions have different needs, there are two types of grants available.

6. Floodplain Conservation and Protection

Under LFUCG Chapter 20, Article XIX, the designation of flood hazard areas and the regulations imposed on these zones are intended to provide for public awareness of the flooding potential, protect human life and health, minimize public and private property damage, protect individuals from buying lands and structures which are unsuited for intended purposes because of flood hazards, and minimize surface and ground water pollution and erosion of the floodplain soils which will adversely affect human, animal or plant life.

Per Georgetown Code Chapter 19: Utilities, in Special Flood Hazard Areas new construction shall be constructed in such a way as to be resistant to flood damage. Manufactured homes shall be anchored to prevent flotation, collapse, or movement in the event of a flood. The lowest floor of a newly constructed residence in a Special Flood Hazard Area "shall have the lowest floor, including the basement, mechanical equipment, and ductwork elevated two (2) feet above the base flood elevation..."

7. Trees and Shrubs

LFUCG recognizes the importance of trees as a vital component in counterbalancing the effects of an urban setting by providing cooling shade, by reducing noise and glare, by significant contribution to urban aesthetics, by improving air quality through carbon dioxide reduction and replenishing oxygen to the atmosphere, by improving surface drainage and reducing the effects of storm drainage flooding, by filtering non-point source pollution from area streams, by stabilizing soil thereby minimizing erosion, and by providing habitat for wildlife. The purpose of Chapter 20, Article XVI is to establish standards and procedures for countywide tree protection and planting in new developments.

Under Georgetown Code of Ordinances Chapter 18.1: Trees and Shrubbery, a city tree board was established for the city of Georgetown, consisting of eleven members. "It shall be the responsibility of the board to study, investigate, counsel, develop and/or update annually, and administer a written plan for the care, preservation, pruning, planting, replanting, removal or dispositions of trees and shrubs in parks, along streets, and in other public areas." The tree board creates a list of street tree species for the city of Georgetown. No tree species that is not on the list can be planted as street trees without the written approval of the city tree board. The city has the right to plant, prune, maintain and remove trees, plants and shrubs within the lines of all roadways and public grounds to ensure the safety of the public and/or to enhance the beauty of the area.

8. Infrastructure and Environmental Hearing Boards

LFUCG Chapter 16, Article IX establishes two hearing boards: the infrastructure hearing board and the environmental hearing board. The first hears matters pertaining to the "enforcement of ordinances by the divisions of engineering, water quality, planning, traffic engineering and streets, roads, and forestry, and those portions of the zoning ordinance and subdivision regulations subject to enforcement through civil action," while the latter hears matters pertaining to the "enforcement of ordinances by the division of solid waste," as well as matters related to littering. Each board meets monthly and at additional times when necessary. The public must be notified of board meetings seven days in advance.

9. Sanitary Sewers Private Infiltration and Inflow

Under LFUCG Chapter 16, Article XI, discharge of surface water or groundwater into the sanitary sewer system is not permitted. Owners and occupants of premises with a sanitary sewer line that flows into the sanitary sewer system of the urban county government must allow representatives of the urban county government access to all parts of the premises, whether inside or out, to inspect and determine if surface water is discharged into the sanitary sewer system. When it's determined that surface water or groundwater is being discharged into the sanity sewer system, the owner or occupant of the property will receive written notice and will have 60 days to abate the discharge. If the discharge is not abated – or if the homeowner/occupant refuses to allow inspectors onto the property – they will be fined \$75.00 per month. After six months, civil penalties and/or criminal prosecution may result.

10. Sanitary Sewer Capacity Assurance Program

LFUCG Chapter 16, Article XIII implements a Capacity Assurance Program (CAP) to assure that the sanitary sewer system will be able to support future connections.

A Sewer Capacity Request may be made new development property. Within 10 days of receiving the request, the division will provide written notice to the applicant of its decision to grant or deny the request. If a decision cannot be made in that time, status updates will be provided at least every 10 days until a determination is made. Remodeling projects do not require a permit and "the Division of Water Quality shall provide written notice of such waiver to the Division of Building Inspection."

II. Flood Prevention

Per Georgetown Code Chapter 8: Flood Prevention, Article I, Division 5: Provisions for Flood Hazard Reduction, riparian zones are to be maintained within 25 feet of "mean high water level of the channel," and impacts to the riparian zone during construction must be restored upon completion of the construction.

New construction and substantial improvement of a residential structure shall have the lowest floor, including the basement, elevated to no lower than two feet above the base flood elevation.

12. Illicit Discharge and Connection to Stormwater Sewers

Per Georgetown Code Chapter 19 Utilities, Article V Illicit Connections, the city of Georgetown has established methods for controlling the introduction of pollutants into the municipal separate storm system. "No person shall discharge or cause to be discharged into the stormwater system or watercourses any materials, including but not limited to pollutants or waters containing any pollutants that cause or contribute to a violation of applicable water quality standards, other than stormwater." A person is in violation if he connects a line conveying sewage to the MS4. If the city of Georgetown suspects such a connection, it can inspect, require the person to install monitoring equipment, or suspend or terminate the MS4 discharge access of the person.

Cane Run WBP Appendix D Applicable Laws and Ordinances

Watercourse protection: owners/lessees of property through which a watercourse passes must keep that part of the property free of trash, debris, contaminates, and cannot significantly slow the flow of water.

APPENDIX E

1) LexMark International, Inc.

Impervious Surface Removal, Tree Planting, & Rain Gardens: In 2008 – 2009, LexMark removed 16.2 acres of impervious surface including buildings and paved surfaces associated with its Ink Ribbon Manufacturing Buildings and reclaimed the area with top soil, grass seeding, planting of 2,000 trees, and constructing a large rain garden.

Cooling Tower Leak Repair: In January 2010, LexMark repaired a 5,400 gallon per day leak from a cooling tower which was contributing to a sewage odor in the stream and high concentrations of ammonia and fecal coliform. The repair resulted in a reduction of instream concentrations for these parameters.

Stream Restoration and Rain Garden: In 2010, LexMark Facilities Engineering restored over 1,500 feet of stream on Cane Run and a tributary in Shady Brook Park, at a cost of over \$100,000. The restoration included bank reinforcement and riffle creation as well as wildflower seeding. A rain garden was also constructed as part of this project.

Stream Cleanup and Invasive Removal: Since 2008, LexMark, University of Kentucky, and LFUCG have worked together to host an annual "Cane Run Cleanup Event" during which trash is cleaned from LexMark area streams. In 2010, as part of this effort, bush honeysuckle was removed on 1,650 linear feet of stream bank.

Sanitary Sewer Repairs: In 2010, Black and Veatch was contracted by LexMark to conduct a sitewide inspection of the stormwater and sanitary sewer systems on LexMark property and develop a corrective action plan. LexMark set aside \$10 million to repair and replace sewer lines over the next 10 years with over \$2 million already spent by 2011.

Stormwater Feasibility Study: According to LFUCG Division of Water Quality, LexMark was awarded a Stormwater Quality Projects Incentive Grant Program grant in FY 2012. Under the grant, LexMark was to evaluate the feasibility of installing stormwater Best Management Practices to improve water quality and reduce stormwater runoff and flooding. The project will include educational component, and evaluation of an in-stream floatable trash collection system.

Trash Collection System: LexMark received CY2018 Stormwater Quality Projects Incentive Grant funding to study and perform preliminary design of an in-stream floatable trash collection system for potential installation in Cane Run within LexMark's property. The project is a collaboration between LexMark and student researchers from the University of Kentucky Biosystems and Agricultural Engineering program.

2) University of Kentucky Properties

In 2006, a dry lot was constructed in a veterinary science paddock to reduce the sediment load in stormwater runoff due to heavy livestock traffic.

Gully Erosion Stabilization Structure: In 2008, a gully erosion stabilization structure installed in a veterinary science paddock to decrease the amount of sediment and nutrient pollution entering waterways due to erosion.

Horse Exclusion, No-Mow Zone: Since 2008, horses on the Experiment Station have been excluded from the stream, and a no-mow riparian buffer of 50 feet width has been installed.

Hardened Livestock Stream Crossing: In 2008, a hardened livestock stream crossing was installed based on NRCS guidelines to reduce the sediment and nutrient pollution into the streams by decreasing erosion. The crossing also includes gates to exclude livestock.

Spring Fed Watering Tank: In 2008 - 2009: a spring near a veterinary science paddock was developed into an alternative water source for livestock. This allowed for exclusion of cattle from the stream thereby decreasing bacteria, sediment, and nutrient loads.

Riparian Planting and No-Mow Zone: In 2010, a 0.087 acre (3,800 ft²) riparian buffer planting with approximately 1,600 native perennials and grasses along North Farm section. This improved the diversity in the no-mow zone.

Agricultural Water Quality Plan, Nutrient Management Plan, & Waste Transfer Station: In 2011, an Agricultural Water Quality Plan was completed for the University of Kentucky Experiment Station farms as required by law. As part of the Agricultural Water Quality Plan, a nutrient management plan was developed. This plan indicated phosphorus supplementation is unnecessary based on current soil levels. Under the plan, all livestock waste is now collected in a roofed transfer station prior to hauling for compost at a cost of \$40,000 / year. Placement under a covered stack pad prevents pollution from runoff.

Pesticide Disposal: From 2010 to 2012, about 6,700 pounds of surplus pesticides and fertilizers were removed and properly disposed of. This disposal comes as part of improved management of these pesticides and fertilizer including inventorying current supplies, proper storage, adjustment of purchase and ordering of pesticides and fertilizers to the minimum, and recycling empty containers using the Rinse and Return System.

Septic System Removal: Removal of septic systems along with 7 residences and apartment buildings, totaling over 6,000 sq feet (0.14 acres). By removing these systems, their contributions to bacterial pollution were removed as well.

Legacy Trail Easement and No-Mow Zones: Easements were granted for the Legacy Trail on UK Farms. A 50 foot width easement was specified, but these areas were expanded under the Cane Run Watershed Plan Project. No-mow zones were established, and 0.8 acres (35,000 ft²) of wild flowers and native grasses were planted along portions of the trail riparian buffer areas

Cattle Exclusion and No-Mow Zone: In 2010, dairy cows and ponies were excluded from creeks running through their respective paddock areas. The restricted areas include a 30-foot riparian buffer a total of 6,000 feet of now protected stream bank. The restrictions will reduce loading of bacteria and nutrients into Cane Run.

Hardened Livestock Stream Crossing: Installed hardened livestock crossing and permanently closed one crossing. This will reduce erosion and therefore sediment and nutrient pollution.

Clean Water Diversion: Manure and contaminated stormwater is stored in large basins at the dairy on University of Kentucky Farms, however much of the stored liquid is clean water from barn roofs.

Using \$41,000 of SB-271 funds, this clean stormwater has been diverted from the manure and contaminated sources. This has reduced bacteria loading to the Cane Run Watershed.

Rain Garden: In 2011, the UK Center for Applied Energy Research, adjacent to UK Farm, constructed a large rain garden to reduce stormwater runoff from two newly constructed buildings.

Waste Management BMP Research Projects: The University of Kentucky Victory Haven Training Center, located off of Russell Cave Road outside of the Urban Service Area, is a facility where large volumes of horse muck are generated from horse boarding and training. Two research projects focused on best management practices dealing with techniques for management and designs of composting areas and muck storage were investigated under a NRCS "earmark" funded project entitled "Development and Implementation of Stream Restoration and Riparian Corridor Techniques for Enhancing Water Quality in the Cane Run Watershed." These two studies were entitled "Evaluating the Effectiveness of Weep Berm Systems for Treating Runoff from the Composting of Horse Muck" and "Control and Treatment of Runoff from a Muck Storage Pad using a Permeable Containment Basin and Phytotechnologies." These projects were completed in 2012.

Horse Exclusion and City Waterer: In 2007, horses were excluded by fencing in this section of stream. Previously, the stream was the only source of water, but a city waterer was installed providing a water source for the horses to be fenced out of the stream.

CRP, Riparian Plantings, Educational Signage: From 2007 to 2010, riparian areas near the Animal and Food Science Horse Area of the University of Kentucky Experiment Station were increasingly improved for water quality protection. In 2007, about 7 acres of riparian buffer enrolled in NRCS Conservation Reserve Program (CRP). In 2009, 1,950 linear feet of buffer were planted with 1,800 saplings. Educational signage was installed in 2010.

Pervious Concrete Horse Wash Bay: A pervious concrete horse washing area was installed at the equine pavilion. This pervious concrete is expected to destroy bacteria upon contact, work as a solid / liquid separation system, and provide storage for holding wash water.

Stream Vehicular Crossing Closed: In 2010, one stream vehicular crossing was closed.

Riparian Buffer Research Project: Under a NRCS "earmark" funded project entitled "Development and Implementation of Stream Restoration and Riparian Corridor Techniques for Enhancing Water Quality in the Cane Run Watershed", a research project on riparian buffers was conducted on an unnamed tributary to Cane Run on UK's Experiment Station. This study, entitled "Management Techniques to Improve the Hydrologic and Structural Properties of Riparian Buffer Soils" was to determine if mowing regime and native grass establishment in the riparian buffer zone influences the vertical and lateral transport of waters from adjacent lands.

No-Mow Zone and Educational Signage: No-mow zones have been established along all streams and water bodies across the entire UK Experiment Station Farms, except several small reaches and Lake Mildred. Cumulatively, these areas add up to about 27 acres of land on the Experiment Station Farms. In 2010, signs and markers have been posted to delineate no-mow zones and educate visitors.

3) Bluegrass Stockyards

Clean Water Basins: Bluegrass Stockyards used funding from a FY2017 Stormwater Quality Projects Incentive Grant to construct two "clean water detention basins" on the site of the new stockyards facility (4561 Iron Works Pike). The basins contain pre-filter settling forebays with drive-in ramps that can be used to remove accumulated solids and sand filter outlets to improve the quality of stormwater runoff leaving the site.

Other BMPS: The entire operation is under one roof to minimize polluted stormwater leaving the site. Manure and bedding are stored under the roofed area and a vendor removes the material for offsite composting. Rainfall from the facility roof is collected and routed via underground pipes to a separate "clean water" pond that holds 1.5 million gallons at the normal pool. The pond is used to supply water to livestock at the facility.

4) Kentucky Horse Park

Riparian Planting, No-Mow Zone, and Educational Signage: In 2010, 500 linear feet of unnamed tributary to Cane Run on Kentucky Horse Park property was planted with native trees, grasses, and wildflowers. Over 9,000 square feet were planted with 39 trees, over 100 willow stakes, 77 shrubs and 4,000 wildflowers, grasses, rushes and sedges. A walking path and educational signs were also installed. Project partners included the Bluegrass Partnership for a Green Community, the Kentucky Horse Park, M2D Design, University of Kentucky, Cane Run Watershed Council, Alpha Phi Omega student service organization, Midway College, KCTCS, KWRRI, Glasgow Garden Club, KY Federation of Garden Clubs, Master Gardeners, UK BAE Interns, and State grounds keepers.

Sanitary Sewer Repairs: In 2009, the Kentucky Horse Park received \$5.7 million in funding under the American Recovery and Reinvestment Act (ARRA) and an Energy Savings Performance Contract (ESPC) to pursue cost savings projects addressing energy and maintenance. One of these projects was the repair and replacement of the sanitary sewer manholes and piping at the Kentucky Horse Park to address the large amount of inflow and infiltration in the area. This project was projected to reduce the sewer bill for the Horse Park by approximately \$149,000 dollars per year, removing approximately 26 million gallons of wastewater. It also prevents bacteria pollution to surface water in the Cane Run Watershed.

Porous Asphalt and Pavers: In 2010, the Kentucky Horse Park installed 97,000 sq ft of porous asphalt in a parking lot and 7,500 sq ft of porous pavers near a parking area near an unnamed tributary to Cane Run. These measures are intended to reduce the stormwater volume and improve the water quality of runoff entering a sinkhole and tributary.

Manure Bioenergy Management Facility: As part of the Energy Savings Performance Contract (ESPC) funding, the Kentucky Horse Park installed a Manure Bioenergy Management facility to reuse horse muck through biomass gasification to produce electricity.

Bioretention Basin: Using Stormwater Quality Projects Incentive Grant funding, the Kentucky Horse Park installed a 150,000-gallon bioretention basin to treat stormwater, specifically addressing nutrients and bacterial pollution.

5) Other Implemented BMPs

Stream Restoration: Under the Consent Decree, LFUCG was required to implement the Coldstream Park Stream Corridor Restoration and Preservation Supplemental Environmental Project (SEP), as described in Appendix J-I of the Consent Decree. The Coldstream SEP was constructed in 2018 and the project will be monitored (2019-2023) for success. The project is intended to reduce flooding by removing artificial restrictions, reduce pollutant loadings, enhance recreational and educational opportunities, and promote future water quality initiatives by restoring the 0.8 mile stretch of Cane Run between Citation Boulevard and I-75.

Riparian Planting and Invasive Removal: In 2009, University of Kentucky students removed bush honeysuckle along Cane Run in Coldstream Park. Cane Run, along Coldstream Park, was also one of the first sites of the annual Reforest the Bluegrass (RTB) event in 1999. The Reforest the Bluegrass (RTB) program was started in March of 1999 as a cooperative effort between LFUCG's Water Quality, Urban Forestry, and Parks and Recreation management programs. Its purpose is to recreate presettlement streamside forests that were once native to the Inner Bluegrass Region of Kentucky. In addition to this first event, a RTB event was held in April 2012 at the northern part of the Legacy Trail near Spindletop Hall and Ironworks Pike. More than 2 acres adjacent to Cane Run were planted.

Audubon Cooperative Sanctuary Certification: In 2008, the Marriott Griffin Gate Golf Club was certified as Audubon Cooperative Sanctuary which included bat boxes, bird houses, and butterfly garden as well as a wildlife corridor.

Rogers Road Stormwater Project: According to an engineering report prepared by GRW Engineers (2012), seven residents of the Rogers Road project area, located in the Joyland Neighborhood Association outside of New Circle Road between Paris Pike and Russell Cave Road, reported home flooding due to stormwater and twelve reported street flooding. Flooding was found to occur when the detention basins and sinkhole in Mary Todd Park overflow due to inadequate capacity for the 25-year, 24-hour storm. Three alternatives to address this flooding were investigated with a presentation of the alternatives in a public meeting to occur in April 2012. The projected project costs ranged from \$1.62 to 1.78 million.

Green Acres / Hollow Creek Stormwater Project: According to a stormwater improvements study, conducted by CDP Engineers (2009), the Green Acres and Hollow Creek neighborhoods, located outside of New Circle, west of Russell Cave Road, have long experienced flooding, trash and debris accumulation problems which increased with infrastructure age and increased development. In 2006, \$2.6 million was allocated by the Kentucky Legislature to fix the problems. However, public survey and modeling results indicated that the extent of the problem was greater than originally expected, extending to the Winburn and Brookfield Chase neighborhoods. The stormwater improvements study identified three neighborhood-wide projects and nine specific projects. The neighborhood-wide projects include:

- 1) flood proofing approximately 44 qualifying residences (grant funded),
- 2) replacement of about 20 stormwater inlets with limited / restricted openings and relocation of two pipes, and
- 3) development of a trash and debris cleanup program beginning with a small pilot neighborhood.

Specific projects include construction of detention facilities, stormwater and sanitary sewer infrastructure repair or replacement, stream restoration, home acquisition, trash control, and other solutions for the following areas.

- 1) Astaire Drive, Grant Place Drive, Grant Court
- 2) Hollow Creek Drive and LaSalle Road Intersection
- 3) Green Acres Park
- 4) 501-517 Asbury Lane
- 5) 453 and 457 Asbury Lane, Kirk Court
- 6) Paddock Apartments
- 7) 1783 and 1787 Barksdale Drive
- 8) Bowen and Barksdale Courts
- 9) Feltner Court

The projected cost of all of these projects was between \$4.487 and \$4.682 million dollars. Because the cost to address all of the identified problems exceeded the available funding, projects were prioritized to address the Green Acres / Hollow Creek subdivisions first. Of the specific projects, Projects I and 2 were selected as the top priority projects, and were recommended to be funded under the available funds. With the cost for design and construction of the sanitary trunk sewer to be paid through the LFUCG Sanitary Sewer Fund. Projects 4 and 7 met criteria for inclusion on the LFUCG Stormwater Priority Projects Master List, and have been listed for funding by the LFUCG when money becomes available. Projects 3, 5, 8, and 9 did not meet criteria for inclusion on the LFUCG Stormwater Priority Projects Master List, however Project 3 was recommended for implementation if any funds remained.

Rain Barrel / Rain Garden Program: The Living Arts and Science Center, Inc was awarded a Stormwater Quality Projects Incentive Grant Program grant in FY 2011 according to the LFUCG press release. The grant was used to develop and present educational workshops for the residents of Martin Luther King Neighborhood, and to implement a rain barrel/rain garden program for the neighborhood located in the Town Branch and Cane Run Watersheds.

Improvement Plan, Rain Barrels / Rain Gardens: The North Limestone Neighborhood Association, Inc. was awarded a Stormwater Quality Projects Incentive Grant Program grant in FY 2012 according to the LFUCG press release. Under the grant, an Environmental Improvement Plan for the Limestone / Loudon area was developed to identify stormwater management problems and propose solutions. Educational workshops on the stormwater improvement plan, rain barrels/rain gardens, and water quality were also held.

Pond Aeration, Stream Cleanup, and Invasive Removal: The Spindletop Community Association was awarded a Stormwater Quality Projects Incentive Grant Program grant in FY2012. Under the grant an aeration system was to be installed in the neighborhood pond to improve water quality in the pond and the receiving stream according to the LFUCG press release. Also, the grant funded pond and stream cleaning, storm drain stenciling, and educational seminars.

Environmental Education: Bluegrass Pride also obtained a Stormwater Quality Projects Incentive Grant Program grant in FY2011 to produce and develop a 30-minute public broadcast video about Cane Run and its watershed to be broadcast on KET statewide.

APPENDIX F

Wolf Run Watershed Plan Benchmark Recommendations for Nutrient Parameters Kentucky Division of Water 2/2/12

Nutrient benchmarks given here represent the best information available to the Kentucky Division of Water (KDOW) at this time. The goal is to provide estimates of typical in-stream concentrations below which it is unlikely that nutrients would be a cause of observed impairments. As such, benchmarks are useful in identifying sub-basins with potential nutrient issues when setting priorities for further monitoring or for development of load reduction strategies. In making these recommendations we consider regional and watershed-specific nutrient expectations, regional-scale patterns in biological effects, and the specific indicators of nutrient enrichment observed in the watershed. These benchmarks may be different than targets to be used ultimately as management endpoints; watershed-specific characteristics, practical considerations, and insight gained from early phase monitoring might suggest alternate values for that purpose. The Watershed Group may wish to discuss with KDOW alternative benchmarks and/or targets based on more detailed local information or consultation with experts familiar with the watershed. A summary of candidate benchmarks is given here along with a final set of recommendations to provide more assistance in interpreting nutrient data.

Ecoregional Reference Reach candidate benchmarks:

The Reference Reach network of streams represents the least-impacted conditions for aquatic life in the respective ecoregions. The Wolf Run watershed is entirely within ecoregion 71l (Inner Bluegrass). The significance of the regional placement of the watershed is that the phosphorus content of the formations of the Lexington Limestone found in the Inner Bluegrass is high relative to the geology typical of the Outer Bluegrass and Hills of the Bluegrass (ecoregions 71d and 71k). Nitrate concentrations also may be influenced by this geologic setting. These differences are reflected in the summary table below: total phosphorus and nitrate-nitrite-N are substantially higher in Reference Reaches of 71l than in the Bluegrass as whole (71l plus 71d Outer Bluegrass and 71k Hills of the Bluegrass).

	Ecoregion	Number	MIN	MAX	MED	75 th	90 th
		Samples				percentile	percentile
TP(mg/L)	711	13	0.117	0.46	0.304	0.338	0.396
	BG	114	<0.010	0.46	0.053	0.109	0.244
NN(mg/L)	711	14	0.108	4.07	1.292	2.628	3.167
	BG	117	<0.010	4.07	0.085	0.372	1.108
TKN(mg/L)	711	14	<0.200	0.756	<0.200	0.351	0.537
	BG	116	<0.200	1.230	0.216	0.404	0.625
TN(mg/L)	711	14	0.409	4.170	1.674	2.953	3.272
	BG	116	<0.200	4.170	0.439	0.798	1.520

Watershed reference candidate benchmarks:

When there are segments within the watershed or within closely comparable watersheds where uses are fully supported, then nutrient data from those streams can be summarized as a "watershed reference". These need not be Reference Reaches designated by KDOW, but should have been assessed as being fully supporting of the most sensitive use, in this case aquatic life, and are closely comparable. It is notable that most of the streams in 71l that have been assessed as fully supporting

aquatic life use are in the Kentucky River Palisades along the Kentucky River, an area with more rugged terrain where streams have higher gradients and distinctive biological communities relative to other parts of 71l. One exception is Steeles Run, which enters Town Branch 9 miles downstream of Wolf Run. Steeles Run has been assessed as fully supporting aquatic life use; however, the stream does exhibit indicators of excess nutrients such as dense algae growths. There is only one water sample from this stream, with TP 0.382 mg/L and TN 5.58 mg/L.

Effects-based (empirical) candidate benchmarks:

The entire watershed falls within the Bluegrass Bioregion and is not near a boundary. The benchmarks from a KDOW draft bioregional nutrient benchmarks report for the Bluegrass Bioregion are TP 0.1 mg/L, TN 1.2 mg/L; however, it is noted that background nutrient concentrations vary widely within the Bluegrass (as discussed above)and so these bioregional benchmarks must be modified according to local watershed characteristics. As indicated in the report, the relationships between nutrients and biological integrity are difficult to detect from analyses of KDOW's Bluegrass data. It is evident, though, that streams in the Inner Bluegrass with good instream habitat, intact riparian zones, well shaded channels, and normal flow regimes support desirable good quality aquatic communities at levels of TP and TN higher that might produce problems in streams in other regions.

Literature values

TP 0.1 mg/L is often cited as an upper threshold for preventing nuisance algae growth, which is one of the indicators of impairment observed in the Wolf Run watershed. That figure is well below 71l Reference Reach levels and also below levels in streams in the ecoregion observed to be fully supporting aquatic life use. Literature guidelines for the boundary between oligotrophic and mesotrophic conditions are TP 0.025 mg/L and TN 0.700 mg/L. The boundary between mesotrophic and eutrophic conditions are given as TP 0.075 mg/L and 1.5 mg/L. Reference Reaches and watershed reference data summarized above place those streams well into the eutrophic category for both TN and TP.

Summary

In the Inner Bluegrass it is particularly important to take an adaptive approach to setting expectations for nutrients. Background concentrations alone may be high enough that streams without good riparian condition, canopy cover, and in-stream habitat are likely to show signs of nutrient-related problems with little additional enrichment. In addition, stressors other than nutrients are common and may exacerbate nutrient impacts. The benchmark recommendations given here were derived from the median ecoregional Reference Reach data. These benchmarks should be reviewed as more information becomes available on conditions in the Wolf Run watershed, including the specific nutrient-related issues that may be occurring, the feasibility of nutrient reductions, and the importance of nutrients in causing undesirable effects to aquatic life relative to other stressors, such as high specific conductance.

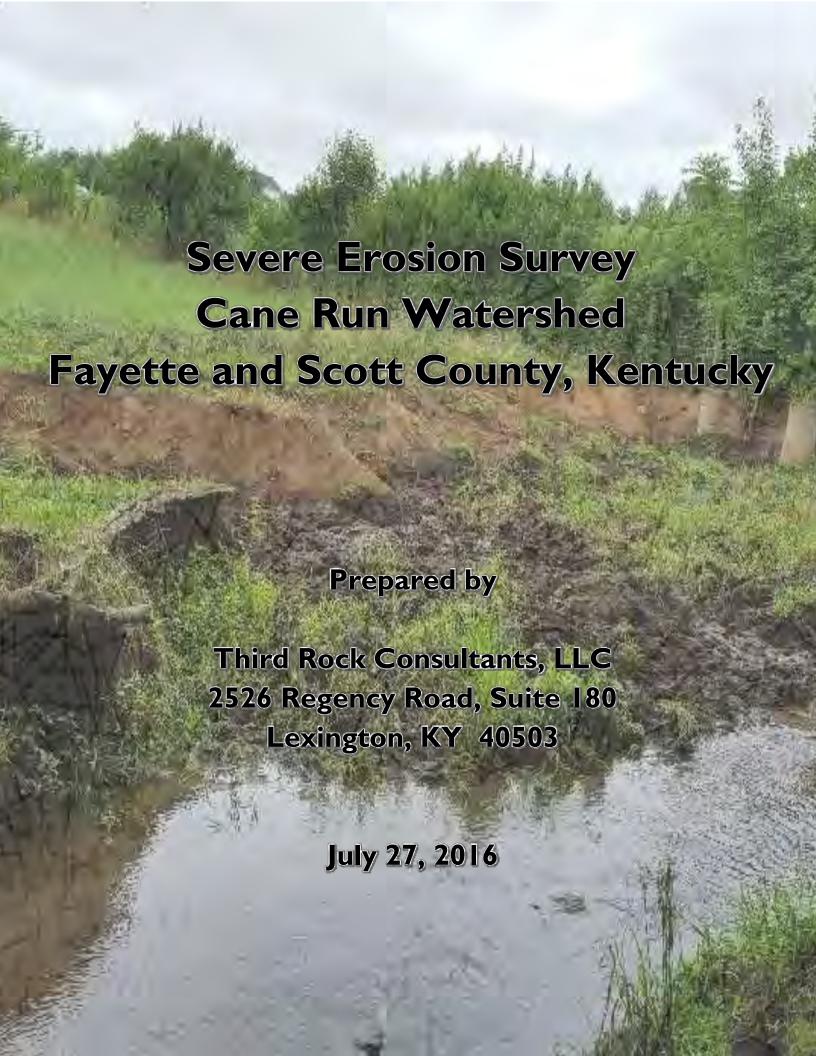
Final benchmark recommendations:

 Total P
 0.30 mg/L

 TKN
 0.20 mg/L

 Nitrate-Nitrite-N
 1.3 mg/L

 Total N
 1.7 mg/L


Excerpts from Wolf Run Watershed Based Plan, Chapter IV, Pages 14-15

"For other parameters, no regulatory numeric standard has been established due to the variable relationship between biological integrity and concentration levels in different streams. Multiple factors are impacting warmwater aquatic habitat use of the Wolf Run Watershed, including poor riparian and instream habitat and poor hydrology/flow regime as well as elevated water quality parameters. Because of the uncertainty in assigning definitive thresholds for these parameters as well as the feasibility and cost-effectiveness of reducing concentrations, a phased approach was utilized in the development of benchmarks for non-regulatory water quality parameters.

Under this phased approach, non-regulatory reference points are initially established higher than reference conditions since the reference levels may be well below the level necessary to restore support of the use. These target levels are established based the extent and magnitude of the problem as well as technological feasibility, cost, and achievability. These goals would be re-assessed through the watershed planning process on regular time intervals and lowered if the designated use does not become fully supported through the implementation plan efforts when target levels are achieved. Table 23, page IV-14, lists the non-regulatory reference points for the Wolf Run Watershed. These levels were developed in consideration of the recommendations made by KDOW, are applicable only for the Wolf Run Watershed, and are not intended to have any regulatory use.

The rationale behind the selection of these non-regulatory reference points is as follows. The nutrient levels (total phosphorus at 0.35 mg/L and total nitrogen at 3.0 mg/L) were each established between the 75th and 90th percentile concentrations for reference reaches in the Inner Bluegrass. The ammonia benchmark of 0.1 mg/L was near the 75th percentile for the Wolf Run data collected. These higher concentrations were utilized based on published literature (Pond *et al.* 2003), which indicates that nutrient concentrations are not well correlated with macroinvertebrate metrics in the Bluegrass Bioregion. The main stem of the Ohio River has a specific conductance limit of 800 μ S/cm, which was considered too high for this region. The benchmark of 650 μ S/cm was established near the average of the Wolf Run sampling site medians...."

APPENDIX G

Severe Erosion Survey Cane Run Watershed Fayette and Scott County, Kentucky

Prepared for

Kentucky Division of Water 300 Sower Blvd Frankfort, KY 4060 I

Prepared by

Authored by:

Reviewed by:

Chelsey Olson

Steve Evans

TABLE OF CONTENTS

BACKGROUND	I
METHODS	I
FINDINGS	2
REFERENCES	2
<u>Tables</u>	
Table I – Summary of Erosion Features	4
<u>Exhibits</u>	
Exhibit I – Severe Erosion Sites	3
Appendices	

Appendix A – Erosion Site Field Datasheets

Appendix B – Photolog

Appendix C – Detailed Location Mapping

INTRODUCTION

Third Rock Consultants, LLC (Third Rock) has been retained by the Kentucky Department for Environmental Protection, Division of Water (DOW) to develop a comprehensive watershed plan for the Cane Run Watershed in Fayette and Scott County, Kentucky (HUC#05100205280200). The watershed plan, funded by Section 319(h) Nonpoint Source Grant PPG BG-00D21415, will identify impairments and potential sources / causes of pollution and an implementation plan to address the impairments. To that end, Third Rock was tasked with conducting a severe erosion survey of perennial and intermittent streams within the watershed in accordance with the approved Cane Run Watershed Quality Assurance Project Plan (QAPP) (Evans 2016). Streams within the Lexington-Fayette Urban County Government (LFUCG) Urban Service Area of the watershed were not assessed under this effort.

METHODS

Streams were surveyed for severe erosion either on foot or by windshield survey from public roads over the course of four (4) days between July 1, 2016 and July 7, 2016. For purposes of this report, severe erosion is defined as erosion that exceeds average reach conditions or threatens property and infrastructure. Sites that could not be accessed by foot or viewed from public roads were analyzed for erosion on aerials following the field effort. In locations where permission could be obtained, surveyors walked stream segments; where permission could not be obtained, survey was accomplished with the aid of binoculars from public roadways.

During the field effort, surveyors recorded data on an Erosion Site Field Datasheet following the *Stream Corridor Assessment Survey- SCA Survey Protocols* (MDDNR 2001). Data collected included GPS coordinates, type of impact, cause of erosion, estimated length of erosion, exposed bank height, left and right bank land use, and potential threat to infrastructure. Additionally, the severity, correctability, and accessibility of each severe erosion site was ranked.

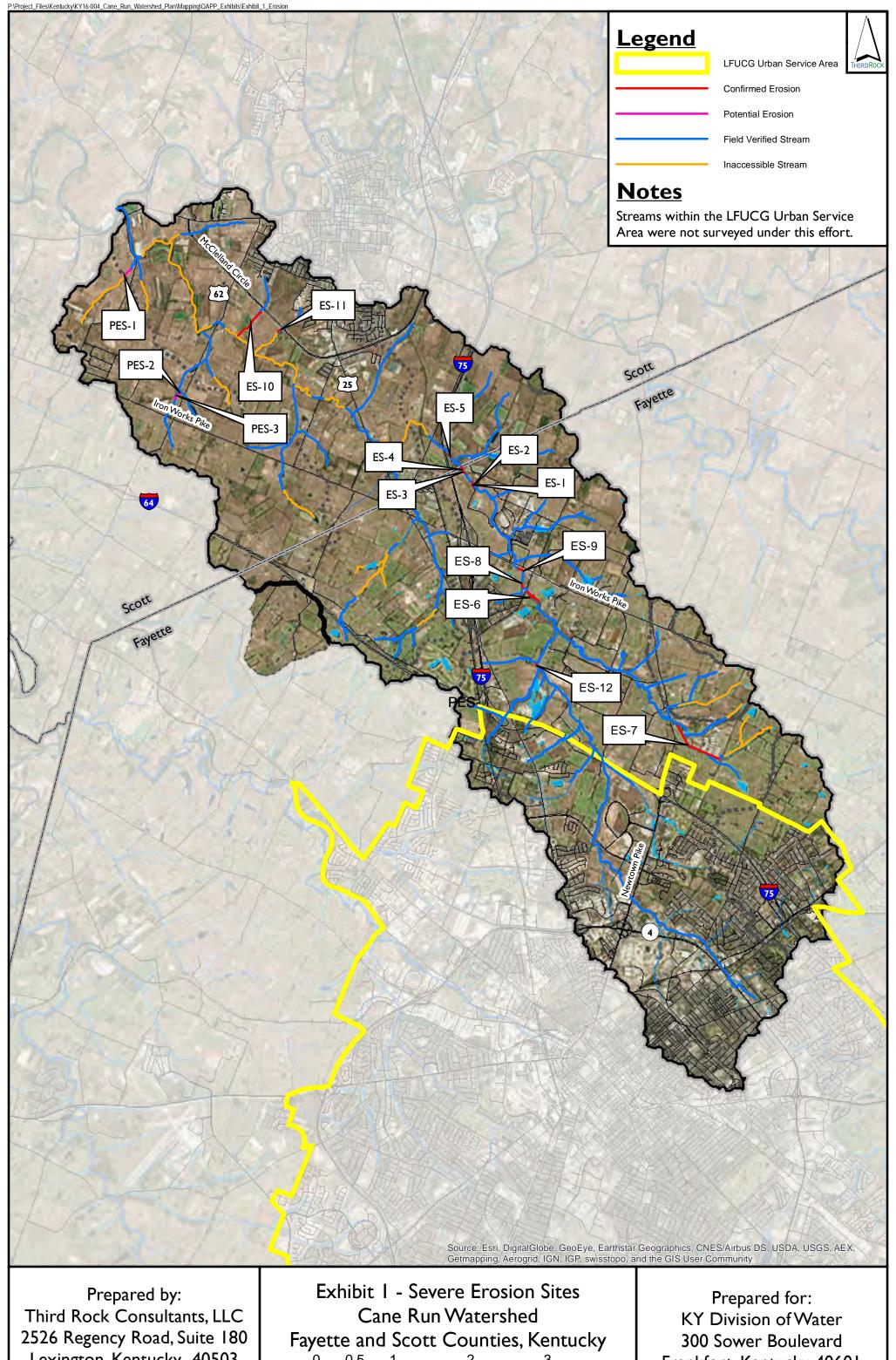
The severity of erosion was ranked from I (severe) to 5 (minor) for each site. Severe (I) erosion was considered a long stream (> 1000 ft.) that had incised several feet, with banks on both sides of the stream that are unstable and eroding at a fast rate. Moderate (3) erosion was considered for either a long section of stream (> 1000 ft.) that has a moderate erosion problem, or a shorter stream reach (between 1000 and 300 ft.) with very high banks (> 4 ft.) and evidence that the stream is eroding at a fast rate. Minor erosion (5) was considered a short section of stream (< 300 ft.) where the erosion is limited to one or two meander bends or a site where an erosion problem is being caused by a pipe outfall and the area affected is fairly limited.

Correctability was ranked from I (best) to 5 (worst), where the best sites could be corrected by volunteers in one or two days while the worst would require significant funding (i.e., several hundred thousand dollars) and a large amount of earth moving.

Accessibility was ranked from I (easy) to 5 (difficult), where easy access was considered by car or foot, moderate access was easy by foot but not car, and difficult would be areas where access by foot or vehicle would be highly restricted (i.e., require an access road to allow construction).

RESULTS

12 severe erosion sites were identified during the survey, with a total approximate length of 9,540 feet (1.81 miles). An additional three (3) sites, with a total approximate length of 1,200 feet (0.23 miles), were identified as potential areas of erosion based upon aerial mapping but could not be field verified. In total, 2.04 miles of erosion were identified during the survey (**Exhibit I**, page 3). **Table I**, page 4, describes the erosion features of each site. Erosion Site Field Datasheets are included as **Appendix A**, a photo log as **Appendix B**, and detailed location mapping for each site as **Appendix C**.

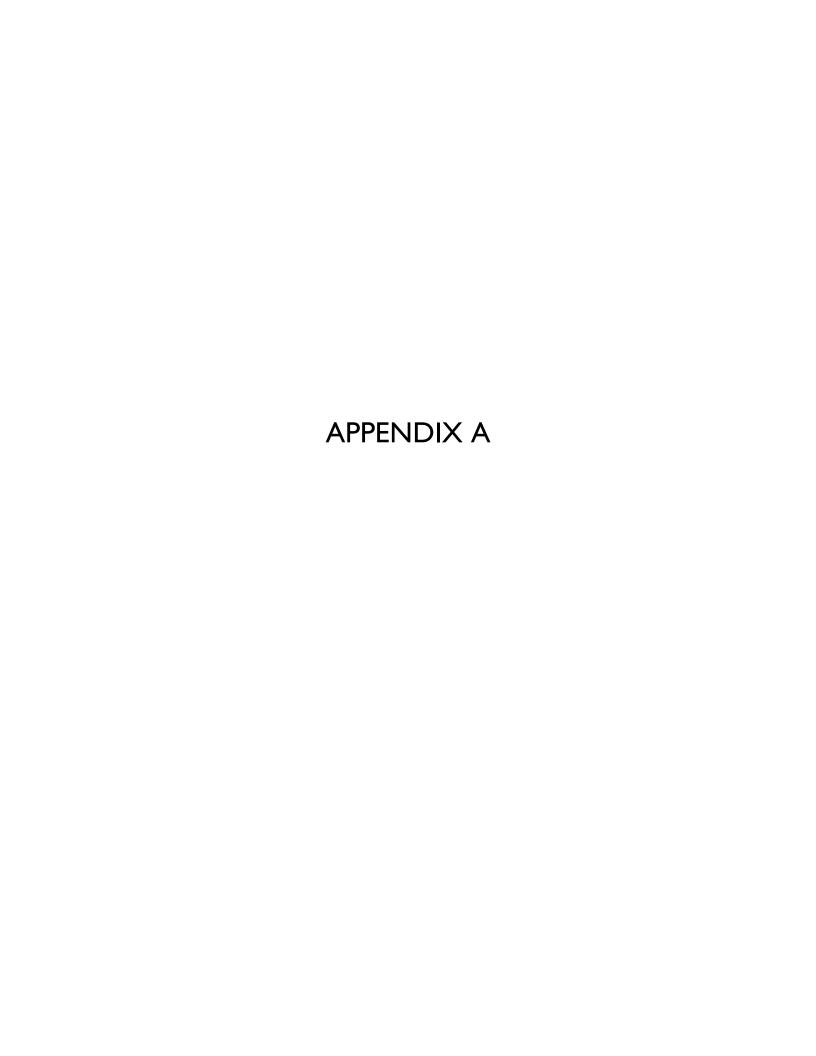


Bank heights were between one (I) and five (5) feet high, with severity rankings ranging from moderate (3) to minor (5). The correctability ranking of each site ranged from correctable by volunteers (I) to requiring significant funding and a large amount of earth moving (5). Access to the sites was typically good as the erosion identified was often located near roadways. Most erosion was due to widening of the streambanks, although some downcutting was also observed. While the most common cause of erosion was an adjacent road crossing or infrastructure, erosion due to livestock access to streams, sharp bends in the stream, or pipe outfalls was also observed. Adjacent land use was primarily pasture. Although most erosion sites were not a threat to infrastructure, one reach (ES-7) threatened a parking lot and fencing.

REFERENCES

Evans, Steve. 2016. Cane Run Watershed Quality Assurance Project Plan (QAPP). Cane Run Comprehensive Watershed Based Plan. Kentucky Division of Water.

MDDNR. 2001. Stream Corridor Assessment Survey – SCA Survey Protocols. Watershed Restoration Division Chesapeake & Coastal Watershed Services Maryland Dept. of Natural Resources, Annapolis, MD.


Lexington, Kentucky 40503

3 ⊐ Miles

Frankfort, Kentucky 40601

Erosion	Approx						Bank Land Use				Ranking		
Site ID	Length (ft)	Date	Photo #	Туре	Probable Cause	Height (ft)	Left Bank	Right Bank	Threat	Severity	Correctability	Access	
ES-I	190	7/1/2016	880-882	Widening	Other - Upstream Infrastructure	5	Forest	Pasture	No	5	2	I	
ES-2	88	7/1/2016	883-885	Widening	Other - Upstream Infrastructure	6	Forest	Pasture	No	4	3	1	
ES-3	165	7/1/2016	886-888	Widening	Road Crossing	5	Pasture	Pasture	No	5	4	I	
ES-4	215	7/1/2016	892-894	Widening	Road Crossing	4	Pasture	Pasture	No	5	4	I	
ES-5	145	7/1/2016	898-901	Widening	Road Crossing	4	Pasture	Pasture	No	4	4	1	
ES-6	1450	7/6/2016	415-715	Widening	Bend at steep slope	4	Pasture	Pasture	No	4	5	2	
ES-7	3820	7/5/2016	902-920	Widening	Past Channelization, Road Crossing and Pipe Outfall	4	Pasture	Pasture / Paved	Yes	3	3	2	
ES-8	320	7/5/2016	921	Widening	Road Crossing	5	Pasture	Lawn	No	4	2	2	
ES-9	440	7/5/2016	922	Downcutting	Bend at steep slope	3	Pasture	Pasture	No	4	2	2	
ES-10	2350	7/6/2016	4415	Downcutting	Livestock	I	Pasture	Pasture	No	3	I	1	
ES-11	245	7/6/2016	4416-4417	Widening	Livestock	2	Pasture	Pasture	No	5	I	I	
ES-12	110	7/7/2016	141022, 141035	Widening	Road Crossing	5	Pasture	Crop Field	No	5	2	2	
PES-I	660	7/15/2016	Aerial mapping was reviewed										
PES-2	180	7/16/2016	Aerial mapping was reviewed										
PES-3	360	7/17/2016	Aerial mapping was reviewed										

Map:

Team: BR/CR

Site: ES-1

Date: 07 / 01 / 16

Photo: <u>880-882</u>

Survey: ____

Type: Downcutting (Widening) Headcutting

Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing,

Livestock, Land Use Change Upstream, Other Upstream of pier

Length: _____

Average exposed bank height: _____

5

Present Land Use Left Side (looking downstream): Crop field, Pasture, Lawn, Paved, Shrubs & Small Trees, (Forest) Multiflora Rose, Other _____

Present Land Use Right Side (looking downstream): Crop field, Pasture Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other

Threat to Infrastructure?: Yes (No) Describe:

Severity Severe

(5)Minor

Unknown (-1)

Correctability

Best

3

3

5

Worst

Unknown (-1)

Access

Best

(1)

2

5

Worst

Unknown (-1)

EROSION SITE

Map: ____ 55

Team: BR/CR

Site: ES-2

Date: $\frac{07 / 01 / 16}{M M D D Y Y}$

Photo: 883-885

Survey: _____

Type: Downcutting (Widening)

Headcutting Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing,

Livestock, Land Use Change Upstream, Other: _

200 Length: ____

ft.

Average exposed bank height: _____

6

ES

Present Land Use Left Side (looking downstream): Crop field, Pasture, Lawn, Paved, Shrubs & Small Trees,

(Forest, Multiflora Rose, Other _____

Present Land Use Right Side (looking downstream): Crop field (Pasture) Lawn, Paved, Shrubs & Small Trees,

Forest, Multiflora Rose, Other _____

Threat to Infrastructure?: Yes (No) Describe: ____

Severity

Severe

2

5

Minor Unknown (-1)

Correctability

Best

1

1

2

(3)

5 Worst Unknown (-1)

Access

Best

2

3

5

Worst

EROSION SITE ES

Map:	46

Team: BR/CR

Site: ES-3

Date:
$$\frac{07 / 01 / 16}{M M D D Y Y}$$

Photo: <u>886-888</u>

Survey: ____

Type: Downcutting (Widening) Headcutting

Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing,

Livestock, Land Use Change Upstream, Other: ___

Length: _____

ft.

Average exposed bank height: _____

Present Land Use Left Side (looking downstream): Crop field (Pasture) Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other Forest edge then pasture

Present Land Use Right Side (looking downstream): Crop field (Pasture) Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other $\underline{\text{Narrow Forest Edge}}$

Threat to Infrastructure?: Yes (No) Describe:

Severity Severe

(5)

Minor

Worst

Worst

Unknown (-1)

Correctability

Best

5

Unknown (-1)

Access

Best

1)

2

3

5

Unknown (-1)

EROSION SITE

Map: _____46

Team: BR/CR Site: ES-4

Date: 07 / 01 / 16

Photo: _____

Type: Downcutting (Widening) Headcutting Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization Below Road Crossing,

Livestock, Land Use Change Upstream, Other:

ES

Length: _____ ft.

Average exposed bank height: _____

Present Land Use Left Side (looking downstream): Crop field, Pasture, Lawn, Paved, Shrubs & Small Trees, (Forest,) Multiflora Rose, Other Their Pasture

Present Land Use Right Side (looking downstream): Crop field (Pasture) Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other Forest Edge Riparian

Threat to Infrastructure?: Yes (No)

1

Describe: _____

Severity Severe Correctability Best

1

3 3

3

4

5 5

Worst

Minor

Unknown (-1)

Unknown (-1)

Access

Best

1

5

Worst

Map: ___ 46

Team: BR/CR

Site: ES-5

Date: 07 / 01 / 16

Photo: <u>898-901</u>

Survey: ____

Type: Downcutting (Widening) Headcutting Unknown

Above and Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing

Livestock, Land Use Change Upstream, Other: __

Length: _____

ft.

Average exposed bank height:

Present Land Use Left Side (looking downstream): Crop field (Pasture) Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other Forest Riparian Edge

Present Land Use Right Side (looking downstream): Crop field (Pasture) Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other $\underline{\text{Forest}}$ Riparian Edge

Threat to Infrastructure?: Yes (No) Describe: ___

5 Minor

Worst

Worst

Unknown (-1)

Correctability

Best

Severe

1

5

Unknown (-1)

Access

Severity

Best

(1)

2

3

5

Unknown (-1)

EROSION SITE

Map: _____72

Team: BR Site: ES-6

Date: $\frac{07 / 06 / 16}{M M D D Y Y}$

Photo: 415-715

Survey: _____

Type: Downcutting (Widening) Headcutting Unknown

Cause: Bend at steep slope Pipe Outfall, Below Channelization, Below Road Crossing,

Livestock, Land Use Change Upstream, Other:

Length: ____ 1,200

ft.

Average exposed bank height: _____ 4 ft.

ES

Present Land Use Left Side (looking downstream): Crop field, Pasture Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other

Present Land Use Right Side (looking downstream): Crop field, Pasture Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other

Threat to Infrastructure?: Yes (No) Describe: _____

Severity

Severe

5

Minor Worst

Unknown (-1)

Correctability

Best

1

1

2

3

(5)

Unknown (-1)

5

Worst

Map: 98, 104, 105

Team: BR

Site: ES-7

Date: 07 / 05 / 16 M M D D Y Y

Photo: _902-920

Survey: ____

Type: Downcutting (Widening) Headcutting

Unknown

Cause: Bend at steep slope (Pipe Outfall) Below Channelization, Below Road Crossing,

Livestock, Land Use Change Upstream, Other: Past Channelization

Length: _____

_____ ft. Average exposed bank height: _____

Present Land Use Left Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other _____

Present Land Use Right Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose Other Commercial

Threat to Infrastructure?:(Yes) No

1

1

Describe: Could Threaten Parking Lot and Horse Fences

Minor

Unknown (-1)

Correctability

Severe

5

Worst

Unknown (-1)

Access

Severity

Best

Best

(2)

4

5 Worst Unknown (-1)

EROSION SITE

Map: ____ 72

Team: _ BR

3

Site: ES-8

Date: 07 / 05 / 16 MM DD YY

Photo: 921

Survey: _____

Type: Downcutting (Widening) Headcutting Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization Below Road Crossing)

Livestock, Land Use Change Upstream, Other:

400 Length: ____ ft.

Average exposed bank height: _____

5

ES

Present Land Use Left Side (looking downstream): Crop field (Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other

Present Land Use Right Side (looking downstream): Crop field, Pasture (Lawn) Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other Riparian Forest Edge

Threat to Infrastructure?: Yes (No) Describe: __

Severity Severe 1

5

Minor

Unknown (-1)

Correctability

Best

Best

1

1

3

3

5 5

Worst Worst Unknown (-1) Unknown (-1)

Access

Map: ____ 72

Team: BR

Site: ES-9

Date: 07 / 05 / 16 MM DD YY

Photo: _922

Survey: ____

Type: (Downcutting) Widening Headcutting Unknown

Cause: Bend at steep slope Pipe Outfall, Below Channelization, Below Road Crossing, Livestock, Land Use Change Upstream, Other:

Length: ____

__ft. Average exposed bank height: _____

Present Land Use Left Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other _____

Present Land Use Right Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other _____

Threat to Infrastructure?: Yes (No) Describe:

Severity

Access

Severe

Best

(4)

5

5

5

Unknown (-1)

Correctability

Best

1

1

3 3

Worst

Worst

Minor

Unknown (-1) Unknown (-1)

EROSION SITE

ES

Map: _____16

Team: Olson

Site: ES-10

Date: 07 / 06 / 16 M M D D Y Y

Photo: 4415

Survey: _____

Type: (Downcutting) Widening Headcutting Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing,

(Livestock) Land Use Change Upstream, Other:

Length: _____2,400

_ ft.

Average exposed bank height: _____ ft.

Present Land Use Left Side (looking downstream): Crop field (Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other

Present Land Use Right Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other

Threat to Infrastructure?: Yes (No)

Describe: _____

Severity

Severe

1

(3)

4 5

Minor

Unknown (-1)

Correctability

Best

2

2

4 5

Worst

Unknown (-1)

Access

Best

2

5

Worst

Map: ____ 17

Team: Olson

Site: ES-11

Date: 07 / 06 / 16 M M D D Y Y

Photo: 4416-4417

Survey: ____

Type: Downcutting (Widening) Headcutting Unknown

Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing,

(Livestock)Land Use Change Upstream, Other:

200 Length: ____

ft.

Average exposed bank height: _____

1.5

Present Land Use Left Side (looking downstream): Crop field (Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other _____

Present Land Use Right Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees,

Forest, Multiflora Rose, Other _____

Threat to Infrastructure?: Yes (No)

Describe: _____

Severity Severe

(5)

Minor Unknown (-1)

Correctability

Best

Worst Worst Unknown (-1)

Access

Best

2

3

5

5

Unknown (-1)

EROSION SITE

Map: _____85

Team: BR

Site: ES-12

Date: 07 / 07 / 16 M M D D Y Y

Photo: _____

Survey: ____

Type: Downcutting (Widening) Headcutting Unknown

Length: ____

Above and

Cause: Bend at steep slope, Pipe Outfall, Below Channelization, Below Road Crossing,

Livestock, Land Use Change Upstream, Other:

100

Average exposed bank height: _____

5

ES

Present Land Use Left Side (looking downstream): Crop field (Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other Riparian Forest Edge Partial

Present Land Use Right Side (looking downstream): Crop field Pasture, Lawn, Paved, Shrubs & Small Trees, Forest, Multiflora Rose, Other Riparian Forest Edge

Threat to Infrastructure?: Yes (No)

Describe: ____

Severity

Severe 1

3

(5)

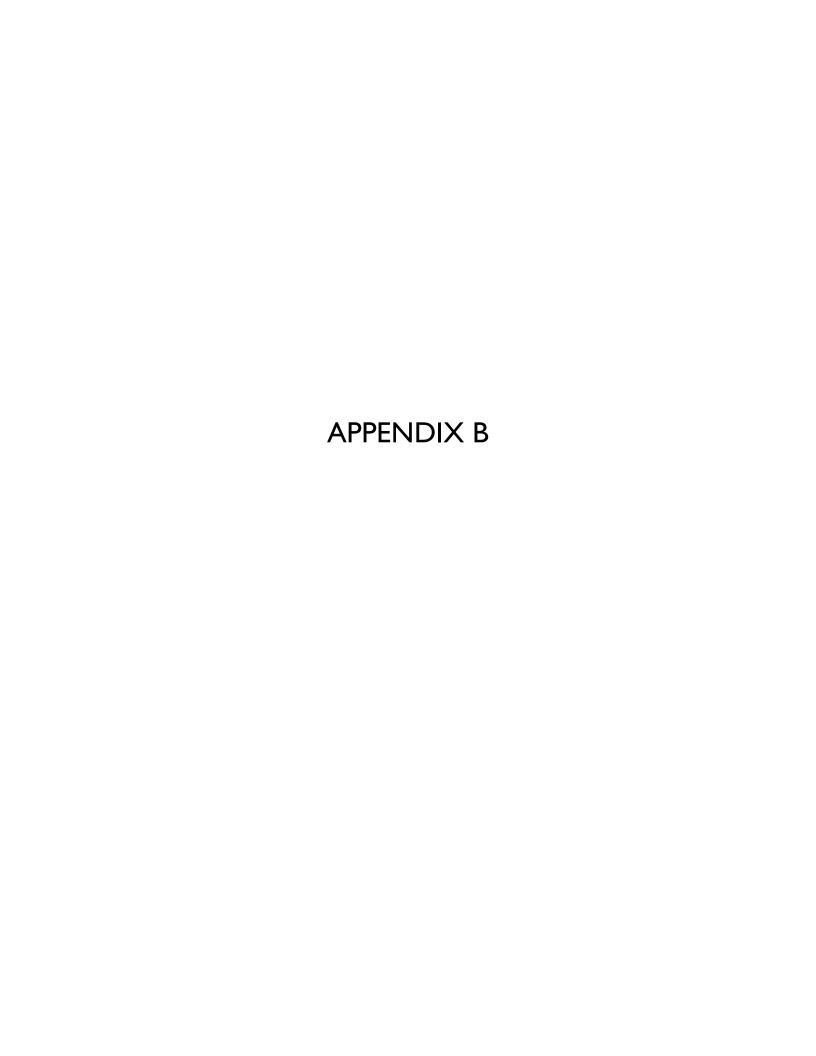
Minor

Unknown (-1)

Correctability

Best

Best


1

1

5 5

Worst Worst Unknown (-1) Unknown (-1)

Access

ES-1, Erosion upstream of infrastructure

ES-2, Tree fall due to erosion

ES-2, Eroded bank about 6 ft tall

ES-3, Erosion along both banks near road crossing

ES-3, Erosion along both banks near road crossing

ES-4, Erosion of soils under roots of riparian trees

ES-4, Erosion and debris piles

ES-5, Large tree fall due to erosion

ES-5, Eroded banks and sedimentation in stream

ES-5, Tree roots without soil

ES-6, Erosion of banks and heavy siltation

ES-6, Erosion of banks and siltation

ES-6, Erosion of banks and heavy siltation

ES-6, Concrete debris dumped in stream

ES-6, Erosion along straightened reach

ES-7, Small erosion along narrow channel

ES-7, Small erosion along narrow channel

ES-7, Small erosion along narrow channel

ES-7, Erosion of bank leaves extended pipe in stream

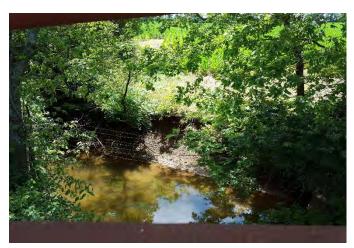
ES-7, Bank erosion at a bend

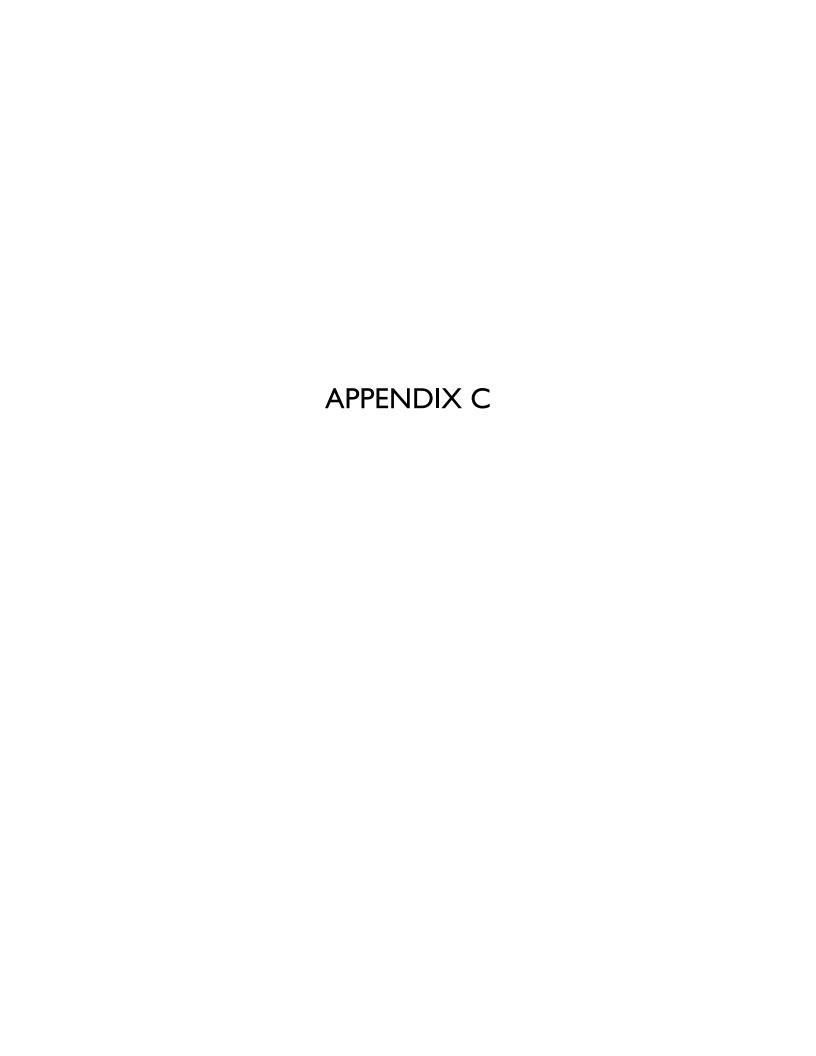
ES-7, Slumping banks held together by grass

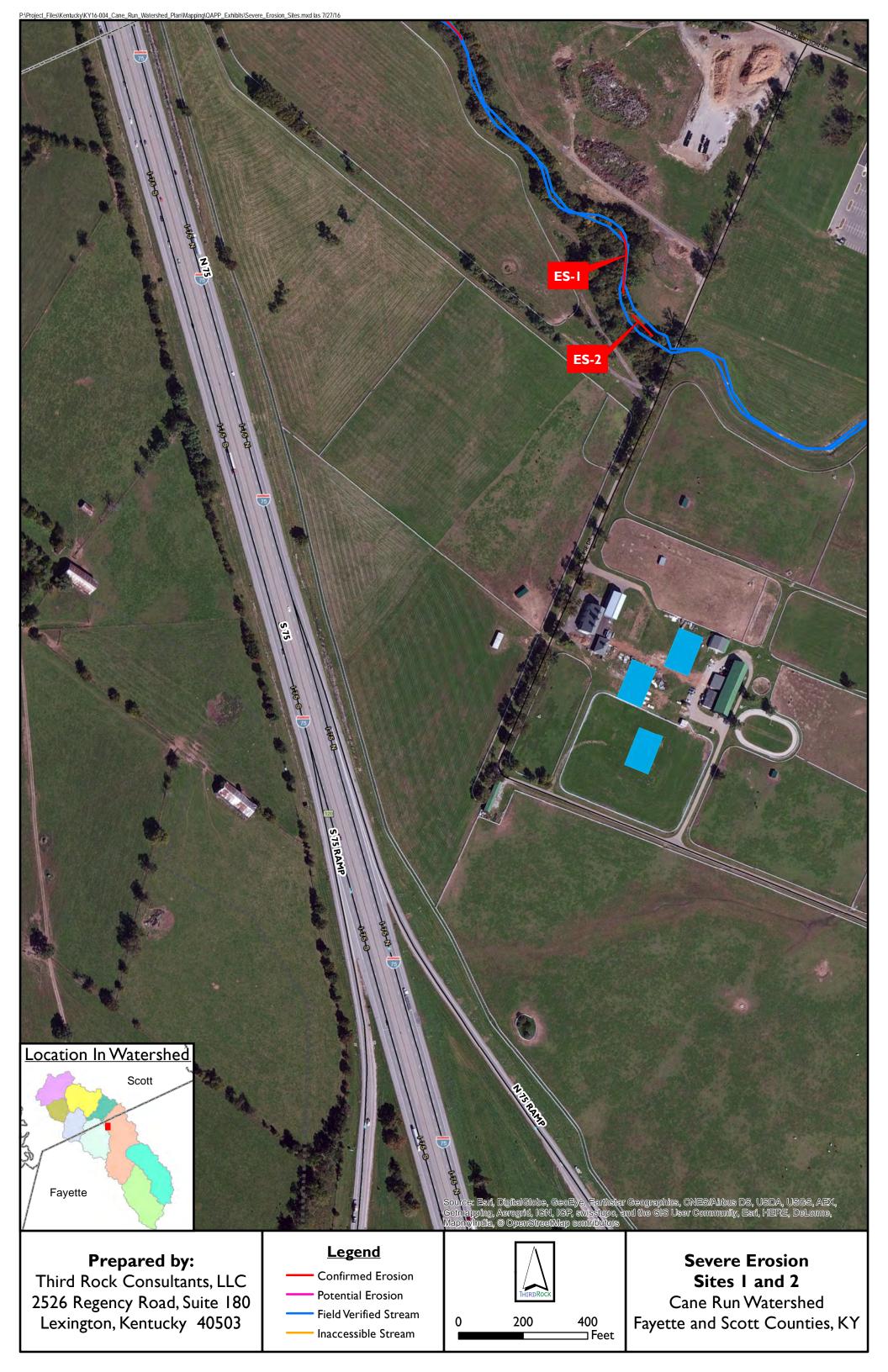
ES-7, Erosion in a bend

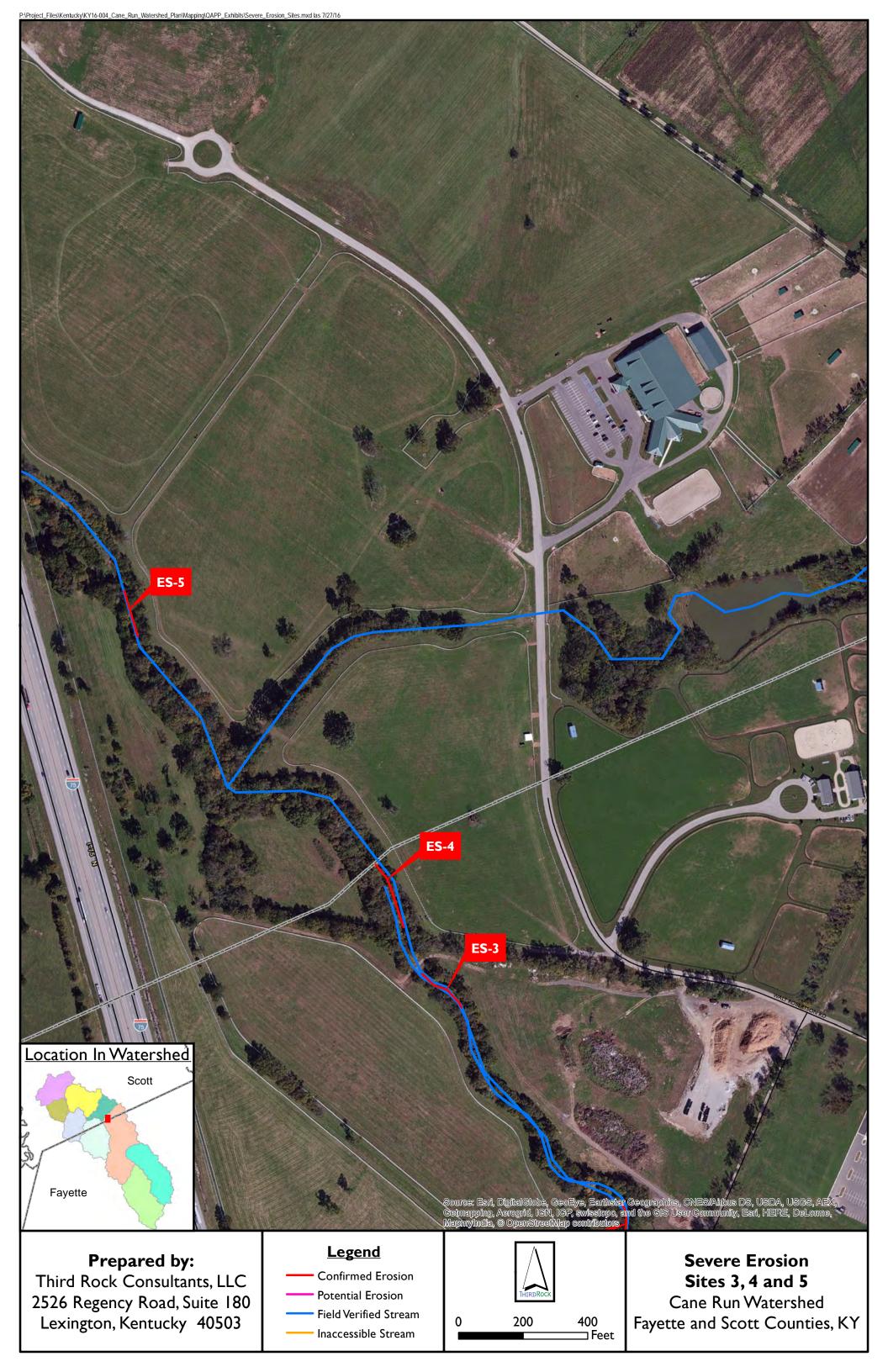
ES-8, Widening due to road crossing

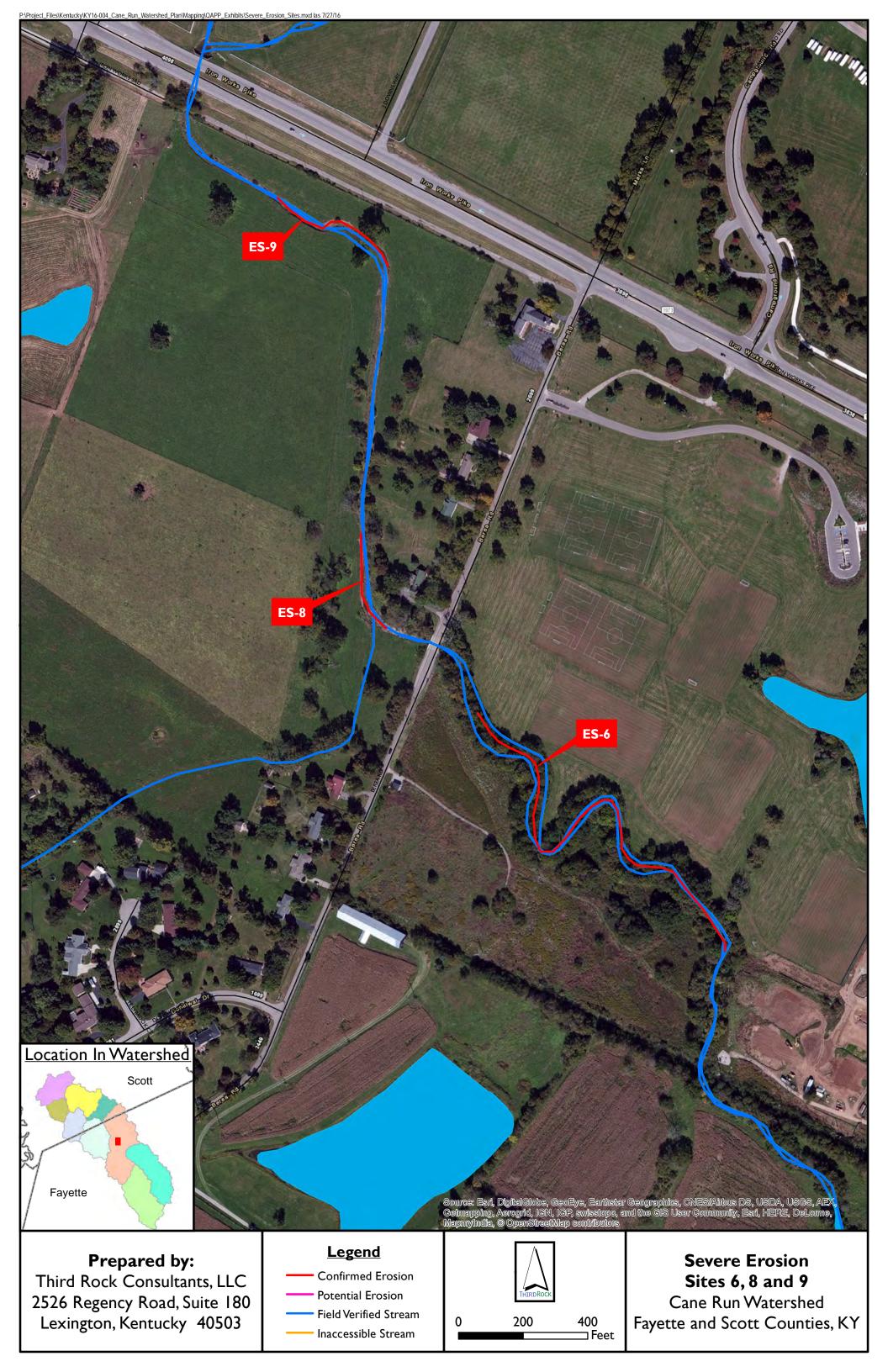
ES-9, Downcuttiing due to bend

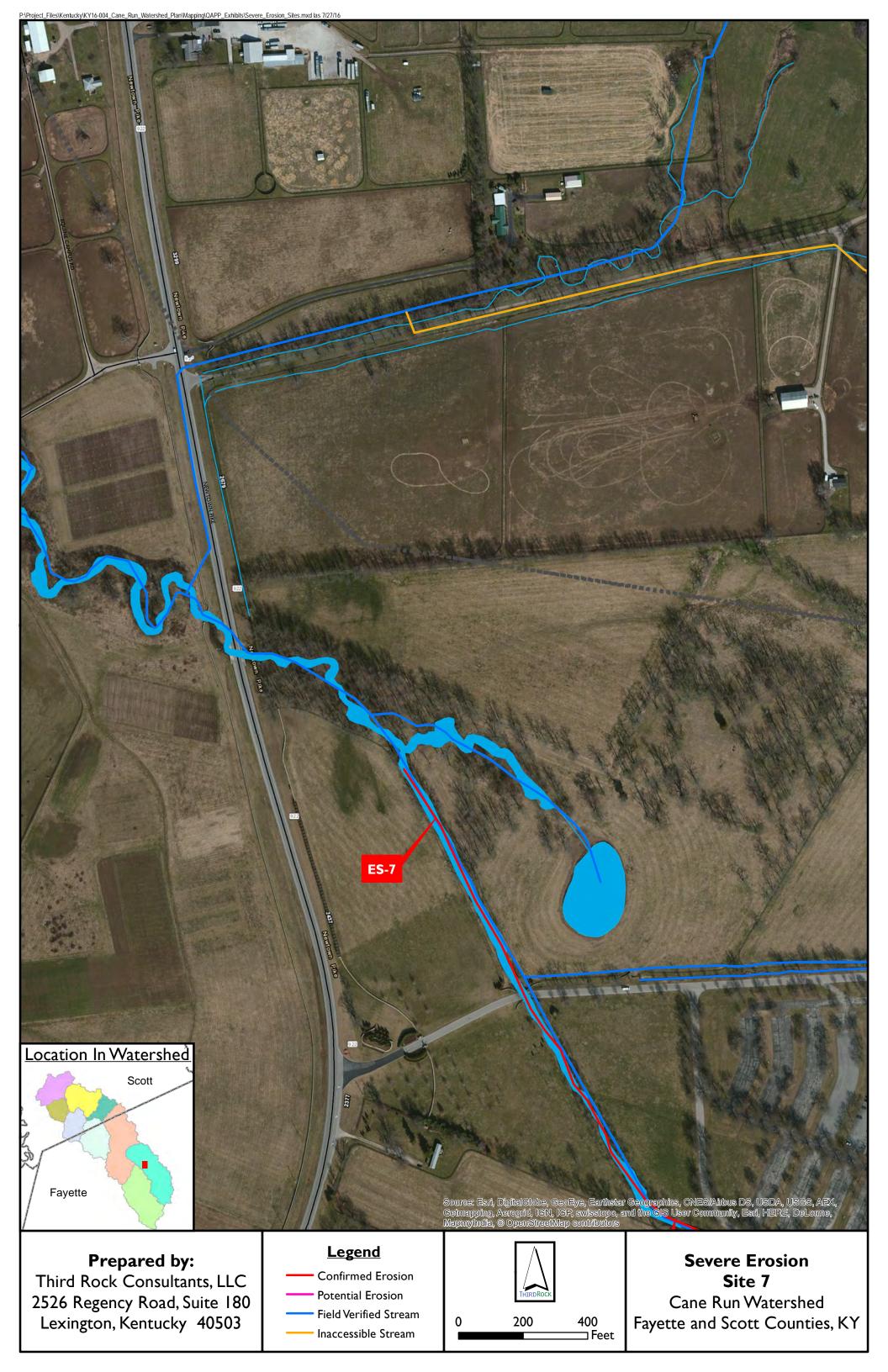

ES-10, Erosion due to cattle access along long reach

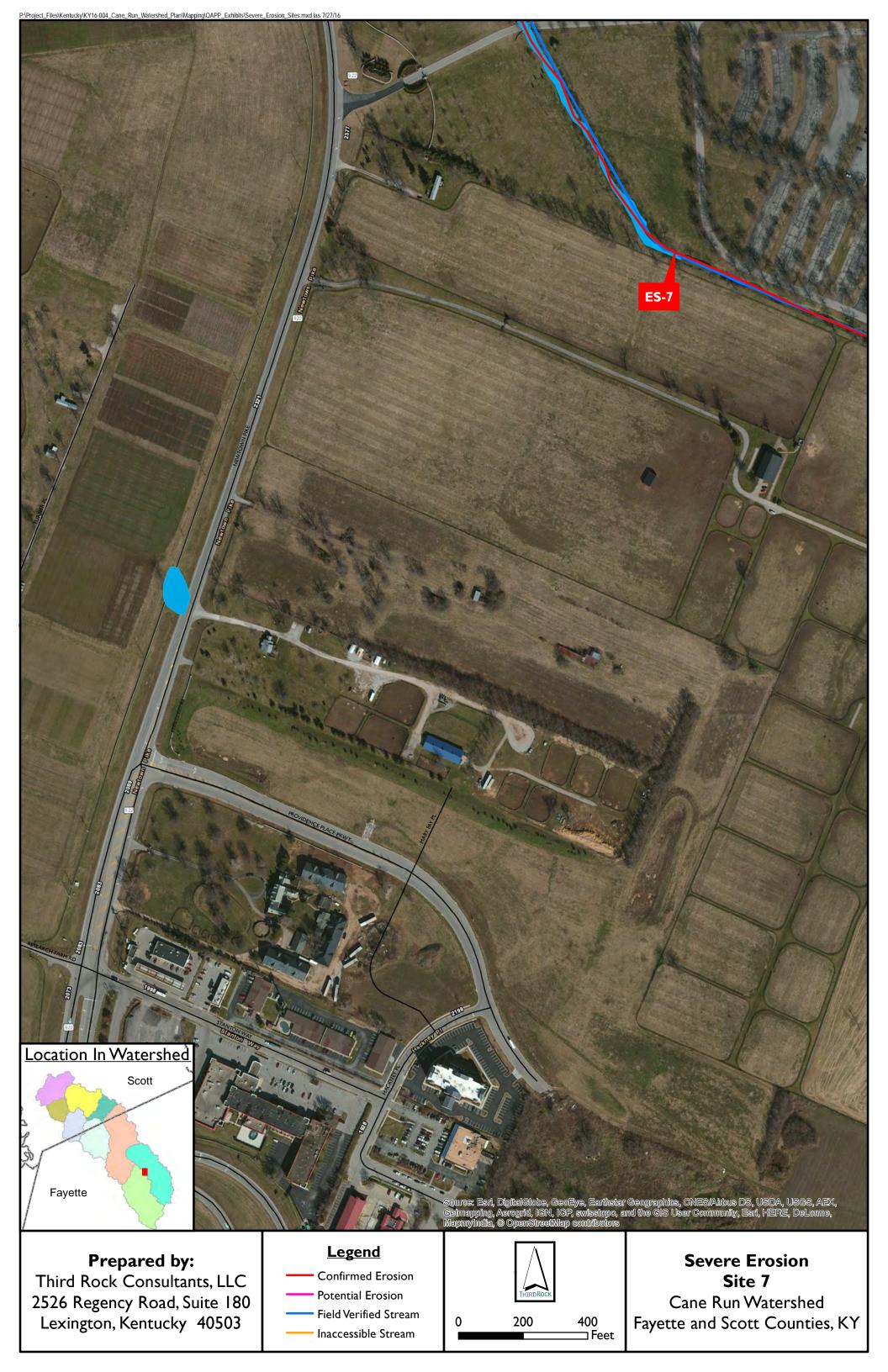

ES-II, Erosion due to cattle access

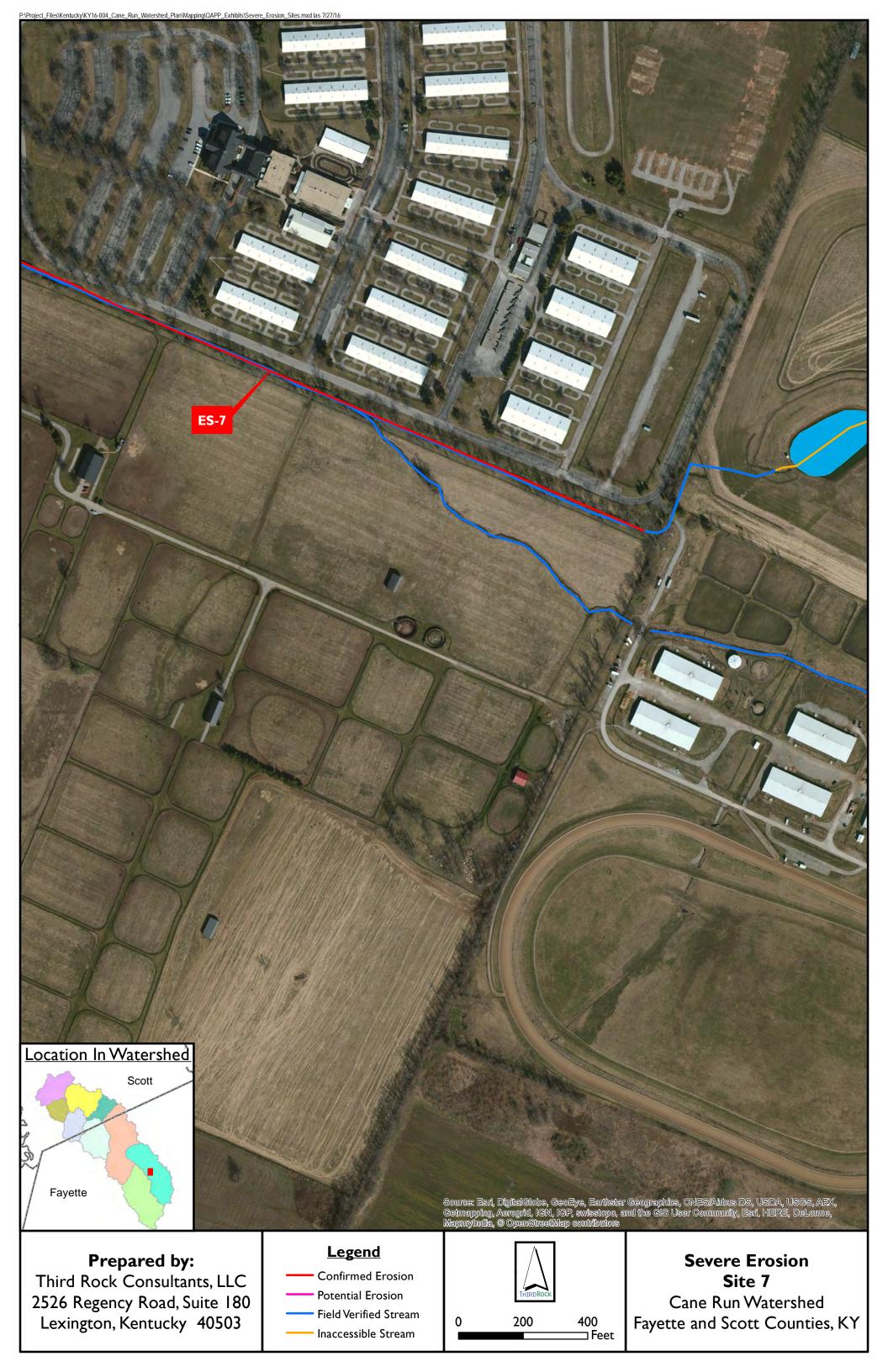


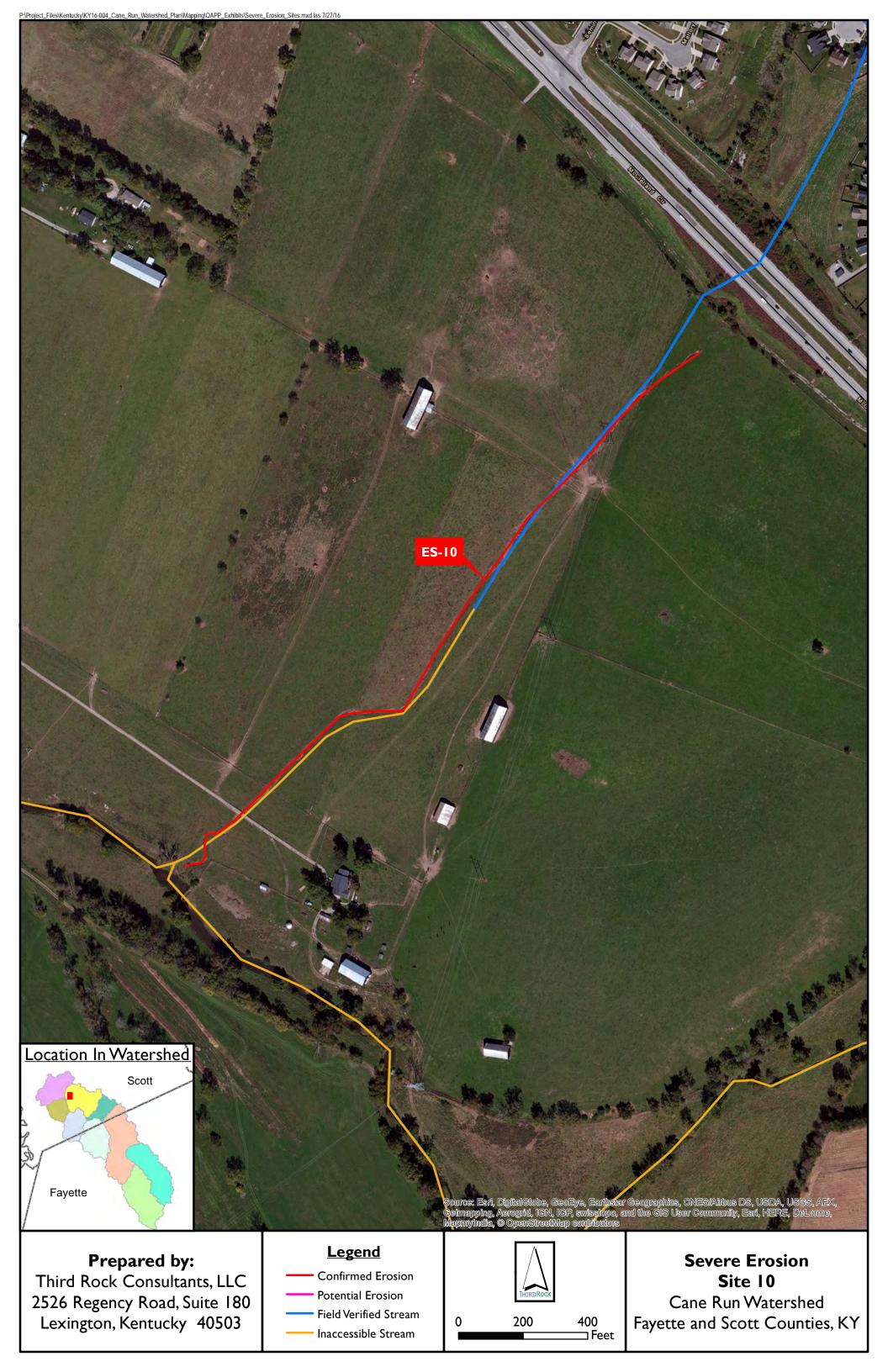

ES-II, Erosion due to cattle access

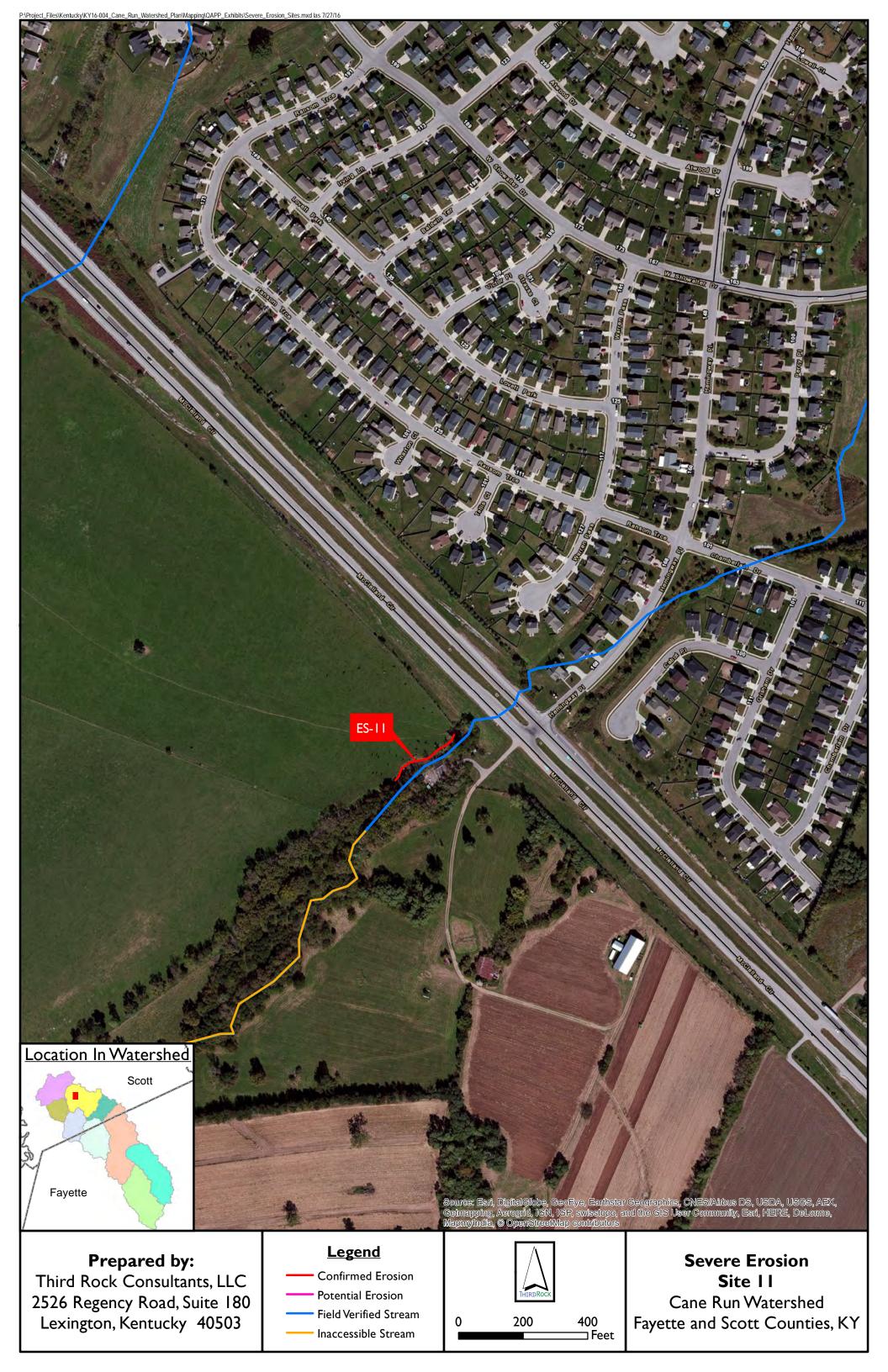


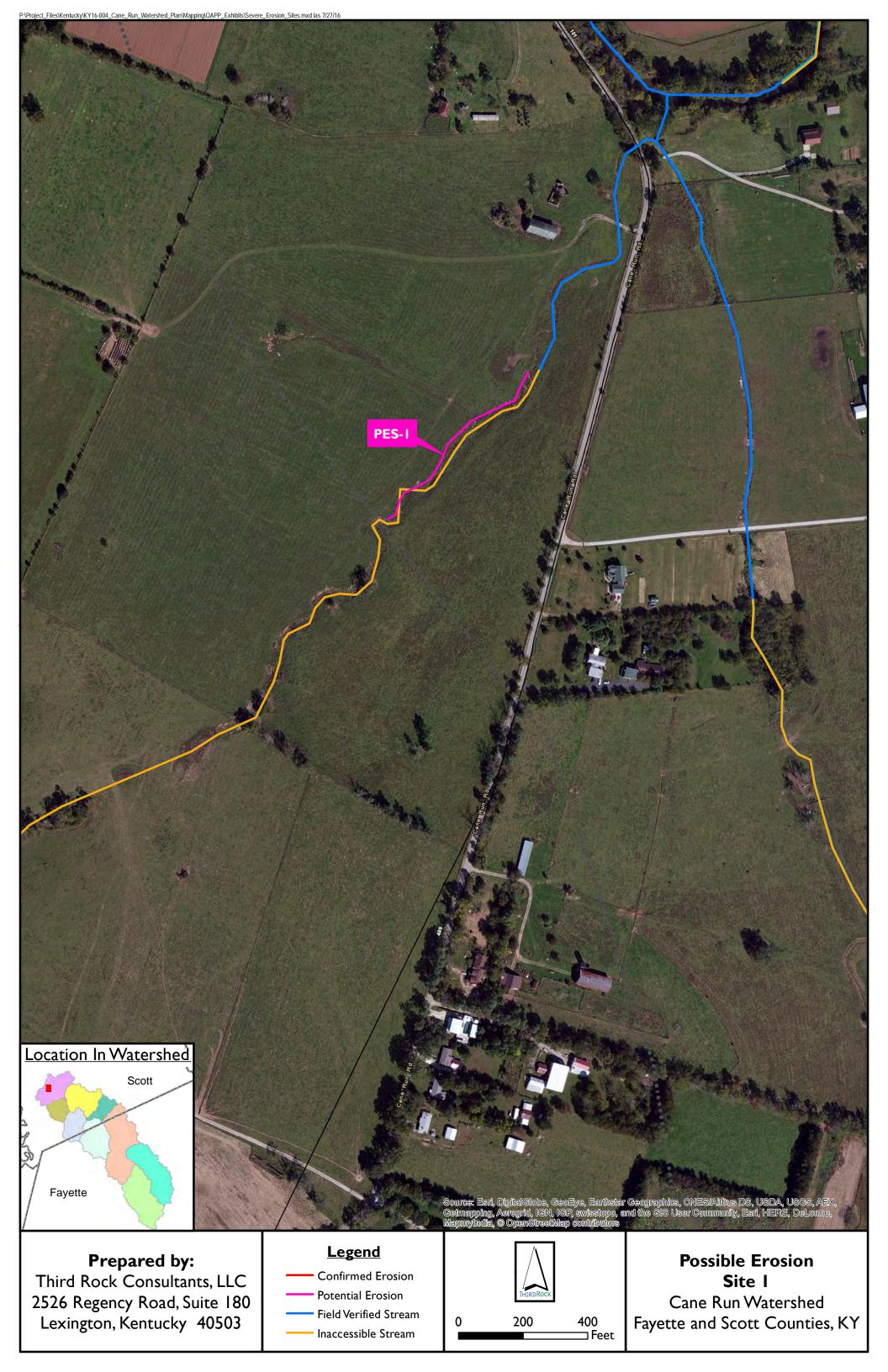

ES-12, Erosion near road crossing

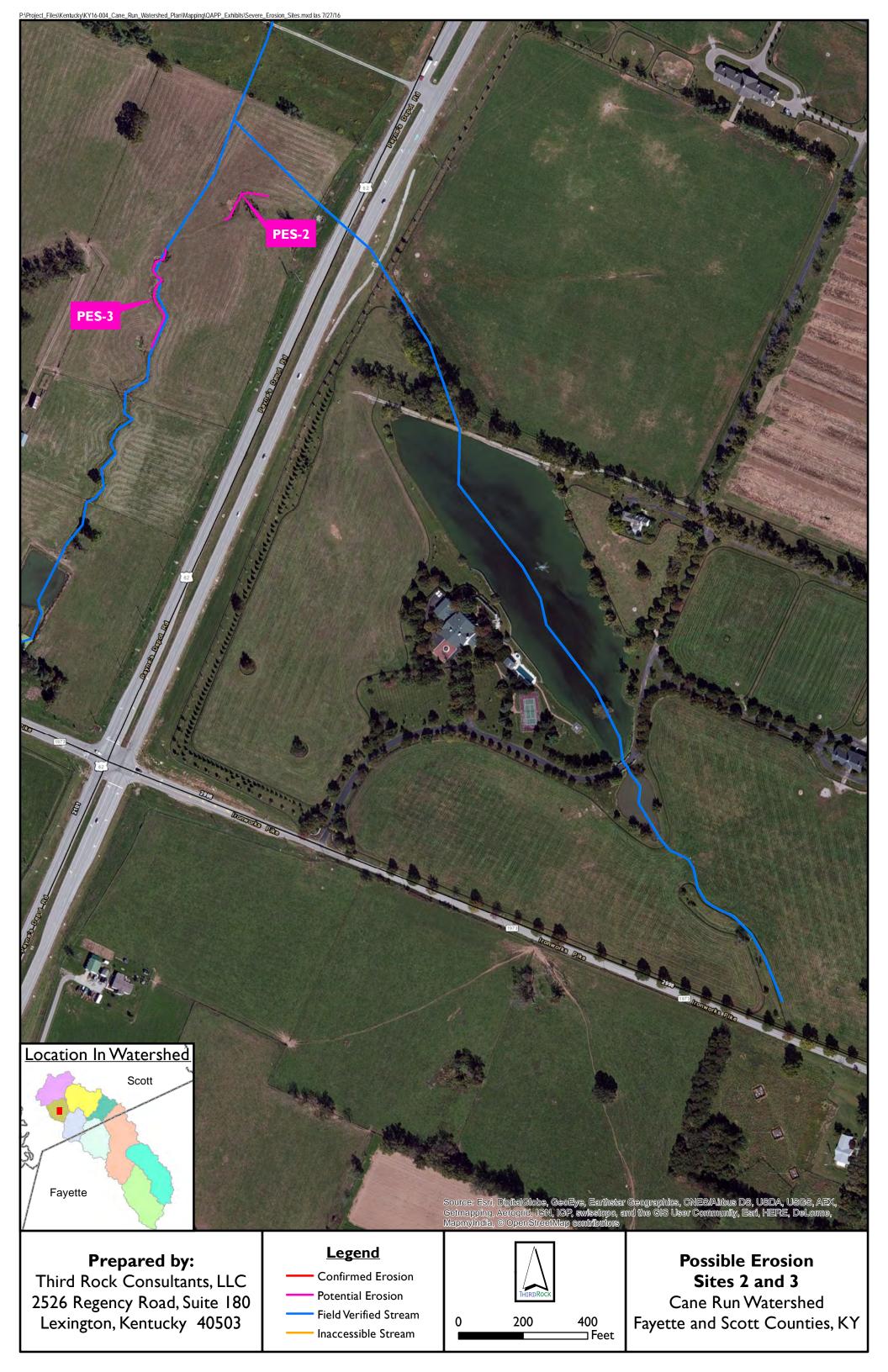












APPENDIX H

Comprehensive Watershed-Based Plan Biological & Habitat Monitoring Report

Prepared for:

The Kentucky Division of Water 200 Fair Oaks Lane Frankfort, KY 40601 502-564-3410

Prepared By:

Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, KY 40503 859-977-2000

October 17, 2017

INTRODUCTION	I
METHODS	I
Water Quality	
Habitat	_
Macroinvertebrates	3
DATA EVALUATION	4
Water Quality	4
Habitat	4
Macroinvertebrates	5
RESULTS	5
Water Quality	5
Habitat	
Macroinvertebrates	7
SUMMARY	9
REFERENCES	10
Tables	
Table I – Biological Monitoring Locations	
Table 2 – Biological Warmwater Aquatic Habitat for the Bluegrass Bioregion	
Table 3 – Summary of Water Quality Results	6
Table 4 – Summary of Habitat Assessment Results	
Table 5 – Summary of Macroinvertebrate Sampling Results	8
Exhibits and Figures	
Exhibit I Diological Manitoning Locations	2
Exhibit I Biological Monitoring LocationsFigure I Habitat Assessment Scores by Parameter	2 7
Appendices	
Appendix A Habitat Assessment Field Data Sheets	
Appendix B Photo Log	
Appendix C Taxa List and Laboratory Bench Sheets	

INTRODUCTION

The Cane Run Watershed (HUC#05100205280200) is a 45.4 square mile (mi²) watershed located within Fayette and Scott Counties, Kentucky. The stream has been listed as impaired since 1998 for Warmwater Aquatic Habitat and Primary Contact Recreational uses. Since that time, numerous tributaries have also been designated as impaired for causes including pathogens, nutrients / eutrophication, organic enrichment (sewage), and sedimentation/siltation.

In 2011, the University of Kentucky Biosystems and Agricultural Engineering department completed a watershed plan for the Fayette County portion of the watershed. In order to develop a plan that addresses the Scott County sources as well, the Kentucky Division of Water awarded a Section 319 (h) Nonpoint Source Implementation Program Cooperative Agreement to Third Rock Consultants, LLC (Third Rock) in 2016. The overall goal was to generate data sufficient to facilitate the identification and quantification of sources of recreational and aquatic habitat impairments. To that end, water quality monitoring was conducted by Third Rock at 11 sites within the watershed in accordance with a Kentucky Division of Water (KDOW) August 8, 2016 approved quality assurance project plan (QAPP). As part of that effort, Third Rock conducted biological monitoring at 8 of the 11 water quality monitoring sites as well as 3 additional sites monitored in accordance with separately approved KDOW QAPPs. The findings and conclusions of the biological monitoring effort are detailed in this report.

METHODS

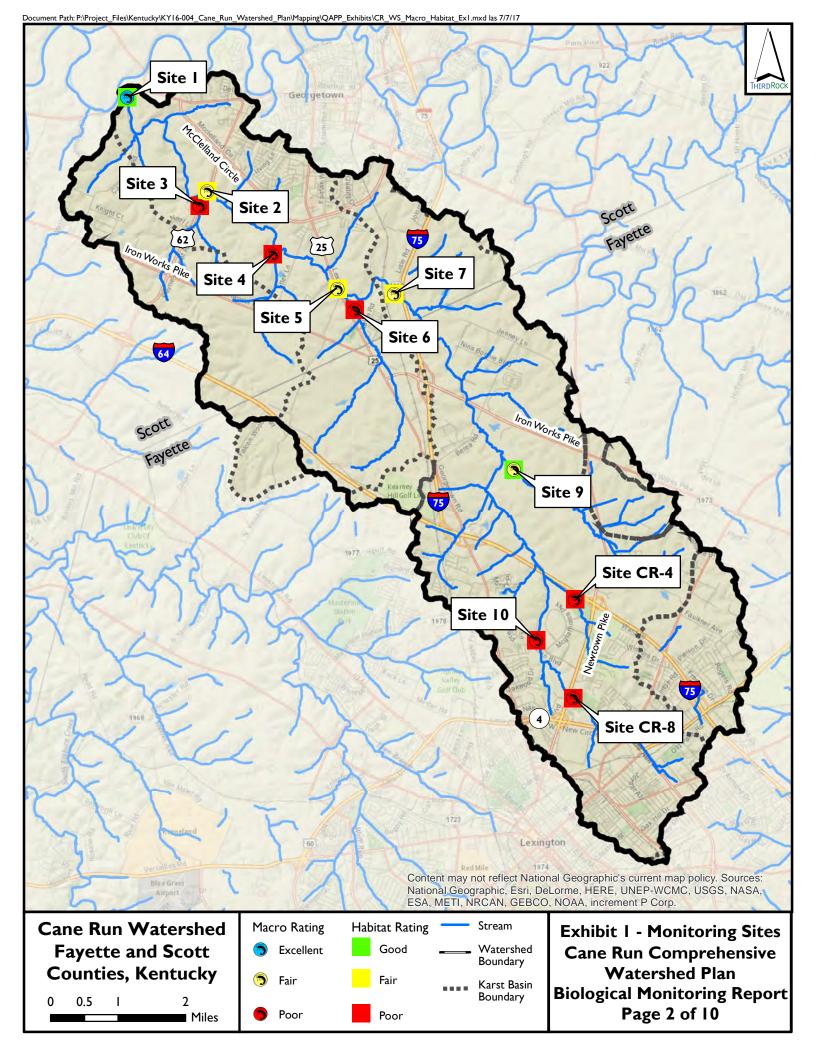

Biological monitoring was conducted at 11 locations within the Cane Run Watershed as shown on **Exhibit 1**, page 2, and identified in **Table 1**.

Table I - Biological Monitoring Locations

Site		Area		
ID	Location	(mi ²)	Latitude	Longitude
	Cane Run at US 460 Bridge	45.4	38.210260	-84.611020
2	Cane Run off SR 62	39.3	38.189400	-84.589200
3	UT to Cane Run off SR 62	2.02	38.186472	-84.591300
4	UT to Cane Run on Horse Farm off Etter Lane	3.1	38.175357	-84.571630
5	Cane Run at Landscape Alternatives bridge off US 25	31.8	38.168000	-84.554250
6	UT to Cane Run in field off of US 25	5	38.163590	-84.549770
7	Cane Run at Lisle Road	24.9	38.167065	-84.538907
9	UT to Cane Run at UK Ag Research Farm road bridge	7.4	38.128800	-84.507080
101,2	Cane Run at Citation Blvd	5.5	38.092322	-84.501381
CR-4 ²	UT Cane at Coldstream Park	1.1	38.100676	-84.490700
CR-8 ²	Cane Run Upstream of Newtown Pike Crossing	4.1	38.079446	-84.491493

¹ Site 10 is also identified as CR-S2

² Sites 10 (CR-S2), CR-4, and CR-8 were sampled under other monitoring programs in accordance with QAPP Section 2.7. The results are included in this report for the purpose of data comparison, as the data was collected under similar protocols.

Water Quality

Dissolved oxygen, pH, water temperature, turbidity, and specific conductance were measured in conjunction with macroinvertebrate sampling by Third Rock staff in the field at each location using a Hydrolab water quality meter calibrated prior each field visit.

Habitat

Habitat was assessed at each location in conjunction with macroinvertebrate sampling. Riffle and pool substrates, stream channelization, riparian conditions and instream cover were assessed and observations recorded on a field data form modified from US EPA 841-B-99-002 (Barbour et al. 1999).

Macroinvertebrates

Macroinvertebrates were sampled by Third Rock staff during the months of February, March, and April of 2017 for headwater streams, and June and August of 2016 for wadeable streams. Sampling occurred within their respective sampling index periods (March to May for headwater streams, and May to September for wadeable streams, KDOW 2015a). Macroinvertebrate sampling was not conducted during periods of excessively high or low flows or within two weeks of a known scouring flow event.

The macroinvertebrate community at each site was sampled using methods developed by KDOW (2015a). Semi-quantitative and qualitative samples were collected. Semi-quantitative sampling involved the collection of four 0.25 square meter (m²) samples collected from at least 2 separate riffles at each station using a 0.25m² quadrat and a kicknet (600µm mesh). Riffle collections at each station were composited to form one semi-quantitative sample.

Qualitative, multi-habitat samples involved the:

- collection of 3 leaf packs (from a riffle, run and pool);
- 3 jabs (with 800 x 900µm D-frame dip net) in sticks/wood;
- 3 jabs into undercut banks/submerged roots, aquatic macrophyte beds;
- collection of 3 bedrock/slabrock dipnet samples;
- hand-picking of 15 rocks (large cobble/small boulder) from riffles, runs, and pools for wadeable streams and 5 small boulders from pools for headwater streams;
- washing 3 replicates of aufwuchs material off rocks, sticks, leaves, and filamentous algae into a 300 µm nitrex sampler;
- visual searches of approximately 10 to 20 linear feet of large woody debris for wadeable streams and a minimum of 6 linear feet for headwater streams; and
- 3 sampling replicates in soft sediment using a US #10 sieve.

All samples collected with the dip net and from rock and wood were processed through a $600\mu m$ wash bucket. Collections from each microhabitat were composited to form one qualitative sample for each station. Samples were preserved in 95% ethanol and returned to the laboratory for processing and identification.

Random 300-specimen subsamples were removed from the riffle samples using methods described by KDOW (2015b). Each riffle sample was poured into a Canton sorting tray and divided into 30 equally sized grids. Organisms were removed from the sample in randomly selected grids until the 300-specimen total was reached or all specimens had been removed. The number of grids sorted was recorded for each sample to allow estimation of total organism abundance. All organisms were identified to the lowest possible taxonomic level and recorded on laboratory bench sheets. Representative individuals for all distinct taxa were removed from the multi-habitat sample for identification.

DATA EVALUATION

Water quality results were compared against regulatory benchmarks. To evaluate the habitat assessment and macroinvertebrate results, KDOW has developed metrics and narrative classification ratings to indicate whether the designated use of warmwater aquatic habitat is supported or the aquatic community is adversely impacted. These benchmarks and metrics are described below.

Water Quality

All streams within the Cane Run watershed have designated uses of warmwater aquatic habitat (WAH). Warmwater aquatic habitat standards apply to the protection of productive warmwater aquatic communities, fowl, animal wildlife, arboreous growth, agricultural, and industrial uses. The standards that are applicable to the parameters sampled are listed below as follows:

- pH shall not be less than 6.0 SU, more than 9.0 SU, nor fluctuate more than 1.0 SU over 24 hours;
- temperature shall not exceed 31.7°C (89°F);
- dissolved oxygen shall be above 5.0 mg/L as a 24-hour average and above 4.0 mg/L for instantaneous measurements; and
- specific conductance shall not be changed to the extent that the indigenous aquatic community is adversely affected.

Habitat

US EPA Rapid Bioassessment Protocol (RBP) was used for conducting stream habitat assessments, and a Habitat Assessment Field Data Sheet for high gradient streams was completed for each monitoring site. Ten physical habitat parameters that characterize the stream "micro-scale" habitat, the "macro-scale" features, and the riparian and bank structure features, were assessed. Each of the parameters was evaluated on a "Condition Category" scale from 0 to 20 where "optimal" scores from 20 to 16, "suboptimal" scores from 15 to 11, "marginal" scores from 10 to 6, and "poor" scores from 5 to 0.

A score of 0 to 200 was assigned for each location based on the sum of the 10 parameters. For wadeable streams (watersheds greater than 5 mi²) of the Bluegrass Bioregion, a habitat score below 114 indicates a "poor" warmwater aquatic habitat (WAH) rating, scores between 114 and 129 indicate a "fair" habitat rating, and scores above 130 indicate a "good" habitat rating (KDOW 2011). For headwater streams (watersheds less than 5 mi²) of the Bluegrass Bioregion, a habitat score below 142 indicates a "poor" habitat rating, scores between 142 and 155 indicate "fair" habitat rating, and scores above 155 indicate "good" rating as summarized in **Table 2**, page 5.

Table 2 – Biological Warmwater Aquatic Habitat Criteria for the Bluegrass Bioregion

	Warmwater Aquatic Habitat Criteria					
	Hab	oitat	Macroinvertebrates			
	(RBP S	Score)	(MBI S	Score)		
	Drainage	Drainage	Drainage	Drainage		
	Area	Area	Area	Area		
Narrative Rating	> 5.0 mi ²	< 5.0 mi ²	> 5.0 mi ²	< 5.0 mi ²		
Excellent	N/A	N/A	≥ 70	≥ 58		
Good	≥ 130	≥ 156	61-69	51-57		
Fair	114-129	142-155	41-60	39-50		
Poor	≤ 113	≤ 4	21-40	19-38		
Very Poor	N/A	N/A	≤ 20	≤ 18		

Macroinvertebrates

Macroinvertebrate sampling results were evaluated through calculation of several community metrics specified by KDOW. Community metrics include genus taxa richness, genus EPT (mayfly, stonefly and caddisfly) richness, total number of individuals, modified percent EPT individuals, modified Hilsenhoff biotic index (mHBI), percent Ephemeroptera (headwater only), percent primary clingers, and percent Chironomidae plus Oligochaeta (aquatic worms).

Results of community metrics at each location were combined to compute a Macroinvertebrate Bioassessment Index (MBI) score, ranging from 0 (worst) to 100 (best). MBI scores were compared to scoring criteria developed by KDOW to arrive at water quality ratings of "very poor," "poor," "fair," "good," or "excellent." For wadeable streams (watersheds greater than 5 mi²) of the Bluegrass Bioregion, an MBI score of 20 and below is "very poor," from 21 to 40 is "poor," from 41 to 60 is "fair," from 61 to 69 is "good," and 70 or greater is "excellent." For headwater streams (watersheds less than 5 mi²) of the Bluegrass Bioregion, an MBI score of 18 and below is "very poor," from 19 to 38 is "poor," from 39 to 50 is "fair," from 51 to 57 is "good," and 58 or greater is "excellent" (Pond et al., 2003).

RESULTS

Water Quality

Field measurements of the specified water quality parameters were taken at all 11 locations prior to conducting macroinvertebrate sampling. All parameters were within regulatory benchmarks for WAH criteria. Dissolved oxygen levels ranged from 5.3 mg/L (Site 7) to 17.1 mg/L (Site 6), all of which are above the acute WAH criteria of 4.0 mg/L. Recorded pH levels were also within the WAH criteria ranging from 7.2 (Site 7) to 8.7 standard units (Site 6). Temperature readings did not exceed 31.7°C (WAH criteria) at any of the stations. While specific conductance does not have a numeric WAH criteria, the sites located in the upper section of the watershed generally had much higher specific conductance levels than stations in the lower section. The exception was Site 9, an unnamed

tributary to Cane Run on UK Research Farm, which had the lowest specific conductance level of 247 μ S/cm observed during sampling. Streams were not turbid during sampling with turbidity levels all less than 10 NTUs. Results are summarized in **Table 3**.

Table 3 - Summary of Water Quality Results

		Site ID									
Metric		2	3	4	5	6	7	9	10	CR-4	CR-8
Date Sampled	6/17/16	6/17/16	3/21/17	3/21/17	6/16/16	3/21/17	8/25/16	6/16/16	4/28/17	2/23/17	2/23/17
Dissolved Oxygen											
(mg/L)	8.4	6.8	11.7	10.4	16.9	17.1	5.3	9.7	10.7	10.8	11.6
pH (SU)	7.9	7.6	8.3	7.9	8.3	8.7	7.2	7.7	8.1	8.2	8.6
Temperature (°C)	24.7	22.6	11.9	14.8	26.5	14.1	24.4	25.3	16.6	15.2	19.2
Specific											
Conductance											
(µS/cm)	537	557	388	380	520	496	660	247	677	701	839
Turbidity (NTUs)	1.5	1.2	6.0	9.2	7.8	3.5	1.9	3.9	1.8	4.0	4.3

Habitat

Habitat assessments were conducted at the 6 headwater locations during the spring of 2017, and at the 5 wadeable locations during the summer of 2016. Sampling dates and a summary of results is provided in **Table 4**. Habitat Assessment Field Data Sheets for high gradient streams was completed for each monitoring site and are included in **Appendix A**. A photo log of sampling locations and specific habitats is included as **Appendix B**.

Table 4 - Summary of Habitat Assessment Results

		Site ID									
Parameter	I	2	3	4	5	6	7	9	101	CR-4	CR-8
Date Sampled	6/17/16	6/17/16	3/21/17	3/21/17	6/16/16	3/21/17	8/25/16	6/16/16	4/28/17	2/23/17	2/23/17
Headwater (H) or											
Wadeable (W)	W	W	Н	Н	W	Н	W	W	Н	Н	Н
Epifaunal											
Sub/Available Cover	14	Ш	8	7	10	16	13	12	5	- 11	7
Embeddedness	15	Ш	12	- 11	14	8	15	13	10	15	12
Velocity Depth											
Regime	12	Ш	4	6	12	13	8	10	- 11	12	6
Sediment Deposition	15	13	17	12	13	12	15	14	5	16	8
Channel Flow Status	15	16	11	12	14	16	12	16	12	13	6
Channel Alteration	15	14	5	12	14	13	16	16	15	15	14
Freq. of Riffles (or											
Bends)	16	5	5	8	8	П	9	16	13	13	14
Bank Stability	16	15	20	18	15	13	14	15	2	14	8
Vegetative Protection	12	14	8	6	11	16	13	17	2	12	4
Riparian Zone Width	6	8	2	2	5	6	6	9	0	16	5
RBP Score	136	118	92	94	116	124	121	138	75	137	84
RBP Rating ²	Good	Fair	Poor	Poor	Fair	Poor	Fair	Good	Poor	Poor	Poor

Site 10 drainage area is slightly greater (5.5. mi²) than the headwater designation (5 mi²) but is considered a headwater stream due to its karst nature.

² RBP scoring criteria for wadeable streams of the Bluegrass Bioregion: 0-113 Poor, 114-129 Fair, 130-200 Good. For headwater streams of the Bluegrass Bioregion: 0-141 Poor, 142-155 Fair, 156-200 Good.

Habitat assessments indicated "poor" habitat for all 6 of the Cane Run Watershed headwater sites (Sites 3, 4, 6, 10, CR-4, and CR-8) when compared to KDOW criteria for streams of the Bluegrass Bioregion. Wadeable sites sampled within the Cane Run Watershed had habitat assessment scores that rated either "fair" (Sites 2, 5, and 7) or "good" (Sites I and 9) when compared to KDOW criteria for streams of the Bluegrass Bioregion.

As shown in **Figure I**, below, the majority of habitat parameters rated within the suboptimal or marginal categories. Riparian vegetation zone width was the most impaired habitat parameter with a median score within the low marginal range. Marginal riparian zone width is 6 to 12 meters (20 to 40 feet) and has been impacted by human activities. Epifaunal substrate/available cover and velocity depth regime were the next most impaired habitat parameters with median scores in the low suboptimal category. Channel alteration and bank stability were the highest rated parameters with high suboptimal median scores (15). However, it should be noted that bank stability had a wide range of scores with a poor score (2) at Site 10 to an optimal score (20) at Site 3.

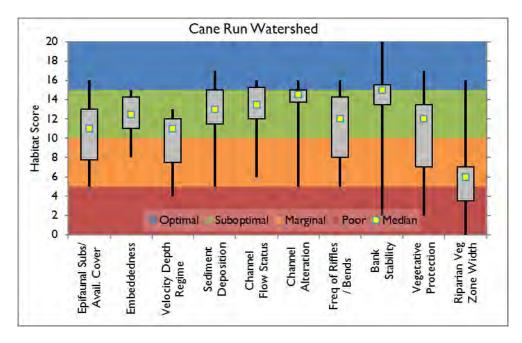


Figure I - Habitat Assessment Scores by Parameter, All Sites

Macroinvertebrates

Macroinvertebrate sampling was conducted at 5 wadeable sites in 2016, and 6 headwater sites in 2017. Wadeable sites were sampled on June 16, June 17, and August 25, 2016. Headwater sites were sampled on February 23, March 21, and April 28, 2017. A summary of macroinvertebrate sampling results is provided in **Table 5**, page 8; supporting documentation including laboratory bench sheets, MBI calculations, collection checklists, chains of custody, and QA/QC forms are included in **Appendix C**.

Table 5 – Summar	y of Macroinvertebrate	Sampling Results
------------------	------------------------	------------------

		Site ID									
Metric	I	2	3	4	5	6	7	9	101	CR-4	CR-8
Date Sampled	6/17/16	6/17/16	3/21/17	3/21/17	6/16/16	3/21/17	8/25/16	6/16/16	4/28/17	2/23/17	2/23/17
Taxa											
Richness-											
genus level	50	58	8	13	47	23	43	35	23	35	13
EPT Richness-											
genus level	14	13	3	0	6	0	4	7	3	6	I
mHBI	5.02	5.70	7.84	7.83	5.84	5.42	7.82	5.50	5.72	5.82	7.05
% modified											
EPT	26.3	15.3	0.34	0	5.9	0	29.4	3.3	5.6	9.3	0.3
% Mayflies ²	-	-	0	0	-	0	-	-	0.3	1.9	0
% Midges &											
Worms	7.7	9.3	0.34	0	33.6	40.7	25.6	7.9	51.6	11.1	2.3
% Clingers	76.8	22.1	0.34	0	31.2	24.8	29.4	19.1	7.7	15.1	0.3
MBI Score	70.5	55.8	21.7	21.4	44.6	27.2	43.9	44.1	24.2	36.5	23.2
MBI Rating ³	Excellent	Fair	Poor	Poor	Fair	Poor	Fair	Fair	Poor	Poor	Poor

¹ Site 10 drainage area is slightly greater (5.5. mi²) than the headwater designation (5 mi²) but is considered a headwater stream due to its karst nature.

MBI scores were calculated for all locations and ranged from 21.4 (Site 4) to 70.5 (Site 1). Based on the Bluegrass Bioregion criteria, headwater streams all had "poor" MBI ratings. Wadeable locations all had "fair" MBI ratings except for Site I which rated "excellent." MBI scores for wadeable sites generally increased as they progressed from upstream to downstream. Sites 5, 7, and 9 are wadeable sites located in the upper Cane Run watershed and had similar MBI scores (44.6, 43.9, and 44.1, respectively). Sites I and 2, located in the lower Cane Run watershed, had MBI scores of 70.5 and 55.8, respectively.

Genus level taxa richness ranged from 8 (Site 3) to 58 (Site 2), and genus EPT richness ranged from 0 (Sites 4 and 6) to 14 (Site 1). Genus taxa richness for wadeable locations ranged from 35 (Site 9) to 58 (Site 2), and genus EPT richness ranged from 4 (Site 7) to 14 (Site 1). Headwater stream sites had genus taxa richness levels from 0 (Sites 4 and 6) to 35 (Site CR-4), and genus EPT richness ranged from 0 (Sites 4 and 6) to 6 (Site CR-4). Increasing taxa and EPT richness is associated with improving water quality, habitat diversity, and/or habitat suitability.

Modified Hilsenhoff Biotic Index (mHBI) scores ranged from a low of 5.02 (Site I) to 7.84 (Site 3). One location had an mHBI score that rated "excellent" (Site I), 6 locations rated "good" (Sites 2, 5, 6, 9, 10, and CR-4), I location rated "fair" (CR-8), and 3 locations rated "poor" (Sites 3, 4, and 7). An increasing mHBI value indicates decreasing water quality.

Modified EPT abundance, which excludes the ubiquitous caddisfly *Cheumatopsyche*, was relatively low at all locations (<10%) with the exception of Site 1 (26.3%), Site 2 (15.3%), and Site 7 (29.4%). Mayfly

² Metric %mayflies only used for headwater stream MBI calculations.

For headwater streams of the Bluegrass Bioregion, an MBI score of 0-18 is "very poor", 19-38 "poor", 39-50 "fair", 51-57 "good", 58 and greater "excellent". For wadeable streams of the Bluegrass Bioregion, an MBI score of 0-20 is "very poor", 21-40 "poor", 41-60 "fair", 61-69 "good", and greater than 69 "excellent".

abundance, which is a metric for headwater streams only, was zero for all headwater locations with the exception of Site 10 (0.3%) and CR-4 (1.9%). Increased EPT abundance is associated with improving water quality and/or habitat conditions, whereas mayfly abundance generally decreases with the presence of brine and metal contamination.

Abundance of generally pollution tolerant midges and oligochaeta was relatively low (<12%) at all locations except for Site 5 (33.6%), Site 6 (40.7%), Site 7 (25.6%), and Site 10 (51.6%). Increase in midge and oligochaeta abundance suggests decreasing water quality conditions.

Primary clinger abundance ranged from 0 (Site 4) to 76.8 percent (Site 1). Primary clingers require hard, silt free substrates to "cling" to. An increase of primary clingers suggests presence of this habitat type.

SUMMARY

Dissolved oxygen, pH, turbidity, and water temperature measurements were "good" at all locations, while specific conductance levels were generally greater in the upper section of the Cane Run watershed than in the lower section.

On the mainstem of Cane Run, habitat generally improved from upstream to downstream, with upper watershed locations evaluated as "poor," middle sections "fair, and the most downstream location "good." Tributaries to Cane Run all had "poor" habitat ratings, with the exception of Site 9 which evaluated "good."

Macroinvertebrate communities of all headwater locations rated "poor," which may be due to flow problems associated with the karst nature of the Cane Run watershed. Macroinvertebrate community ratings generally improved with increasing surface flow. Sites I and 2 had the highest surfaces flows during other monitoring activities, and the best MBI ratings.

Site 9 and the majority of its drainage area is located on University of Kentucky farms and has had riparian restoration improvements occur upstream. Based on scores, these improvements have had a positive impact on habitat within this stream reach. KDOW sampled this stream reach in 2000 resulting in habitat (90) and MBI (33.8) scores lower than evaluated during the current survey (138 and 44.1, respectively). Improvements in habitat ("poor" to "good") appear to have contributed to improvements in the macroinvertebrate community ("poor" to "fair") at Site 9.

Site 10 is another previously sampled location that had a large discrepancy in habitat scores between previous assessments and the current one. The reason for the decline in habitat scores is due to stream restoration construction that is currently underway. The riparian zone was considerably reduced or removed due to construction activities in 2017. As the riparian vegetation recovers, the habitat score at Site 10 should improve.

The MBI rating for Site 2 declined from "good" in 2009 (KDOW sample) to "fair" in 2016. Even though the habitat score for Site 2 increased from 2009 (83) to 2016 (118), it was noted that cattle currently have access to the stream which may be negatively impacting the macroinvertebrate community.

At the most downstream location in the Cane Run watershed, Site I, the MBI rating improved from "fair" in 2009 (KDOW sample) to "excellent" in 2016.

REFERENCES

- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA 841-B-99-002. USEPA, Office of Water, Washington, D.C.
- Kentucky Division of Water (KDOW). 2011. Methods for Assessing Habitat in Wadeable Waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Kentucky Division of Water (KDOW). 2015a. Methods for Collecting Macroinvertebrate Samples in Wadeable Waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Kentucky Division of Water (KDOW). 2015b. Benthic Macroinvertebrate Processing and Identification.

 Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Pond, G.J., S.M. Call, J.F. Brumley and M.C. Compton. 2003. The Kentucky macroinvertebrate bioassessment index: derivation of regional narrative ratings for wadeable and headwater streams. Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY.

R2

PROJECT	16-004	PROJECT #_ Kyl6.	00 / STREAM ID Site	DATE 6-17
WATERSHED	Care Rns	co	UNTY	STATE KY
STATION LAT: 3	8,20912 LNG	£4,61066	INVESTIGATOR(S):	RICO
STREAM SIZE:	Width (ft) 30 Depth (ft)	STREAM TYP	E: Perennial	phemeral Intermittent
HABITAT		CONDITIO	ON CATEGORY	
PARAMETERS	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
I. Epifaunal	Greater than 70% of substrate	40-70% mix of stable habitat;	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Substrate /	favorable for epifaunal	well suited for full colonization	habitat availability less than	of habitat is obvious; substrate
Available Cover	colonization and fish cover; mix	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	of snags, submerged logs,	maintenance of populations;	disturbed or removed.	
	undercut banks, cobble or other	presence of additional substrate		
	stable habitat and at stage to	in the form of new fall, but not	1	
	allow full colonization potential	yet prepared for colonization	E	
	(i.e., logs/snags that are not new	(may rate at high end of scale).	1	
	fall and not transient.)	(may race at might end of scale).		
	ian and <u>not</u> dransience,			
Score 1	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded	particles are 25-50%	particles are 50-75%	particles are more than 75%
	by fine sediment. Layering of	surrounded by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
1,1	cobble provides diversity of niche			
13	space.			
Score	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present		Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow		present (if fast-shallow or slow-	regime (usually slow-deep).
1.00	fast-deep, fast-shallow). (Slow is	lower than if missing other	shallow are missing, score low).	1
VIVE	< 0.3 m/s, deep is > 0.5 m.)	regimes).		
Score 1/	20 19 18 17 16	15 14 13 / 12 / 11	10 9 8 7 6	5 4 3 2 1 0
. Sediment	Little or no enlargement of	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
Deposition	islands or point bars and less than	formation, mostly from gravel,	gravel, sand or fine sediment on	increased bar development; more
	5% of the bottom affected by	sand or fine sediment; 5-30% of	old and new bars; 30-50% of	than 50% of the bottom changing
	sediment deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent due
		deposition in pools.	deposits at obstructions,	to substantial sediment deposition.
			constrictions, and bends;	
			moderate deposition of pools	
			prevalent.	
Score 15	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Channel Flow	Water reaches base of both	Water fills > 75% of the	Water fills 25-75% of the	Very little water in channel and
Status	lower banks, and minimal amount	available channel; or <25% of	available channel, and/or riffle	mostly present as standing pools.
	of channel substrate is exposed.	channel substrate is exposed.	substrates are mostly exposed.	
Score 15	20 40 40 47 40	(2) 11 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14		
	20 19 18 17 16 Channelization or dredging	/15/ 14 13 12 11 Some channelization present,	10 9 8 7 6 Channelization may be	5 4 3 2 1 0 Banks shored with gabion or
	March Committee	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
	CALIFORNIA SERVICE PARTY IN THE PERSON OF TH	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.
			both banks; and 40 to 80% of	Instream habitat greatly altered or
		(greater than past 20 yr) may be		removed entirely.
		present, but recent	disrupted.	removed entirely.
		channelization is not present.	aisi aptea.	
c 11/	00 10 10 17	Chamicization is not present.		

	OPTIM.	AL	SU	JBOPTIM/	AL	1	1ARGINAL			POOR	
Score 6	Occurrence of riffle frequent; ratio of di between riffles divic of the stream < 7:1 to 7); variety of hab streams where riffle continuous, placeme boulders or other la obstruction is impo	ss relatively stance led by width (generally 5 itat is key. In ss are ent of arge, natural rtant.	Occurrence distance be by the widt between 7	e of riffles tween riffl h of the st to 15.	infrequent; les divided tream is	Occasional bottom cor habitat; dist divided by s stream is b	ance betw he width c etween 15	vide some een riffles of the to 25.	Generally al riffles; poor between rif width of the 25.	habitat; disc des divided e stream is a	tance by the a ration o
, , , , , , , , , , , , , , , , , , , ,	Banks stable; evidence of erosion or bank failure absent or minima little potential for future problems. < 5% of bank affected			of erosior . 5-30% c	n mostly of bank in	bank in readerosion; high	h erosion		"raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
LB Score 6	10	9	(8)	7	6	5	4	3	2	1	0
RB Score 6	10	9	(8)	7	6	5	4	3	2	1	0
Vegetative Protection	More than 90% of the streambank surfaces immediate riparian a by native vegetation, trees, understory she woody macrophytes disruption through genowing minimal or almost all plants allonaturally.	and cone covered including rubs, or non- ; vegetative crazing or not evident;	70-90% of t surfaces cov vegetation, plants is not disruption e affecting full potential to more than o potential pla remaining.	vered by no but one cl t well-reprovident but plant grow any great one-half of	ative ass of resented; t not wth extent; the	50-70% of t surfaces cor disruption of bare soil or vegetation of one-half of stubble heig	vered by ve byious; pa closely cro common; le the potenti	egetation; tches of opped ess than al plant	Less than 50 surfaces cov disruption of vegetation is has been res centimeters stubble heig	ered by veg f streamban s very high; moved to 5 or less in a	etation; k vegetatio
LB Score 6	10	9	8	7	(6/	5	4	3	2	1	0
RB Score 6 D. Riparian Vegetative Zone Width	10 Width of riparian zo meters; human activi parking lots, roadbed lawns, or crops) have impacted zone.	ties (i.e., ls, clear-cuts,	8 Width of rip meters; hun impacted zo	nan activiti	es have	5 4 3 Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.			2 1 0 Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
LB Score 3	10	9	8	7	6	5	4	(3)	2	1	0
RB Score Co	10	9	8	7	6	5	4	45	2	1	0

Photographs (List the name and image number of each photo): CPS Camira

Notes (Diagram on Reverse):

PH 7.9 DO 1 8.4/1044. TROP 24.7 SPC 537

PROJECT Carl	Rux	PROJECT # KY16-	STREAMID 5:TE	2 DATE 6-17				
WATERSHED	Care Rux	COU	NTYScott	STATE /				
STATION LAT: 3	4.18976 LNG:	-64.58899	INVESTIGATOR(S):	R/C.0				
STREAM SIZE: Width (ft) 30 Depth (ft) 2,5 STREAM TYPE: Perennial Ephemeral Intermittent								
HABITAT		CONDITIO	N CATEGORY					
PARAMETERS	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR				
1. Epifaunal	Greater than 70% of substrate	40-70% mix of stable habitat;	20-40% mix of stable habitat;	Less than 20% stable habitat; lack				
Substrate /	favorable for epifaunal	well suited for full colonization	habitat availability less than	of habitat is obvious; substrate				
Available Cover	colonization and fish cover; mix	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.				
	of snags, submerged logs,	maintenance of populations;	disturbed or removed.					
	undercut banks, cobble or other	presence of additional substrate	1					
	stable habitat and at stage to	in the form of new fall, but not						
	allow full colonization potential	yet prepared for colonization						
	(i.e., logs/snags that are not new	(may rate at high end of scale).						
	fall and <u>not</u> transient.)							
5 11	20 19 18 17 16	15 14 13 12 (11)	10 9 8 7 6	5 4 3 2 1 0				
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder				
Z. Embeddedness	particles are 0-25% surrounded	particles are 25-50%	particles are 50-75%	particles are more than 75%				
	by fine sediment. Layering of	surrounded by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.				
	cobble provides diversity of niche	Surrounded by mile seemens	,	,				
	space.							
Score / 1	20 19 18 17 16	15 14 13 12 /11)	10 9 8 7 6	5 4 3 2 1 0				
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth				
Depth Regime	present (slow-deep, slow-shallow,	(if fast-shallow is missing, score	present (if fast-shallow or slow-	regime (usually slow-deep).				
Fast shallow	fast-deep, fast-shallow). (Slow is	lower than if missing other	shallow are missing, score low).					
VAVO	< 0.3 m/s, deep is > 0.5 m.)	regimes).						
Score 1	20 19 18 17 16	15 14 13 12 / 11	10 9 8 7 6	5 4 3 2 1 0				
4. Sediment	Little or no enlargement of	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,				
Deposition	islands or point bars and less than		gravel, sand or fine sediment on	increased bar development; more				
	5% of the bottom affected by	sand or fine sediment; 5-30% of	old and new bars; 30-50% of	than 50% of the bottom changing				
N 1	sediment deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent due				
	·	deposition in pools.	deposits at obstructions,	to substantial sediment deposition.				
	1		constrictions, and bends;					
		0. 10	moderate deposition of pools					
			prevalent.					
Score 1'h	20 19 18 17 16	15 14 / 13 / 12 11	10 9 8 7 6	5 4 3 2 1 0				
5. Channel Flow	Water reaches base of both	Water fills > 75% of the	Water fills 25-75% of the	Very little water in channel and				
Status	lower banks, and minimal amount	available channel; or <25% of	available channel, and/or riffle	mostly present as standing pools.				
	of channel substrate is exposed.	channel substrate is exposed.	substrates are mostly exposed.					
Score 16	20 19 18 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
6. Channel		Some channelization present,	Channelization may be	Banks shored with gabion or				
	1			cement; over 80% of the stream				
1			shoring structures present on	reach channelized and disrupted.				
			both banks; and 40 to 80% of	Instream habitat greatly altered or				
		,	stream reach channelized and	removed entirely.				
			disrupted.					
		channelization is not present.						
Score 14	20 19 18 17 16	15 /14 / 13 12 11	10 9 8 7 6	5 4 3 2 1 0				

	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent distance between riffles divided by the width of the stream is between 7 to 15.		D		
Score 5	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	(5)4 3 2 1 0		
8. Bank Stability	Banks stable; evidence of erosion or bank failure absent or minimal little potential for future problems. < 5% of bank affected.	small areas of erosion mostly healed over. 5-30% of bank in	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.		
LB Score ! 6	10 9	8 7 6	5 4 3	2 1 0		
RB Score	10 9	8 (7) 6	5 4 3	2 1 0		
P. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
LB Score	10 9	8 (7) 6	5 4 3	2 1 0		
RB Score	10 9	8 7) 6	5 4 3	2 1 0		
0. Riparian Vegetative Zone Width	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	meters; human activities have	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.		
LB Score	10 9	8 7 6	5 (4) 3	2 1 0		
RB Score	10 9	8 7 6	5 4 3 1	2 1 0		

Total Score: 118

Photographs (List the name and image number of each photo):	pic 054 Parts phone
49970-pi View "1= 1:1-1-169	P:C #47 11611
togetrend Vicor of Youth	PICE 38 GPS EN MOON BET
emanger regetation	839 111
Pool habitat div View	840 1131

Notes (Diagram on Reverse):

PH 7.6 DD 60.6/821, Card 557 TEMP 22.6 turh 1.2

STREAM ID SIFE	3 Cane Rur	1716 DATE: 3/2	LAT:LONG:
INVESTIGATOR(S)	Storm, J. Storm	COWARDIN CLASS:	WATERSHED:
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG	
Depth (Ft)	Ephemeral	IMG	
Reach (Ft)	Intermittent X	IMG	

HABITAT	CONDITION CATEGORY								
	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR					
PARAMETER I. Epifaunal Substrate / Available Cover	20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	15 14 13 12 11 40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	10 9 8 7 6 20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	5 4 3 2 1 0 Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.					
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.					
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).					
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					
Score Channel Alteration Channelization or dredging absent or minimal; stream with normal pattern.		Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.					
Frequency of Riffles or Bends)	requency of Riffles Bends) Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction		Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.					

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8, bank stability	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent, small	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	areas of erosion mostly healed	bank in reach has areas of	"raw" areas frequent along
	little potential for future problems.	1	erosion; high erosion potential	straight sections and bends;
LB Score	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident but	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
2-0-	evident; almost all plants allowed	stubble height remaining.		
LB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	little or no riparian vegetation due
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	to human activities.
LB Score	lawns, or crops) have not			
RB Score	impacted zone.			
- 10				

REMARKS/NOTES: Rip-rap I ned rd ditch - mowed repartain - no pools.

Turnicity 6.0
Temp. 11.93
Cond. 388
Do 11.69
PH 8.32

Page 2 of 2

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

	DATE: 3/2	LAT:LONG:
R. Storm J. Sto	COWARDIN CLASS:	WATERSHED:
STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Perennial	IMG	
Ephemeral	IMG	
Intermittent	IMG	
	STREAM TYPE: Perennial Ephemeral	STREAM TYPE: IMAGE ID: Perennial IMG Ephemeral IMG

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover Score	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
Score YU Score Score	Channelization or dredging absent or minimal; stream with normal pattern.	(a) -total	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
7. Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by		Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o, bank salonity	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent, small	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	areas of erosion mostly healed	bank in reach has areas of	"raw" areas frequent along
	little potential for future problems.	over. 5-30% of bank in reach has	erosion; high erosion potential	straight sections and bends;
10.5	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100%
LB Score				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident but	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
	evident; almost all plants allowed	stubble height remaining.		
LB Score 7	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	little or no riparian vegetation due
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	to human activities.
LB Score	lawns, or crops) have not			
RB Score	impacted zone.			

REMARKS/NOTES: Flat, wide shear on bedrook with mound opposite

Turbiddy 9.2

Temp 141.82

Cond. 380

DD 10.40 PH 7.90

Page 2 of 2

PROJECT	le RVN	PROJECT# K/16	-00 STREAMID Site	S DATE O-16
WATERSHED	lare Rux	col	UNTY Scott	STATE_KY
STATION LAT:	38,168014 ING	- 84.55434	2 INVESTIGATOR(S): B. A	Penta / C. Clson
STREAM SIZE:	Width (ft) <u>30</u> Depth (ft) <u>1</u>	,5 Max STREAM TYP	E: Perennial E	phemeral Intermittent
HABITAT		CONDITIO	ON CATEGORY	
PARAMETERS	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
1. Epifaunal	Greater than 70% of substrate	40-70% mix of stable habitat;	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Substrate /	favorable for epifaunal	well suited for full colonization	habitat availability less than	of habitat is obvious; substrate
Available Cover	colonization and fish cover; mix	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	of snags, submerged logs,	maintenance of populations;	disturbed or removed.	
	undercut banks, cobble or other	presence of additional substrate		
	stable habitat and at stage to	in the form of new fall, but not	1	
	allow full colonization potential	yet prepared for colonization		
	(i.e., logs/snags that are not new	(may rate at high end of scale).		
	fall and not transient.)			
Score 10	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded	particles are 25-50%	particles are 50-75%	particles are more than 75%
	by fine sediment. Layering of	surrounded by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
	cobble provides diversity of niche	Transfer .	Jan Canada o, me saamana	1
14	space.			
Score	20 19 18 17 16	15 /14) 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present	Only 2 of the 4 habitat regimes	Dominated by velocity/depth
Depth Regime	present (slow-deep, slow-shallow	(if fast-shallow is missing, score	present (if fast-shallow or slow-	regime (usually slow-deep).
	fast-deep, fast-shallow). (Slow is	lower than if missing other	shallow are missing, score low).	
	< 0.3 m/s, deep is > 0.5 m.)	regimes).		
Score 12	20 19 18 17 16	15 14 13 /12 11	10 9 8 7 6	5 4 3 2 1 0
4. Sediment	Little or no enlargement of	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
Deposition	islands or point bars and less than	Theresis and the same of the s	gravel, sand or fine sediment on	
	5% of the bottom affected by	sand or fine sediment; 5-30% of	old and new bars; 30-50% of	than 50% of the bottom changing
	sediment deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent due
		deposition in pools.	deposits at obstructions,	to substantial sediment deposition.
			constrictions, and bends;	
			moderate deposition of pools	
			prevalent.	
Score /3	20 19 18 17 16	15 14 /13 12 11	10 9 8 7 6	5 4 3 2 1 0
5. Channel Flow	Water reaches base of both	Water fills > 75% of the	Water fills 25-75% of the	Very little water in channel and
Status	72.72%	available channel; or <25% of	available channel, and/or riffle	mostly present as standing pools.
	of channel substrate is exposed.	channel substrate is exposed.	substrates are mostly exposed.	
170				
Score 14	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
5. Channel	Channelization or dredging	Some channelization present,	Channelization may be	Banks shored with gabion or
	absent or minimal; stream with	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
	normal pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.
On chapt		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered or
() (,		(greater than past 20 yr) may be present, but recent	disrupted.	removed entirely.
		K. M. Articola	distropted.	
Com 117V	20 40 48 47 40	channelization is not present.	10 0 0 7 7	6 4 2 2 4 2

	OPTIMAL			SUBOPTIMAL			MARGINAL	-		POOR	
7. Frequency of Riffles (or Bends) Score 8 3. Bank Stability	Occurrence of riffles refrequent; ratio of distart between riffles divided of the stream < 7:1 (ge to 7); variety of habitat streams where riffles are continuous, placement boulders or other large obstruction is important	by width nerally 5 is key. In re of a, natural at. 16 of erosion	Occurrent distance by the wide between 1	oce of riffles infreetween riffles of the streat of the streat of the streat of to 15.	divided in is	Occasional bottom co habitat; dis divided by stream is b	riffle or be ntours provided the width of etween 15	nd; vide some een riffles if the to 25.	riffles; poor between riwidth of the 25.	all flat water r habitat; dist ffles divided e stream is a	tance by the a ration of
	or bank failure absent of little potential for future problems. < 5% of bank	e	healed ove	er. 5-30% of ba	nk in	bank in rea erosion; hig during floo	gh erosion p		sections an	s frequent alo d bends; obv 60-100% of b cars.	ious bank
LB Score	10	9	8	(V)	6	5	4	3	2	1	0
RB Score	10	9	(8)	7	6	5	4	3	2	1	0
P. Vegetative Protection	More than 90% of the streambank surfaces and immediate riparian zone by native vegetation, inctrees, understory shrub: woody macrophytes; vedisruption through grazi mowing minimal or not almost all plants allowed naturally.	covered luding s, or non- getative ng or evident;	surfaces covegetation plants is no disruption affecting fu potential to more than	the streamban overed by native, but one class of well-represe evident but no ill plant growth o any great ext one-half of the lant stubble hei	e of nted; t ent;	50-70% of the surfaces condistruption of the bare soil or vegetation of the bare stubble height	vered by ve obvious; pat closely cro common; le the potentia	getation; ches of pped ss than al plant	surfaces con disruption of vegetation in has been re	or less in av	etation; k vegetation
LB Score 6	10	9	8	7 (6/	5	4	3	2	1	0
RB Score	10	9	8	7	6	(5)	4	3	2	11	0
Zone Width	Width of riparian zone > meters; human activities parking lots, roadbeds, clawns, or crops) have no impacted zone.	(i.e., lear-cuts,	meters; hu	iparian zone 12 man activities h one only minim	ave r	meters; human activities have		Width of rip little or no i to human ac	riparian vege		
LB Score	10	9	8	7	6	5	(4)	3	2	1	0
RB Score	10	9	8	7	6	5	4	3	2	(2)	0

Photographs (List the name and image number of each photo):

Por NG TY LOW WOOD LOWN LAS

POOL NAME OF YOUR WANT

MAY A I NO I V CARRATION

FIFFLE HANDERS

MAY A TOWN DENT

Notes (Diagram on Reverse):

PH 8.3 SPC:520 Tub 7.8 DO 16.9 /2187.

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID CAV	ne Run le	DATE: 3/2	4/17 LAT:LONG:
INVESTIGATOR(S)	K. Storm, & Storm	COWARDIN CLASS:	WATERSHED:
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial V	IMG	Control of the Contro
Depth (Ft)	Ephemeral	IMG	
Reach (Ft)	Intermittent	IMG	

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
5. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
7. Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
20	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent, small	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	areas of erosion mostly healed	bank in reach has areas of	"raw" areas frequent along
• .	little potential for future problems.	1	erosion; high erosion potential	straight sections and bends;
7	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100%
LB Score RB Score	5% of bank affected.	areas of erosion.	during noods.	of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	Carrier and Carrie	represented; disruption evident but		vegetation is very high; vegetation
	or non-woody macrophytes;	not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
	evident; almost all plants allowed	stubble height remaining.	Stabble Height Containing	atabbic neigna
LB Score	· ·	scubble neight remaining.		
RB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	little or no riparian vegetation due
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	to human activities.
LB Score 7	lawns, or crops) have not			
nn c 12	impacted zone.			
RB Score	unkaras			

wide perennial Stream - below low-head dawn sediment bon + algair. Smells white treated sowage.

turbidity 3,5

temp. 14,12

Cond. 496

DO 17.06

PH 8.71

STREAM C4	re ful	DATE 6-25-/b	STATION ID CR-7	PROJECTALO TOUTH - CO
		- 84,539033		PROJECT NO. Ky/6-00
UPSTREAM LAT:	LNG	01,574077	INVESTIGATOR(S):	emey 10. Rosa
STREAM SIZE:	Width (ft) 20 Depth (ft)	2 May STREAM TYPE	E: Perennial E	phemeral Intermittent
WATERSHED (HUC)	-	COW	ARDIN CLASS	
HABITAT		CONDITIO	ON CATEGORY	
PARAMETERS	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix o snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization f potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack o habitat is obvious; substrate unstable or lacking.
Score 13	20 19 18 17 16	15 14 / 13 / 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.		Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
Score 15	20 19 18 17 16	(15) 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).
Score 4	20 19 18 17 16	15 14 13 12 11	10 9 (8) 7 6	5 4 3 2 1 0
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	±	1	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
Score 15	20 19 18 17 16	/15 / 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	channel; or <25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
Score 12	20 19 18 17 16	15 14 13 (12) 11	10 9 8 7 6	5 4 3 2 1 0
Alteration	pattern.	usually in areas of bridge abutments; evidence of past	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or

(greater than past 20 yr) may be stream reach channelized and

disrupted.

10

present, but recent

channelization is not present.

15 14 13 12

Score In

removed entirely.

	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequen distance between riffles divided by the width of the stream is between 7 to 15.	1	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the widtl of the stream is a ration of > 25.
Score 9	20 19 18 17 16	15 14 13 12 11	10 (9) 8 7 6	5 4 3 2 1 0
8. Bank Stability	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	healed over. 5-30% of bank in	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
LB Score 7	10 9	8 (7) 6	5 4 3	2 1 0
RB Score 7	10 9	8 7 6	5 4 3	2 1 0
9. Vegetative Protection	understory shrubs, or non-woody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow	surfaces covered by native vegetation, but one class of plants is not well-represented;	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
LB Score 🔾	10 9	8 7 6	5 4 3	2 1 0
RB Score 7	10 9	8 (7) 6	5 4 3	2 1 0
		Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
0. Riparian Vegetative Zone Width	meters; human activities (i.e.,	meters; human activities have impacted zone only minimally.	meters; human activities have impacted zone a great deal.	little or no riparian vegetation due to human activities.
0. Riparian Vegetative Zone Width	meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not	meters; human activities have	meters; human activities have	little or no riparian vegetation due

Total Score: 121

REMARKS / NOTES:

Bedrack in Places, root works unall & Poor Quality.

PROJECT	16-60 \ Care 1	PROJECT #	STREAM ID STC	DATE
WATERSHED	Care Run /	Apt -,) (are Pur)	NTY - Fayette	STATE KV
STATION LAT:	58.1293/9 LNG:	-84.507178	INVESTIGATOR(S):	lanky (10/5ex
STREAM SIZE: V	Vidth (ft) Depth (ft)	STREAM TYPE	: Perennial Ep	hemeral Intermittent
HABITAT		CONDITIO	N CATEGORY	
PARAMETERS	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
I. Epifaunal	Greater than 70% of substrate	40-70% mix of stable habitat;	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Substrate /	favorable for epifaunal	well suited for full colonization	habitat availability less than	of habitat is obvious; substrate
Available Cover	colonization and fish cover; mix	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	of snags, submerged logs,	maintenance of populations;	disturbed or removed.	
	undercut banks, cobble or other	presence of additional substrate		
	stable habitat and at stage to	in the form of new fall, but not		
	allow full colonization potential	yet prepared for colonization		
	(i.e., logs/snags that are not new	(may rate at high end of scale).		
	fall and not transient.)			
Score 17	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded	particles are 25-50%	particles are 50-75%	particles are more than 75%
	by fine sediment. Layering of	surrounded by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
	cobble provides diversity of niche	The second of th		
	space.			
Score 13	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow,	(if fast-shallow is missing, score	present (if fast-shallow or slow-	regime (usually slow-deep).
N71.0	fast-deep, fast-shallow). (Slow is	lower than if missing other	shallow are missing, score low).	
Morel	< 0.3 m/s, deep is > 0.5 m.)	regimes).	- 2	
Score 10	20 19 18 17 16	15 14 13 12 11	/10 9 8 7 6	5 4 3 2 1 0
4. Sediment	Little or no enlargement of	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
Deposition	islands or point bars and less than		O	increased bar development; more
	5% of the bottom affected by	sand or fine sediment; 5-30% of	old and new bars; 30-50% of	than 50% of the bottom changing
	sediment deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent due
		deposition in pools.	deposits at obstructions,	to substantial sediment deposition.
			constrictions, and bends;	
	l' 1		moderate deposition of pools	
1.66		0 4	prevalent.	
5. Channel Flow	20 19 18 17 16 Water reaches base of both	15 14 13 12 11 Water fills > 75% of the	10 9 8 7 6 Water fills 25-75% of the	5 4 3 2 1 0 Very little water in channel and
		available channel; or <25% of	available channel, and/or riffle	mostly present as standing pools.
Status		channel substrate is exposed.	substrates are mostly exposed.	lineary breather a stantant & beauti
	of channel substrate is exposed.	charmer substrate is exposed.	substrates are mostly exposed	1
Score 16	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
6. Channel		Some channelization present,	Channelization may be	Banks shored with gabion or
	absent or minimal; stream with		extensive; embankments or	reach channelized and disrupted.
	normal pattern.	The state of the s	shoring structures present on	· · · · · · · · · · · · · · · · · · ·
			both banks; and 40 to 80% of	Instream habitat greatly altered or removed entirely.
		(greater than past 20 yr) may be		Chief end ely.
			disrupted.	
ii		channelization is not present.	10 0 0 7	5 4 3 2 1 0
Score 0	20 19 18 17 16	15 14 13 12 11	10 9 B 7 6	5 4 3 2 1 0

Site

	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
7. Frequency of Riffles (or Bends) A Control O Control Control	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent distance between riffles divided by the width of the stream is between 7 to 15.	; Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	1
Score 16 B. Bank Stability	20 19 18 17 16 Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	small areas of erosion mostly healed over. 5-30% of bank in	10 9 8 7 6 Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	5 4 3 2 1 0 Unstable; many eroded areas; "raw" areas frequent along straigh sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
LB Score 7	10 9	8) (7) 6	5 4 3	2 1 0
RB Score 4	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	7 6 70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
LB Score 8	10 9	(8) 7 6	5 4 3	2 1 0
RB Score 9	10 (9)	8 7 6	5 4 3	2 1 0
	Width of riparian zone > 18" meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters little or no riparian vegetation due to human activities.
LB Score	10 9	8 7 6	5 (4) 3	2 1 0

Total Score: 138

Photographs (List the name and image number of each photo);

4 Dayrem Vinn	
rifiele habitet	
Pod habitet	
LOUNGTICUM VICW	
root vads	
Encreent Vca	

Notes (Diagram on Reverse):

(Diagram on Reverse):

PH 7.7

CON 1 247

TOMP 25.7

TN. B 3.9

STREAM ID (2-52	DATE: 4- 2	8-17 LAT:LONG:
INVESTIGATOR(S) BRITS	COWARDIN CLASS:	WATERSHED: Lave Run
STREAM SIZE: STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft) 15 Perennial	IMG 943/003	Riffle / POOl
Depth (Ft) 1,5 cm Ephemeral	IMG 036	DS view of construction
Reach (Ft) 375 Intermittent	IMG 106	root wad
	CONDI	TION CATEGORY

	Intermittent IMG 10 Le 100 + W9 C				
HABITAT PARAMETER	OPTIMAL	SUBOPTIMAL	CATEGORY	POOR	
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are	40-70% mix of stable habitat; well	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
Score 5	not new fall and not transient.)	at high end of scale).			
2. Embeddedness Score 10	i '	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).	
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.	

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
SCC NOTES LB Score	10 9 Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	8 7 6 Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	5 4 3 Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	2 1 0 Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
Protection 9. Vegetative Protection 9. CC NO + C 4 LB Score RB Score	, ,	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	vegetation common; less than	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
10. Riparian Vegetative Zone Width LB Score RB Score Total Score 0	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.

Stroum restoration construction is ongoing, all riparion veg has been removed on Both books in prepraration.

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	T Carefus C	2-4 DATE: 2-2	23-17 LAT	: 46.100676 LONG: -84.490700
INVESTIGATOR(S)	BP/C0	COWARDIN CLASS:	Hiern	WATERSHED:
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMM	IENT:
Width (Ft) 10	Perennial	IMG	See	photo log
Depth (Ft)	Ephemeral	IMG		
Reach (F) M 100	Intermittent	IMG		

	CONDITION CATEGORY						
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR			
PARAMETER 1. Epifaunal Substrate / Available Cover	20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization	15 14 13 12 11 40-70% mix of stable habitat; well	10 9 8 7 6 20-40% mix of stable habitat; habitat availability less than	Less than 20% stable habitat; lack			
Available Cover	and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	desirable; substrate frequently disturbed or removed.	unstable or lacking.			
Score		,					
2. Embeddedness Score 15	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.			
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth			
Depth Regime	present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	fast-shallow is missing, score lower	present (if fast-shallow or slow- shallow are missing, score low).	1			
4. Sediment Deposition	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,			
Score Ua	or point bars and less than 5% of the bottom affected by sediment deposition.	formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.			
5. Channel Flow Status Score 13	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.			
6. Channel Alteration Score 15	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.			
	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow			
(or Bends)	frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders	distance between riffles divided by the width of the stream is between 7 to 15.	bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	riffles; poor habitat; distance			
	continuous, placement of boulders or other large, natural obstruction is important.						

8. Bank Stability	OPTIMAL.	SUBOPTIMAL	MARGINAL	POOR
0. 54	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent, small	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	areas of erosion mostly healed	bank in reach has areas of	"raw" areas frequent along
	little potential for future problems.	over. 5-30% of bank in reach has	erosion; high erosion potential	straight sections and bends;
IB Score 7	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100%
LB Score 7				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident but	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
	evident; almost all plants allowed	stubble height remaining.		
LB Score 6	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	little or no riparian vegetation due
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	to human activities.
LB Score	lawns, or crops) have not			
	impacted zone.			
Total Score				
137				

REMARKS / NOTES:

Cypress planted, possible constructed V: FFIe, decent rigorian zore midth For when streen.

× CR-4

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID		DATE: 2-23		2LONG: <u>- 84, 498639</u>
INVESTIGATOR(S)	BRICO	COWARDIN CLASS:	WATERSHED	: Cane Run/Ky
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	MAGE COMMENT:	4
Width (Ft) 12	Perennial	IMG	See whot. 1	09 11
Depth (Ft)	Ephemeral	IMG	· · · · · · · · · · · · · · · · · · ·	
Reach (F/S) 300	Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal colonization	suited for full colonization	habitat availability less than	of habitat is obvious; substrate

CONDITION CATEGORY					
OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.		
Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder		
	particles are 25-50% surrounded by fine sediment.		particles are more than 75% surrounded by fine sediment.		
All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth		
		present (if fast-shallow or slow- shallow are missing, score low).	regime (usually slow-deep).		
		1	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and		
banks, and minimal amount of	channel; or <25% of channel substrate is exposed.	available channel, and/or riffle substrates are mostly exposed.	mostly present as standing pools.		
or minimal; stream with normal pattern.	usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.		
frequent; ratio of distance between riffles divided by width of the	distance between riffles divided by the width of the stream is between 7 to 15.	bottom contours provide some habitat; distance between riffles divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.		
	20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are	OPTIMAL 20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Water fills > 75% of the available channel; or <25% of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are	OPTIMAL SUBOPTIMAL MARGINAL		

B. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o, bank stability	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems.	i .	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends;
LB Score 2	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative Protection LB Score 3 RB Score 3	THE ACCOUNTS	covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth potential to any great extent; more	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
10. Riparian Vegetative Zone Width LB Score RB Score	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.

REMARKS/NOTES: Ripariar Width fluctuates throughout reach

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID Ca	re Run - CR	-8 DATE: 2.2	3-17 LAT: 38.07946LONG: - 84.491493
INVESTIGATOR(S)	B Renley /C. Ols	COWARDIN CLASS:	tyeam watershed: Ky
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG	See photolog
Depth (Ft)	Ephemeral	IMG	
Reach (50) 150	Intermittent	IMG	

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 (7) 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover Score 7	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness Score 12	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status Score	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6. Channel Alteration	or minimal; stream with normal pattern.		Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
7. Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	habitat; distance between riffles divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

1 0
any eroded areas;
frequent along
tions and bends;
k sloughing; 60-100%
erosional scars.
0% of the streambank
vered by vegetation;
of streambank
s very high; vegetation
moved to 5
or less in average
tht.
parian zone <6 meters:
riparian vegetation due
ctivities.

REMARKS/NOTES: Law flow probably does Not flow year round

Lots of truch a Stream.

8 CR-8

APPENDIX B

SITE 1 DOWNSTREAM VIEW OF REACH

SITE 1 DOWNSTREAM VIEW OF RIFFLE HABITAT AND REACH

SITE 1 ROOT MAT HABITAT

SITE 1 UPSTREAM VIEW OF POOL HABITAT

SITE 1 UPSTREAM VIEW OF REACH AND RIFFLES

SITE 2 DOWNSTREAM VIEW OF REACH

SITE 2 EMERGENT VEGETATION

SITE 2 POOL HABITAT

SITE 2 RIFFLE HABITAT

SITE 2 UNDERCUT BANK AND ROOT WADS

SITE 2 UPSTERAM VIEW OF RIFFLES

SITE 2 UPSTREAM VIEW OF REACH

SITE 3 BEDROCK

SITE 3 CHANNEL

SITE 3 EMERGENT VEGETATION

SITE 3 LEAF PACK

SITE 3 POOL HABITAT

SITE 3 SMALL POOL

SITE 3 UPSTREAM VIEW

SITE 4 BEDROCK

SITE 4 CATTAILS

SITE 4 CHANNEL

SITE 4 DOWNSTREAM VIEW

SITE 4 EMERGENT VEGETATION AND ROOTS

SITE 4 LEAF PACK

SITE 4 LEAF PACKS

SITE 4 POOL HABITAT

SITE 4 RIFFLE

SITE 4 ROCK LEDGE

SITE 5 DOWNSTREAM VIEW

SITE 5 EMERGENT VEGETATION

SITE 5 RIFFLE HABITAT

SITE 5 ROOT MAT

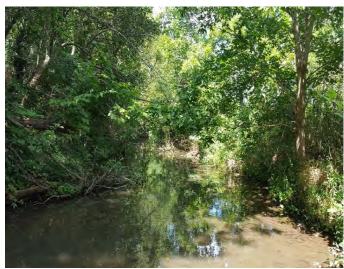
SITE 6 DOWNSTREAM VIEW

SITE 6 LEAF PACK

SITE 6 POOL

SITE 6 ROOT MAT

SITE 6 UNDERCUT BANK


SITE 6 UNDERCUT LEDGE

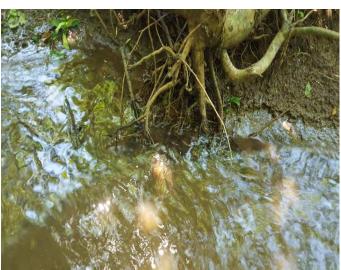
SITE 6 WOOD

SITE 7 BEDROCK

SITE 7 DOWNSTREAM VIEW OF REACH

SITE 7 UPSTREAM VIEW OF RIFFLE HABITAT

SITE 7 UPSTREAM VIEW OF ROAD CROSSING


SITE 7 WETLAND VEGETATION UPSTREAM OF ROAD CROSSING

SITE 9 EMERGENT VEGETATION

SITE 9 RIFFLE HABITAT

SITE 9 ROOT MAT

SITE 10 END OF STREAM TRANSECT

SITE 10 POOL HABITAT

SITE 10 RIFFLE HABITAT

SITE 10 ROOT WAD HABITAT

SITE 10 UPSTREAM VIEW FROM END OF TRANSECT

SITE 10 DOWNSTREAM VIEW OF CONSTRUCTION AREA

CR-4 BEDROCK

CR-4 CYPRESS KNEES AND ROOTS

CR-4 DOWNSTREAM VIEW FROM DOWNSTREAM END

CR-4 DOWNSTREAM VIEW FROM UPSTREAM END

CR-4 LEAF PACK

CR-4 POOL HABITAT

CR-4 RIFFLE HABITAT

CR-4 UPSTREAM VIEW FROM DOWNSTREAM END

CR-4 UPSTREAM VIEW FROM UPSTREAM END

CR-8 BEDROCK

CR-8 DOWNSTREAM VIEW FROM UPSTREAM END

CR-8 DOWNSTREAM VIEW OF DOWNSTREAM REACH

CR-8 ERODING BANK AND POOL

CR-8 FINE SEDIMENT

CR-8 LEAF PACK

CR-8 LEFT BANK

CR-8 RIFFLE HABITAT

CR-8 RIGHT BANK

APPENDIX B - PHOTO LOG PAGE 13 CANE RUN COMPREHENSIVE WATERSHED BASED PLAN BIOLOGICAL MONITORING REPORT 8-2-17

CR-8 ROOT WAD

CR-8 UNDER CUT BANK

CR-8 UPSTREAM FROM UPSTREAM END

CR-8 UPSTREAM VIEW FROM DOWNSTREAM END OF REACH

APPENDIX C

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Scot	State/County:	Cane Run Watershed	Water Body:
6/17/2016	Collection Date:	Site 1 QT	Sample ID:
Kick Ne	Sampling Method:	Bert Remley & Chelsey Olson	Collector:
Subsample	Sample Sorting:	Tammie Fister	Sorter:
4	No. Grids of 30 Picked:	Bert Remley	Taxonomist:
298	No. Organisms Picked:		_

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	N Or
ANNELIDA		PLECOPTERA	<u>-</u>	DIPTERA (CHIRONOMIDAE)	
				Cricotopus absurdus	
				Cryptochironomus sp	
				Polypedilum flavum	
				Thienemanniella xena	
AMPHIPODA				Thienemannimyia gr	
ISOPODA					
Lirceus fontinalis	17				
DECARORA					
DECAPODA Cambaridae	1 1	TRICHOPTERA			
5353.1440		Cheumatopsyche sp	63		
EPHEMEROPTERA		Chimarra aterrima	4		
Baetis intercalaris	23	Chimarra obscura	4		
Maccaffertium terminatum	2	Helicopsyche borealis	1		
Stenacron interpunctatum	3	Hydropsyche betteni/depravata complex	3		
		Hydropsyche morosa gr	37		
		Hydroptila sp	1	DIPTERA (OTHER)	
		7		Hemerodromia sp	
				Simulium sp	
		MEGALOPTERA			
		WEGAEGI FERM		MOLLUSCA	<u> </u>
ODONATA				Sphaerium sp	
		COLEOPTERA			
		Psephenus (L) 11	11		
		Stenelmis (A) 6 (L) 84	90		
				OTHER TAXA	
				Hydracarina	
				Petrophila sp	
					1
					: 2
				Number of Individuals	

Third Rock Pjt #:	KY16-004-01-07	Client Name:	KY Division of Water
Water Body:	Cane Run Watershed	State/County:	KY / Scot
Sample ID:	Site 1 QL	Collection Date:	6/17/2016
Collector:	Bert Remley & Chelsey Olson	Sampling Method:	Multihabita [.]
Sorter:	Tammie Fister	Sample Sorting:	Pickal
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	30
_		No. Organisms Picked:	NA

	No.		No.		No.
Family or Taxon / Genus	Orgs.	Family or Taxon / Genus	Orgs.	Family or Taxon / Genus	Orgs.
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Helobdella stagnalis				Cryptochironomus sp	
Naididae				Microtendipes pedellus gr	
				Nanocladius sp	
				Phaenopsectra flavipes	
AMPHIPODA				Polypedilum illinoense gr	
Hyalella azteca				Polypedilum flavum	
Synurella sp				Polypedilum fallax gr	
				Rheotanytarsus exiguus gr	
ISOPODA				Thienemannimyia gr	
Lirceus fontinalis				Xenochironomus sp	
DECAPODA					
Cambaridae		TRICHOPTERA			
		Cheumatopsyche sp			
EPHEMEROPTERA		Hydropsyche sp			
Acerpenna macdunnoughi		Hydropsyche morosa gr			
Baetis intercalaris		Hydroptila sp			
Caenis diminuta gr		Triaenodes perna			
Hexagenia limbata					
Maccaffertium terminatum				DIPTERA (OTHER)	
Stenacron interpunctatum				Atrichopogon sp	
Stenonema femoratum				Bezzia/Palpomyia gr	
Tricorythodes sp				Hemerodromia sp	
				Simulium sp	
		MEGALOPTERA			
		Sialis sp		MOLLUSCA	
ODONATA		Giano op		Corbicula fluminea	
Enallagma sp (Damaged)				Elimia sp	
znanagma op (bamagea)				Ferrissia sp	
		COLEOPTERA	_	Physella sp	
		Dubiraphia (A) (L)		Pisidium sp	
		Macronychus (A)		Sphaerium sp	
		Psephenus (L)		OTHER TAXA	<u> </u>
		Stenelmis (A) (L)		Sisyra sp	
				Turbellaria	
				7 5.1. 10 11 11	
				Number of Individuals	

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Scot	State/County:	Cane Run Watershed	Water Body:
6/17/2016	Collection Date:	Site 2 QT	Sample ID:
Kick Ne	Sampling Method:	Bert Remley & Chelsey Olson	Collector:
Subsample	Sample Sorting:	Tammie Fister	Sorter:
4	No. Grids of 30 Picked:	Chelsey Olson	Taxonomist:
296	No. Organisms Picked:		_

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Helobdella stagnalis	1			Ablabesmyia mallochi	1
Naididae	1			Microtendipes pedellus gr	1
				Paratanytarsus sp	-
				Polypedilum flavum	1
AMPHIPODA				Rheotanytarsus exiguus gr	,
-				Thienemanniella xena	,
				Thienemannimyla gr	
ISOPODA					
Lirceus fontinalis	118				
DECAPODA					
Cambaridae	5	TRICHOPTERA			
		Cheumatopsyche sp	15		
EPHEMEROPTERA		Helicopsyche borealis	5		
Baetis intercalaris	5	Hydroptila sp	1		
Caenis diminuta gr	22	Micrasema sp	1		
Diphetor hageni	2	Ochrotrichia sp	1		
Stenacron interpunctatum	6				
				DIPTERA (OTHER)	
				Hemerodromia sp	
				Simulium sp	<u> </u>
		MECALORIEDA			
		MEGALOPTERA		MOLLUGOA	
05011171		Sialis sp	1	MOLLUSCA	Т .
ODONATA				Elimia sp	2
				Pisidium sp	
		001 503753		Sphaerium sp	1
		COLEOPTERA	_		-
		Dubiraphia (L) 1	1		
		Optioservus (A) 1 (L) 1	2		<u> </u>
		Psephenus (L) 7	7	OTHER TAXA	
		Stenelmis (A) 5 (L) 15	20		
					t
		_			
	+				
				Number of Individuals	28

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Scot	State/County:	Cane Run Watershed	Water Body:
6/17/2016	Collection Date:	Site 2 QL	Sample ID:
Multihabita ⁻	Sampling Method:	Bert Remley & Chelsey Olson	Collector:
Pickal	Sample Sorting:	Tammie Fister	Sorter:
30	No. Grids of 30 Picked:	Bert Remley	Taxonomist:
NA	No. Organisms Picked:		_

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	0
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	_
Helobdella stagnalis		. == 0 0 = 1		Clinotanypus sp	T
, , , , , , , , , , , , , , , , , , ,				Corynoneura sp	
				Cryptochironomus sp	
				Dicrotendipes neomodestus	
AMPHIPODA				Polypedilum illinoense gr	
				Tanytarsus sp	
				Zavrelimyia sp	
ISOPODA					
Lirceus fontinalis					
DECAPODA		TRICHORTERA			
	\blacksquare	TRICHOPTERA			-
EDUEMEDORTED A		Helicopsyche borealis			-
EPHEMEROPTERA		Polycentropus sp			-
Caenis diminuta gr	\bot				-
Centroptilum sp	\blacksquare				-
Hexagenia limbata	\blacksquare				-
Stenacron interpunctatum				DIDTEDA (CTUES)	
Stenonema femoratum				DIPTERA (OTHER)	<u> </u>
				Bezzia/Palpomyia gr	-
				Dasyhelea sp	
					-
					-
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Elimia sp	
Anax sp (Immature)				Ferrissia sp	
Argia sp (Damaged)				Helisoma sp	
Boyeria sp (Immature)	\bot	COLEOPTERA		Physella sp	-
Enallagma sp	+	Berosus (L)		Sphaerium sp	-
Ischnura sp	\bot	Dubiraphia (A) (L)		071155	
Libellula sp		Peltodytes (A)		OTHER TAXA	
	+	Psephenus (L)		Belostoma sp	-
	\bot	Scirtes (L)		Pyralidae	-
		Tropisternus (A) (L)		Turbellaria	
					-
				Number of Individuals	

Third Rock Pjt #:	KY16-004	Client Name:	KDOW
Water Body:	Cane Run	State/County:	KY / Scot
Sample ID:	Site 3 QT	Collection Date:	3/21/2017
Collector:	Rain Storm	Sampling Method:	Kick Ne
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	4
		No. Organisms Picked:	290

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA		PLECOPTERA	<u> </u>	DIPTERA (CHIRONOMIDAE)	
		Perlesta sp	1	Larsia sp	-
				-	
AMPHIPODA					
Crangonyx sp	20				
ISOPODA					
Lirceus fontinalis	267				
DECAPODA					
Cambaridae	1	TRICHOPTERA			
EPHEMEROPTERA					
			+		
				DIPTERA (OTHER)	
			-		
		MEGALOPTERA		MOLLUCCA	
ODONATA				MOLLUSCA	
OBOWN.					
		COLEOPTERA			
				OTHER TAXA	
	1				
				Number of Individuals	2

, tortorrivert ebri	, , , , , _ , , , , , , , , , , ,	2, 1,, 1 0, 122,	Eomigien, Remains
Third Rock Pjt #:	KY16-004	Client Name:	KDOW
Water Body:	Cane Run	State/County:	KY / Scott
Sample ID:	Site 3 MH	Collection Date:	3/21/2017
Collector:	Rain Storm	Sampling Method:	Multihabitat
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	30
		No. Organisms Picked:	n/a

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
, , , , , , , , , , , , , , , , , , , ,		1 22 00 1 12 10 1		on rent (ormitorioning)	
AMPHIPODA					
ISOPODA					
Lirceus fontinalis					
DE04505.					1
DECAPODA		TRIGUERTERA			
		TRICHOPTERA			
EDI JEMEDODTEDA		Cheumatopsyche sp Rhyacophila ledra/fenestra			
EPHEMEROPTERA		Rnyacopnila ledra/renestra			
				DIPTERA (OTHER)	
				DIPTERA (OTHER)	
		MEGALOPTERA			
		-		MOLLUSCA	
ODONATA	·			Pisidium sp	
		COLEOPTERA			
				-	
				OTHER TAXA	_
					1
					1
				Number of Individuals	-

IN CONCINE LINIEDIN	THE ENDOMINATION I	DITTI	Eckington, Rentacky
Third Rock Pjt #:	KY16-004	Client Name:	KDOW
Water Body:	Cane Run	State/County:	KY / Scott
Sample ID:	Site 4 QT	Collection Date:	3/21/2017
Collector:	Rain Storm	Sampling Method:	Kick Net
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	4
		No. Organisms Picked:	351

Family or Taxon / Genus	No.	Family or Taxon / Genus	No.	Family or Taxon / Genus	No.
	Orgs.		Orgs.		Orgs.
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	1
Naididae	2				
AMPHIPODA					
Crangonyx sp	60				
ISOPODA					
Lirceus fontinalis	281				
DECAPODA					
		TRICHOPTERA			
EPHEMEROPTERA					
ELTIEMENOT TENA					
				DIPTERA (OTHER) Pseudolimnophila sp	1
				Pseudolimnophila sp	1
		MEGALOPTERA			
		MEGALOF TERA		MOLLUSCA	
ODONATA				Physella sp	1
Libellulinae (Immature)	1			Pisidium sp	4
		COLEOPTERA			
		Hydrophilidae (L) 1	1		
	+			OTHER TAXA	
	 			OTTEN DOOR	
	\blacksquare				
	-			Number of Individuals	351

, tortorrivert ebri	, , , , , _ , , , , , , , , , , ,	2, 1,, 1 0, 122,	Zoxington, Rentacky
Third Rock Pjt #:	KY16-004	Client Name:	KDOW
Water Body:	Cane Run	State/County:	KY / Scott
Sample ID:	Site 4 MH	Collection Date:	3/21/2017
Collector:	Rain Storm	Sampling Method:	Multihabitat
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	30
		No. Organisms Picked:	n/a

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Naididae				Cricotopus tremulus gr	
Tubificidae imm w hair setae					
AMPLIIDODA					
AMPHIPODA					
Crangonyx sp					
ISOPODA					
Lirceus fontinalis					
DECAPODA		TRIGUARTERA			
		TRICHOPTERA			
EPHEMEROPTERA					
EI HEWEROT TERA					
				DIPTERA (OTHER)	
		MEGALOPTERA	•		
				MOLLUSCA	
ODONATA				Physella sp	
				Pisidium sp	
		COLEOPTERA		Sphaerium sp	
		Paracymus (A)			
		raiacyillus (A)			
				OTHER TAXA	
				Turbellaria	
				Number of Individuals	-

Third Rock Pjt #:	KY16-004-01-07	Client Name:	KY Division of Water
Water Body:	Cane Run Watershed	State/County:	KY / Scott
Sample ID:	Site 5 QT	Collection Date:	6/16/2016
Collector:	Bert Remely & Chelsey Olson	Sampling Method:	Kick Net
Sorter:	Tammie Fister	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	4
_		No. Organisms Picked:	311

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.
ANNELIDA		PLECOPTERA	_	DIPTERA (CHIRONOMIDAE)	
Erpobdellidae	1			Cricotopus trifascia	22
				Cricotopus bicinctus	22
				Cricotopus/Orthocladius gr	21
				Cryptochironomus sp	3
AMPHIPODA				Dicrotendipes neomodestus	2
				Micropsectra sp	1
				Polypedilum flavum	14
				Polypedilum scalaenum gr	1
ISOPODA				Polypedilum sp	8
Lirceus fontinalis	67			Rheotanytarsus exiguus gr	1
				Stempellinella sp	1
				Tanytarsus sp	4
DECAPODA				Thienemannimyia gr	9
		TRICHOPTERA			
		Cheumatopsyche sp	5		
EPHEMEROPTERA		Hydroptila sp	14		
Baetis intercalaris	4				
Caenis diminuta gr	1				
				DIPTERA (OTHER)	
				Hemerodromia sp	2
				Simulium sp	71
				·	
		MEGALOPTERA	•		
				MOLLUSCA	
ODONATA				Elimia sp	12
				Sphaerium sp	5
				- -	
		COLEOPTERA	•		
		Peltodytes (L) 1	1		
		Stenelmis (A) 8 (L) 2	10		
		() = (=) =		OTHER TAXA	
				Turbellaria	22
					1
	 				
	 				
	 				
	 				
			+		1
	 				1
	+		+	Number of Individuals	324

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Scot	State/County:	Cane Run Watershed	Water Body:
6/16/2016	Collection Date:	Site 5 QL	Sample ID:
Multihabita	Sampling Method:	Bert Remely & Chelsey Olson	Collector:
Pickal	Sample Sorting:	Tammie Fister	Sorter:
30	No. Grids of 30 Picked:	Chelsey Olson	Taxonomist:
NA	No. Organisms Picked:		_

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org:
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Glossiphoniidae (Immature)				Ablabesmyia mallochi	
				Chironomus sp	
				Cricotopus bicinctus	
				Cricotopus trifascia	
AMPHIPODA				Cricotopus/Orthocladius gr	
				Dicrotendipes neomodestus	
				Dicrotendipes	
				modestus/tritomus	
				Paratanytarsus sp	
ISOPODA				Paratendipes albimanus	
Lirceus fontinalis				Phaenopsectra sp	
				Polypedilum illinoense gr	
				Polypedilum flavum	
DECAPODA				Procladius sp	
Cambaridae		TRICHOPTERA		Tanytarsus sp	
		Hydroptila sp		Thienemannimyia gr	
EPHEMEROPTERA		,		Xenochironomus xenolabis	
Caenis diminuta gr				Xerreerin erreringe Xerrergeie	
Stenonema femoratum	1				
Storierieria remoratari					
				DIPTERA (OTHER)	
	 				
	 			Atrichopogon sp Bezzia/Palpomyia gr	
	 				-
	-			Simulium sp	
				Tipula (Yamatotipula) sp	
		MEGALOPTERA			
ODOMATA				MOLLUSCA	1
ODONATA				Elimia sp	
Argia apicalis	 			Ferrissia sp	
Boyeria sp (Immature)				Gyraulus sp	
Coenagrionidae (Immature)		COLEOPTERA		Helisoma sp	
	ļ	Berosus (A)		Physella sp	
		Dubiraphia (L)		Pisidium sp	
		Dubiraphia (L)		Planorbella sp	
		Peltodytes (A)		Turbellaria	
		Peltodytes (L)			
		Tropisternus (L)			
	-				

, tortorrivert ebri	, , , , , _ , , , , , , , , , , ,	2, 1,, 1 0, 122,	Eomigien, Remains
Third Rock Pjt #:	KY16-004	Client Name:	KDOW
Water Body:	Cane Run	State/County:	KY / Scott
Sample ID:	Site 6 QT	Collection Date:	3/21/2017
Collector:	Rain Storm	Sampling Method:	Kick Net
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	4
		No. Organisms Picked:	300

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Lumbriculidae	1			Cricotopus trifascia	2
Naididae	21			Cricotopus tremulus gr	16
				Eukiefferiella sp	73
				Orthocladiinae (Immature)	1
AMPHIPODA				Paratendipes albimanus	2
				Polypedilum scalaenum gr	1
				Polypedilum flavum	2
				Thienemannimyia gr	1
ISOPODA					
DECAPODA					
		TRICHOPTERA			
EPHEMEROPTERA					
				DIPTERA (OTHER)	
				Simulium sp	68
				·	
		MEGALOPTERA	_		
				MOLLUSCA	1
ODONATA				Corbicula fluminea	1
				Elimia sp	75
	 			Pisidium sp	13
		COLEOPTERA		Sphaerium sp	12
		Stenelmis (L) 3	3	oprideriam op	1
	+	2.0 (2) 3			
				OTHER TAXA	1
	+			Turbellaria	3
	+			onana	T
	+				
	+				
	+				
	+				
	+		_	Number of Individuals	295

CONCOTTACE	, , , , , _ , , , , , , , , , , ,	D, (,,, (O, , L L ,	Earlington, Romany
hird Rock Pjt #:	KY16-004	Client Name:	KDOW
Water Body:	Cane Run	State/County:	KY / Scott
Sample ID:	Site 6	Collection Date:	3/21/2017
Collector:	Rain Storm	Sampling Method:	Multihabitat
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	30
		No. Organisms Picked:	n/a

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Helobdella stagnalis				Cricotopus tremulus gr	
Naididae				Eukiefferiella claripennis gr	
				Micropsectra sp	
				Tanytarsus sp	
AMPHIPODA					
Crangonyx sp					
ISOPODA					
Lirceus fontinalis					
DECARODA					
DECAPODA		TDICHODTEDA			
Cambaridae		TRICHOPTERA	1		
EPHEMEROPTERA					
				DIPTERA (OTHER)	
				Simulium sp	
			+		
		MEGALOPTERA		1401111004	
OD ON A TA				MOLLUSCA	
ODONATA			-	Elimia sp	
			-	Physella sp	
		COLEOPTERA		Pisidium sp	
		Peltodytes (A)			
		Psephenus (L)	+		
		Psepilerius (L)		OTHER TAXA	
				Turbellaria	1
				i di bellal la	
			_		
			+	Number of Individuals	_

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Scot	State/County:	Cane Run Watershed	Water Body:
8/25/2016	Collection Date:	CR-7 QT	Sample ID:
Kick Ne	Sampling Method:	Bert Remley, Chad Rose	Collector:
Subsample	Sample Sorting:	Tammie Fister	Sorter:
12	No. Grids of 30 Picked:	Chelsey Olson	Taxonomist:
298	No. Organisms Picked:		

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	N Or
ANNELIDA	-	PLECOPTERA		DIPTERA (CHIRONOMIDAE)	_
Helobdella stagnalis	7			Chironomus sp	
Naididae	7			Clinotanypus sp	
				Cryptochironomus sp	
				Dicrotendipes neomodestus	
AMPHIPODA				Glyptotendipes sp	
Crangonyx sp	1			Harnischia complex sp	
				Larsia sp	
				Orthocladiinae (Damaged)	
ISOPODA				Paratanytarsus sp	
Lirceus fontinalis	54			Paratendipes albimanus	
				Polypedilum scalaenum gr	
				Polypedilum illinoense gr	
DECAPODA				Stenochironomus sp	
Cambaridae	3	TRICHOPTERA	_	Tanytarsus sp	
odinibal lado		THISTIST TEN		Thienemannimyia gr	
EPHEMEROPTERA				Zavrelimyia sp	
Caenis diminuta gr	33			Zavromnyla op	
Callibaetis sp	1				
Stenacron interpunctatum	6				
Stenonema femoratum	46				
Sterionema remoratum	40			DIPTERA (OTHER)	
				Atrichopogon sp	
				Bezzia/Palpomyia gr	
				Dasyhelea sp	
				as ymolea op	
		MEGALOPTERA			
25.211.51		Sialis sp	1	MOLLUSCA	1
ODONATA				Ferrissia sp	
oenagrionidae (Immature)	1			Lymnaea sp	
				Physella sp	
		COLEOPTERA		Pisidium sp	-
		Cyphon (L) 1	1	Planorbella sp	
		Dubiraphia (A) 1	1	Sphaerium sp	
		Dubiraphia (L) 2	2	OTHER TAXA	
		Peltodytes (A) 7	7	Turbellaria	
		Stenelmis (L) 3	3		
	+				
				Number of Individuals	2

Third Rock Pjt #:	KY16-004-01-07a	Client Name:	KY Division of Water
Water Body:	Cane Run Watershed	State/County:	KY / Scott
Sample ID:	CR-7 QL	Collection Date:	8/25/2016
Collector:	Bert Remley, Chad Rose	Sampling Method:	Multihabitat
Sorter:	Tammie Fister	Sample Sorting:	Pickall
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	30
		No. Organisms Picked:	NA

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	N Or
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Helobdella stagnalis				Chironomus sp	
Naididae				Dicrotendipes neomodestus	
				Glyptotendipes sp	
				Harnischia complex sp	
AMPHIPODA				Lopescladius sp	
				Polypedilum illinoense gr	
				Tanytarsus sp	
				Thienemannimyia gr	
ISOPODA				Triicitettiatiinittyta gi	
Lirceus fontinalis					
En cods for thians					
DECAPODA Cambaridae		TDICHODTEDA			-
Саттранцае		TRICHOPTERA			-
EPHEMEROPTERA					
Callibaetis sp					
Stenacron interpunctatum					
Stenonema femoratum					
				DIPTERA (OTHER)	
				, , ,	
		MEGALOPTERA	L		
		Wiled Red Territ		MOLLUSCA	
ODONATA	1			Corbicula fluminea	T
Ischnura sp				Helisoma sp	
	 			Physella sp	1
		COLEOPTERA		Pisidium sp	1
		Dubiraphia (A)		Sphaerium sp	1
		Dubiraphia (L)		эрнаснангэр	+
	 	Peltodytes (A)		OTHER TAXA	
	 	ronogres (ry		Belostoma flumineum	T
				Belostoma namineam	
					-
_					
					+
				Number of Individuals	

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Fayette	State/County:	Cane Run Watershed	Water Body:
6/16/2016	Collection Date:	Site 9 QT	Sample ID:
Kick Ne	Sampling Method:	Bert Remley & Chelsey Olson	Collector:
Subsample	Sample Sorting:	Tammie Fister	Sorter:
	No. Grids of 30 Picked:	Chelsey Olson	Taxonomist:
298	No. Organisms Picked:		_

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	N Or
ANNELIDA		PLECOPTERA	<u>-</u>	DIPTERA (CHIRONOMIDAE)	
				Cricotopus bicinctus	T
				Cryptochironomus sp	
				Dicrotendipes neomodestus	
				Polypedilum flavum	1
AMPHIPODA				Rheotanytarsus exiguus gr	
7.000 1111 027				Tanytarsus sp	
ISOPODA					
Lirceus fontinalis	184				
DECAPODA Cambaridae (Immature)	1	TRICHOPTERA			
, , , , , ,		Cheumatopsyche sp	10		
EPHEMEROPTERA		Chimarra obscura	7		İ
		Hydroptila sp	3		
				DIPTERA (OTHER)	
				Hemerodromia sp	
				Simulium sp	-
		MECALODIEDA			
		MEGALOPTERA		MOLLUSCA	
ODONATA				Elimia sp	
				Sphaerium sp	
		COLEOPTERA			
		Optioservus (L) 1 Stenelmis (A) 3 (L) 14	1		
		Stenelmis (A) 3 (L) 14	17		
				OTHER TAXA	
				Turbellaria	
				Number of Individuals	3

KY Division of Water	Client Name:	KY16-004-01-07	Third Rock Pjt #:
KY / Fayette	State/County:	Cane Run Watershed	Water Body:
6/16/2016	Collection Date:	Site 9 QL	Sample ID:
Multihabitat	Sampling Method:	Bert Remley & Chelsey Olson	Collector:
Pickall	Sample Sorting:	Tammie Fister	Sorter:
30	No. Grids of 30 Picked:	Chelsey Olson	Taxonomist:
NA	No. Organisms Picked:		_

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
				Cryptochironomus sp	
				Orthocladius sp	
				Polypedilum fallax gr	
				Polypedilum illinoense gr	
AMPHIPODA				Polypedilum flavum	
Synurella sp				Rheotanytarsus exiguus gr	
				Tanytarsus sp	
				Thienemannimyia gr	
ISOPODA				.,	
Lirceus fontinalis					
DECAPODA					
Cambaridae		TRICHOPTERA			
		Cheumatopsyche sp			
EPHEMEROPTERA		Chimarra obscura			
Diphetor hageni		Helicopsyche borealis			
Stenacron interpunctatum		Hydroptila sp			
otoriasi ori interparietata		Oxyethira sp			
		oxyou ma op			
				DIPTERA (OTHER)	
				Atrichopogon sp	
				Culicidae	
				Hemerodromia sp	
				Simulium sp	
	+			энтинит эр	
	+				
	+				
		MEGALOPTERA	_		
		WEGALOT TERA		MOLLUSCA	
ODONATA				Elimia sp	T
Coenagrionidae (Immature)				Lymnaea sp	
Ischnura sp	+			Sphaerium sp	
130111010 35		COLEOPTERA		Spriderium sp	
		Berosus (A)			
	 	Dubiraphia (L)			
	 	Hydrophilidae (L)		OTHER TAXA	
	 	Optioservus (A)		Turbellaria	
	 	Peltodytes (A)		i di bellaria	
	 	Peltodytes (L)			
	 	Stenelmis (A) (L)			
	 	Tropisternus (A) (L)			
	 				
	+ +				+
	+ +				1
	+ +				1
	+ +				1
	+				+
	+ +			Number of Indial develo	+
	1			Number of Individuals	1

Third Rock Pjt #:	KY15Y3TT3-3B	Client Name:	TRC In-House Tetra Tech-LFUCG
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	Site 10	Collection Date:	4/28/2017
Collector:	BR	Sampling Method:	Kick Ne
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	4
		No. Organisms Picked:	347

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA	-	PLECOPTERA	_	DIPTERA (CHIRONOMIDAE)	
Naididae	4			Cricotopus tremulus gr	2
				Cricotopus bicinctus	
				Cricotopus trifascia	Ç
				Cricotopus/Orthocladius gr	1
AMPHIPODA				Limnophyes sp	
Crangonyx sp	2			Micropsectra sp	2
				Paratanytarsus sp	
				Polypedilum illinoense gr	
ISOPODA				Thienemanniella xena	
Lirceus fontinalis	132				
DECAPODA					
		TRICHOPTERA			
		Cheumatopsyche sp	2		
EPHEMEROPTERA		Hydroptila sp	18		
Baetis flavistriga	1		+		
			+		
			+		
			-	DIDTEDA (OTLIED)	
			_	DIPTERA (OTHER)	1 .
			+	Simulium sp	
	-		-		-
			+		
	+		+		
			+		
	+		+		
	+		+		
		MEGALOPTERA	L		
		WIEGALOFTERA	1	MOLLUSCA	
ODONATA				WOELUSCA	
OBONATA					
			+		
		COLEOPTERA	1		
		Stenelmis (L) 2	2		
		0.00.00.00.00	+ -		
			1	OTHER TAXA	
	 		1	Turbellaria	
			1		
	 		 		
			1		
				Number of Individuals	3:

Third Rock Pjt #:	KY15Y3TT3-3B	Client Name:	TRC In-House Tetra Tech-LFUCC
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	Site 10 QL	Collection Date:	4/28/2017
Collector:	BR	Sampling Method:	Multihabita
Sorter:	Bert Remley	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	30
		No. Organisms Picked:	

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs
ANNELIDA	_	PLECOPTERA	_	DIPTERA (CHIRONOMIDAE)	
Helobdella stagnalis				Chironomus sp	
Naididae				Cricotopus tremulus gr	
				Cricotopus trifascia	
				Limnophyes sp	
AMPHIPODA				Paratanytarsus sp	
Crangonyx sp				Stictochironomus sp	
				Tanytarsus sp	
ISOPODA					
Lirceus fontinalis					
DECAPODA					
		TRICHOPTERA			
		Hydroptila sp			
EPHEMEROPTERA					
				DIPTERA (OTHER)	
				Anopheles sp	
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Physella sp	
				Pisidium sp	
				Sphaerium sp	
		COLEOPTERA			
				OTHER TAXA	
				Number of Individuals	_

Third Rock Pjt #:	KY15-TT-4.3	Client Name:	TRC In-House Tetra Tech-LFUCC
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-4	Collection Date:	2/23/2017
Collector:	BR/CO	Sampling Method:	Kick Ne
Sorter:	Bert Remley	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	
		No. Organisms Picked:	321

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA	_	PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Naididae (Immature)	3			Cricotopus trifascia	
,				Cricotopus tremulus gr	
				Cricotopus/Orthocladius gr	;
				Polypedilum flavum	
AMPHIPODA				Polypedilum illinoense gr	
Crangonyx sp	1			Rheotanytarsus exiguus gr	
				Stempellinella sp	
				Tanytarsus sp	
ISOPODA				Thienemanniella xena	
Lirceus fontinalis	225			Thienemannimyia gr	1
DECAPODA Orconectes sp (Damaged)	1	TRICHOPTERA			
		Cheumatopsyche sp	7		
EPHEMEROPTERA	•	Chimarra obscura	20		
Caenis diminuta gr	3	Chimarra aterrima	1		
Stenacron interpunctatum	2	Hydropsyche betteni/depravata complex	3		
Stenonema femoratum	1	Complex			
				DIPTERA (OTHER)	
				Simulium sp	
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Gyraulus sp	
				Pisidium sp	
				Sphaerium sp	
		COLEOPTERA			
		Psephenus (L) 3	3		
		Stenelmis (A) 1 (L) 8	9		
				OTHER TAXA	
				Turbellaria	,
				Number of Individuals	3

Third Rock Pjt #:	KY15-TT-4.3	Client Name:	TRC In-House Tetra Tech-LFUCC
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-4	Collection Date:	2/23/2017
Collector:	BR/CO	Sampling Method:	Multihabita
Sorter:	Bert Remley	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	30
		No. Organisms Picked:	

			1	1	1
Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.
ANNELIDA	_	PLECOPTERA	-	DIPTERA (CHIRONOMIDAE)	_
Lumbriculidae (Immature)				Ablabesmyia sp (Damaged)	
				Cricotopus tremulus gr	
				Cricotopus/Orthocladius gr	
				Paratanytarsus sp	
AMPHIPODA				Phaenopsectra flavipes	
Crangonyx sp				Polypedilum fallax gr	
Synurella sp				Procladius sp	
				Rheotanytarsus exiguus gr	
ISOPODA				Stempellinella sp	
Lirceus fontinalis				Stictochironomus sp	
				Tanytarsus sp	
				Thienemanniella xena	
DECAPODA				Thienemannimyia gr	
		TRICHOPTERA			
		Chimarra obscura			
EPHEMEROPTERA		Hydropsychidae (Immature)			
Caenis diminuta gr					
Stenacron interpunctatum					
Stenonema femoratum					
				DIPTERA (OTHER)	
				Simulium sp	
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Pisidium sp	
Ischnura sp (Immature)				Sphaerium sp	
		COLEOPTERA			
		Dubiraphia (L) 0			
				OTHER TAXA	
				Turbellaria	
					1
					1
					1
	_				1
					<u> </u>
				Number of Individuals	n/a

THIRDROCK CONSULTANTS Lexington, Kentucky

Lexington, Rentacky	DATA SHLLI	ILDIAIL LADONATONT	ACKOTIVERTEDI
TRC In-House Tetra Tech-LFUCG	Client Name:	KY15-TT-4.3	Third Rock Pjt #:
KY / Fayette	State/County:	Cane Run	Water Body:
2/23/2017	Collection Date:	CR-8	Sample ID:
Kick Net	Sampling Method:	BR/CO	Collector:
Subsample	Sample Sorting:	Bert Remley	Sorter:
10	No. Grids of 30 Picked:	Bert Remley	Taxonomist:
311	No. Organisms Picked:		

Family or Tayon / Conus	No.	Family or Tayon / Capus	No.	Family or Tayon / Conus	No
Family or Taxon / Genus	Orgs.	Family or Taxon / Genus	Orgs.	Family or Taxon / Genus	Org
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Erpobdella punctata	1				
Lumbriculidae (Immature)	7				
Naididae (Immature)	1				
AMPHIRODA					
AMPHIPODA	10				
Crangonyx sp	10				
1000001					
ISOPODA Lirceus fontinalis	272				
Lii ceus fortirialis	212				
DECARODA					
DECAPODA		TRICHOPTERA			
		Chimarra obscura	1		
EPHEMEROPTERA					
				DIPTERA (OTHER)	,
					-
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Physella sp	
		001 5007504			
		COLEOPTERA	1		-
	+	Dubiraphia (A) 1	1		+
				OTHER TAXA	
	1			Turbellaria	1
					+
				Number of Individuals	30

THIRDROCK CONSULTANTS Lexington, Kentucky

Lexington, Kentucky	DATA SHLLI	ILDNAIL LADONAIONI	ACKOINVLKI
TRC In-House Tetra Tech-LFUCG	Client Name:	KY15-TT-4.3	Third Rock Pjt #:
KY / Fayette	State/County:	Cane Run	Water Body:
2/23/2017	Collection Date:	CR-8	Sample ID:
Multihabitat	Sampling Method:	BR/CO	Collector:
Subsample	Sample Sorting:	Chelsey Olson	Sorter:
30	No. Grids of 30 Picked:	Bert Remley	Taxonomist:
1	No. Organisms Picked:		

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	N Or
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Helobdella stagnalis					
AMPHIPODA					
Crangonyx sp					
LCODODA					
ISOPODA Lirceus fontinalis					
Lii ceus Toritirialis					
DECAPODA					
DEON OBN		TRICHOPTERA			
EPHEMEROPTERA					
EFFEMEROFIERA					
				DIPTERA (OTHER)	
				Tipula sp (Immature)	
		MEGALOPTERA			
00011171				MOLLUSCA	
ODONATA				Lymnaea sp Physella sp	
				Sphaerium sp	
		COLEOPTERA		эргластатт эр	
				OTHER TAXA	
					-
					1
	1				1

Sample ID	Taxa Name	Class	Order	Family	FFG	Count
Site 1 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	6
Site 1 QT	Petrophila sp	Insecta	Lepidoptera	Pyralidae	SH	1
Site 1 QT	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	1
	Simulium sp	Insecta	Diptera	Simuliidae	CF	8
	Hemerodromia sp	Insecta	Diptera	Empididae	PR	3
	Baetis intercalaris	Insecta	Ephemeroptera	Baetidae	CG	23
	Maccaffertium terminatum	Insecta	Ephemeroptera	Heptageniidae	SC	2
	Hydracarina	Arachnida	Hydracarina	Hydrachnidae	PR	1
	Hydropsyche betteni/depravata complex	Insecta	Trichoptera	Hydropsychidae	CF	3
	Helicopsyche borealis	Insecta	Trichoptera	Helicopsychidae	SC	1
	Psephenus herricki	Insecta	Coleoptera	Psephenidae	SC	11
	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	63
	Hydropsyche morosa gr	Insecta	Trichoptera	Hydropsychidae	CF	37
	Chimarra aterrima	Insecta	Trichoptera	Philopotamidae	CF	4
	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	1
Site 1 QT	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	4
Site 1 QT	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	1
Site 1 QT	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	3
	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	1
Site 1 QT	Cricotopus absurdus	Insecta	Diptera	Chironomidae	CG	1
Site 1 QT	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	1
	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	17
Site 1 QT	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	3
	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	84
	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	17
	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA
	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	NA
Site 1 QL	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	NA
Site 1 QL	Corbicula fluminea	Mollusca	Pelecypoda	Corbiculidae	CF	NA
	Ferrissia sp	Mollusca	Lymnophila	Ancylidae	SC	NA
	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 1 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA
Site 1 QL	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	NA
Site 1 QL	Physella sp	Mollusca	Basommatophora	Physidae	SC	NA
Site 1 QL	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	NA
Site 1 QL	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	NA
Site 1 QL	Simulium sp	Insecta	Diptera	Simuliidae	CF	NA
Site 1 QL	Turbellaria	Turbellaria		0 "1	CG	NA
	Synurella sp	Malacostraca	Amphipoda	Crangonyctidae	CG	NA
	Macronychus glabratus	Insecta	Coleoptera	Elmidae	CG	NA
	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	NA
	Hemerodromia sp	Insecta	Diptera	Empididae	PR	NA
	Bezzia/Palpomyia gr	Insecta	Diptera	Ceratopogonidae	PR	NA
	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
	Xenochironomus sp	Insecta	Diptera	Chironomidae	PR	NA
	Psephenus herricki	Insecta	Coleoptera	Psephenidae	SC	NA
Site 1 QL	Baetis intercalaris	Insecta	Ephemeroptera	Baetidae	CG	NA
Site 1 QL	Acerpenna macdunnoughi	Insecta	Ephemeroptera	Baetidae	CG	NA
Site 1 QL	Enallagma sp	Insecta	Odonata	Coenagrionidae	PR	NA
Site 1 QL	Tricorythodes sp	Insecta	Ephemeroptera	Tricorythidae	CG	NA
	Maccaffertium terminatum	Insecta	Ephemeroptera	Heptageniidae	SC	NA
	Hexagenia limbata	Insecta	Ephemeroptera	Ephemeridae	CG	NA
Site 1 QL	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	NA
Site 1 QL	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 1 QL	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	NA
	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	NA
Site 1 QL	Phaenopsectra flavipes	Insecta	Diptera	Chironomidae	SC	NA
Site 1 QL	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	NA

Site 1 QL	Hydropsyche morosa gr	Insecta	Trichoptera	Hydropsychidae	CF	NA
	Hydropsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	NA
	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	NA
	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	NA
Site 1 QL	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	NA
Site 1 QL	Polypedilum fallax gr	Insecta	Diptera	Chironomidae	SH	NA
Site 1 QL	Microtendipes pedellus gr	Insecta	Diptera	Chironomidae	CF	NA
Site 1 QL	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	NA
Site 1 QL	Atrichopogon sp	Insecta	Diptera	Ceratopogonidae	PR	NA
Site 1 QL	Sialis sp	Insecta	Megaloptera	Sialidae	PR	NA
Site 1 QL	Nanocladius sp	Insecta	Diptera	Chironomidae	CG	NA
Site 1 QL	Hyalella azteca	Malacostraca	Amphipoda	Talitridae	CG	NA
Site 1 QL	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	NA
Site 1 QL	Sisyra sp	Insecta	Neuroptera	Sisyridae	PR	NA
Site 1 QL	Triaenodes perna	Insecta	Trichoptera	Leptoceridae	PR	NA
Site 1 QL	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	NA
Site 2 QT	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	25
Site 2 QT	Micrasema sp	Insecta	Trichoptera	Brachycentridae	SH	1
Site 2 QT	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	4
Site 2 QT	Ochrotrichia sp	Insecta	Trichoptera	Hydroptilidae	CG	1
	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	1
Site 2 QT	Diphetor hageni	Insecta	Ephemeroptera	Baetidae	CG	2
Site 2 QT	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	22
Site 2 QT	Hemerodromia sp	Insecta	Diptera	Empididae	PR	1
Site 2 QT	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	1
Site 2 QT	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	5
Site 2 QT	Simulium sp	Insecta	Diptera	Simuliidae	CF	1
Site 2 QT	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	11
Site 2 QT	Psephenus herricki	Insecta	Coleoptera	Psephenidae	SC	7
Site 2 QT	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	15
Site 2 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	15
Site 2 QT	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	1
Site 2 QT	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	6
Site 2 QT	Baetis intercalaris	Insecta	Ephemeroptera	Baetidae	CG	5
Site 2 QT	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	1
	Helicopsyche borealis	Insecta	Trichoptera	Helicopsychidae	SC	5
Site 2 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5
Site 2 QT	Optioservus sp	Insecta	Coleoptera	Elmidae	SC	1
Site 2 QT	Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	1
Site 2 QT	Optioservus sp	Insecta	Coleoptera	Elmidae	SC	1
	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	2
	Microtendipes pedellus gr	Insecta	Diptera	Chironomidae	CF	1
Site 2 QT	Ablabesmyia mallochi	Insecta	Diptera	Chironomidae	PR	1
	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	2
Site 2 QT	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	11
Site 2 QT	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	7
Site 2 QT		Insecta	Megaloptera	Sialidae	PR	1
Site 2 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	118
Site 2 QL	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	NA
	Boyeria sp	Insecta	Odonata	Aeshnidae	PR	NA
	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 2 QL	Centroptilum sp	Insecta	Ephemeroptera	Baetidae	CG	NA
Site 2 QL	Peltodytes sexmaculatus	Insecta	Coleoptera	Haliplidae	PH	NA
Site 2 QL	Scirtes sp	Insecta	Coleoptera	Scirtidae	SH	NA
Site 2 QL	Tropisternus sp	Insecta	Coleoptera	Hydrophilidae	CG	NA
Site 2 QL	Argia sp	Insecta	Odonata	Coenagrionidae	PR	NA
Site 2 QL		Insecta	Odonata	Aeshnidae	PR	NA
Site 2 QL	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 2 QL	Libellula sp	Insecta	Odonata	Libellulidae	PR	NA

Site 2 QL	Dyralidae	Insecta	Lepidoptera	Pyralidae	SH	NA
			Diptera			
	Clinotanypus sp	Insecta	1 1 1 1	Chironomidae	PR	NA
	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	NA
	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	NA
	Helicopsyche borealis	Insecta	Trichoptera	Helicopsychidae	SC	NA
	Dicrotendipes neomodestus	Insecta	Diptera	Chironomidae	CG	NA
	Corynoneura sp	Insecta	Diptera	Chironomidae	CG	NA
Site 2 QL	Tropisternus sp	Insecta	Coleoptera	Hydrophilidae	CG	NA
Site 2 QL	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	NA
Site 2 QL	Psephenus herricki	Insecta	Coleoptera	Psephenidae	SC	NA
Site 2 QL	Dasyhelea sp	Insecta	Diptera	Ceratopogonidae	CG	NA
Site 2 QL	Turbellaria	Turbellaria			CG	NA
Site 2 QL	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	NA
	Hexagenia limbata	Insecta	Ephemeroptera	Ephemeridae	CG	NA
	Enallagma sp	Insecta	Odonata	Coenagrionidae	PR	NA
	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA
	Belostoma sp	Insecta	Hemiptera	Belostomatidae	PR	NA
	Helisoma sp	Mollusca	Lymnophila	Planorbidae	sc	NA
	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	NA NA
	Physella sp	Mollusca	<u> </u>	Physidae	SC	NA NA
			Basommatophora			
	Berosus sp	Insecta	Coleoptera	Hydrophilidae	PH	NA
	Polycentropus sp	Insecta	Trichoptera	Polycentropodidae	PR	NA
	Ferrissia sp	Mollusca	Lymnophila	Ancylidae	SC	NA
	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	NA
	Zavrelimyia sp	Insecta	Diptera	Chironomidae	PR	NA
	Bezzia/Palpomyia gr	Insecta	Diptera	Ceratopogonidae	PR	NA
Site 2 QL	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	NA
Site 2 QL	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	NA
Site 2 QL	Ischnura sp	Insecta	Odonata	Coenagrionidae	PR	NA
	Polypedilum sp	Insecta	Diptera	Chironomidae	SH	8
Site 5 QT	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	4
Site 5 QT	Cricotopus bicinctus	Insecta	Diptera	Chironomidae	SH	22
	Dicrotendipes neomodestus	Insecta	Diptera	Chironomidae	CG	2
	Polypedilum scalaenum gr	Insecta	Diptera	Chironomidae	SH	1
	Stempellinella sp	Insecta	Diptera	Chironomidae	CG	1
Site 5 QT	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	22
Site 5 QT	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	22
		_	<u> </u>			3
	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	14
	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	8
	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	21
	Micropsectra sp	Insecta	Diptera	Chironomidae	CG	1
	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	1
Site 5 QT	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	14
Site 5 QT	Erpobdellidae	Hirudinea	Pharyngobdellida	Erpobdellidae	CG	1
Site 5 QT	Simulium sp	Insecta	Diptera	Simuliidae	CF	71
Site 5 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	2
Site 5 QT	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	9
	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	5
	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	12
	Peltodytes sp	Insecta	Coleoptera	Haliplidae	PH	1
Site 5 QT	Turbellaria	Turbellaria	- Jiooptora	anpiidao	CG	22
Site 5 QT	Hemerodromia sp	Insecta	Diptera	Empididae	PR	2
	Baetis intercalaris	Insecta	Ephemeroptera	Baetidae	CG	
			<u> </u>			4
Site 5 QT	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	1
Site 5 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	67
Site 5 QT		N.AIII.	I I a Camara I a d			
	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	5
Site 5 QL	Sphaerium sp Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	NA
Site 5 QL	Sphaerium sp	_				NA NA NA

Site 5 OI	Dicrotendipes neomodestus	Insecta	Diptera	Chironomidae	CG	NA
	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	NA
	Ablabesmyia mallochi	Insecta	Diptera	Chironomidae	PR	NA
	Procladius sp	Insecta	Diptera	Chironomidae	PR	NA
	Coenagrionidae	Insecta	Odonata	Coenagrionidae	PR	NA
	Tropisternus sp	Insecta	Coleoptera	Hydrophilidae	CG	NA
	Dubiraphia quadrinotata	Insecta	Coleoptera	Elmidae	SC	NA
	Bezzia/Palpomyia gr	Insecta	Diptera	Ceratopogonidae	PR	NA
	Peltodytes lengi	Insecta	Coleoptera	Haliplidae	PH	NA
Site 5 QL	Tipula (Yamatotipula) sp	Insecta	Diptera	Tipulidae	SH	NA
Site 5 QL	Turbellaria	Turbellaria	·	·	CG	NA
Site 5 QL	Glossiphoniidae	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	NA
Site 5 QL	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 5 QL	Cricotopus bicinctus	Insecta	Diptera	Chironomidae	SH	NA
Site 5 QL	Argia apicalis	Insecta	Odonata	Coenagrionidae	PR	NA
Site 5 QL	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	NA
Site 5 QL	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	NA
	Berosus sp	Insecta	Coleoptera	Hydrophilidae	PH	NA
	Atrichopogon sp	Insecta	Diptera	Ceratopogonidae	PR	NA
	Chironomus sp	Insecta	Diptera	Chironomidae	CG	NA
	Xenochironomus xenolabis	Insecta	Diptera	Chironomidae	PR	NA
Site 5 QL	Simulium sp	Insecta	Diptera	Simuliidae	CF	NA
Site 5 QL	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	NA
	Helisoma sp	Mollusca	Lymnophila	Planorbidae	SC	NA
Site 5 QL	Peltodytes sp	Insecta	Coleoptera	Haliplidae	PH	NA
	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	NA
	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	NA
	Phaenopsectra sp	Insecta	Diptera	Chironomidae	SC	NA
	Paratendipes albimanus	Insecta	Diptera	Chironomidae	CG	NA
	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	NA
	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	NA
	Boyeria sp	Insecta	Odonata	Aeshnidae	PR	NA
	Planorbella sp	Mollusca	Lymnophila	Planorbidae	SC	NA
	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	NA
	Gyraulus sp	Mollusca	Lymnophila	Planorbidae	SC	NA
	Ferrissia sp	Mollusca	Lymnophila	Ancylidae	SC	NA
	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	NA
	Physella sp	Mollusca	Basommatophora	Physidae	SC	NA
Site 5 QL	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	NA
	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA
	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	3
	Hemerodromia sp	Insecta	Diptera	Empididae	PR	7
	Simulium sp	Insecta	Diptera	Simuliidae	CF	18
	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	10
	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	7
	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	9
	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	1
	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	14
	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	1
	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	22
	Optioservus sp	Insecta	Coleoptera	Elmidae	SC	1
	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	3
Site 9 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	184
Site 9 QT	Turbellaria	Turbellaria	Dinton	Ohimana and the c	CG	1
	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	4
	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	15
	Cricotopus bicinctus	Insecta	Diptera	Chironomidae	SH	1
	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	2
Site 9 QT	Dicrotendipes neomodestus	Insecta	Diptera	Chironomidae	CG	1!

Site 9 QL	Lymnaea sp	Mollusca	Lymnophila	Lymnaeidae	SC	NA
			Diptera	Chironomidae	PR	NA NA
	Thienemannimyia gr	Insecta	<u> </u>			
Site 9 QL	Peltodytes lengi	Insecta	Coleoptera	Haliplidae	PH	NA
	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	NA
	Berosus sp	Insecta	Coleoptera	Hydrophilidae	PH	NA
	Culicidae	Insecta	Diptera	Culicidae	CF	NA
Site 9 QL	Ischnura sp	Insecta	Odonata	Coenagrionidae	PR	NA
Site 9 QL	Coenagrionidae	Insecta	Odonata	Coenagrionidae	PR	NA
Site 9 QL	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	NA
Site 9 QL	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	NA
Site 9 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	NA
Site 9 QL	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	NA
Site 9 QL	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	NA
	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	NA
	Polypedilum fallax gr	Insecta	Diptera	Chironomidae	SH	NA
	Orthocladius sp	Insecta	Diptera	Chironomidae	CG	NA
	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	NA
Site 9 QL		Insecta	Diptera	Chironomidae	CF	NA NA
	Tanytarsus sp	_	Trichoptera	Hydropsychidae	CF	NA NA
	Cheumatopsyche sp	Insecta				
	Tropisternus sp	Insecta	Coleoptera	Hydrophilidae	CG	NA
	Tropisternus sp	Insecta	Coleoptera	Hydrophilidae	CG	NA
	Peltodytes sp	Insecta	Coleoptera	Haliplidae	PH	NA
	Helicopsyche borealis	Insecta	Trichoptera	Helicopsychidae	SC	NA
	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	NA
	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 9 QL	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	NA
Site 9 QL	Atrichopogon sp	Insecta	Diptera	Ceratopogonidae	PR	NA
Site 9 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA
Site 9 QL	Hemerodromia sp	Insecta	Diptera	Empididae	PR	NA
Site 9 QL	Hydrophilidae	Insecta	Coleoptera	Hydrophilidae	PR	NA
	Optioservus sp	Insecta	Coleoptera	Elmidae	SC	NA
	Simulium sp	Insecta	Diptera	Simuliidae	CF	NA
	Synurella sp	Malacostraca	Amphipoda	Crangonyctidae	CG	NA
	Oxyethira sp	Insecta	Trichoptera	Hydroptilidae	CG	NA
Site 9 QL	Turbellaria	Turbellaria	rnonoptora	1 Tydroptiiiddo	CG	NA
Site 9 QL	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	NA
Site 9 QL	Diphetor hageni	Insecta	Ephemeroptera	Baetidae	CG	NA
CR-7 QT	Thienemannimyia gr	-	Diptera	Chironomidae	PR	4
CR-7 QT	Dubiraphia sp	Insecta Insecta		Elmidae	SC	2
			Coleoptera		PR	3
	Atrichopogon sp	Insecta	Diptera	Ceratopogonidae		
	Cyphon sp	Insecta	Coleoptera	Scirtidae	SC	1 7
	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	7
	Coenagrionidae	Insecta	Odonata	Coenagrionidae	PR	1
CR-7 QT	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	3
	Turbellaria	Turbellaria			CG	1
CR-7 QT	Bezzia/Palpomyia gr	Insecta	Diptera	Ceratopogonidae	PR	2
	Dasyhelea sp	Insecta	Diptera	Ceratopogonidae	CG	1
	Clinotanypus sp	Insecta	Diptera	Chironomidae	PR	2
CR-7 QT	Cryptochironomus sp	Insecta	Diptera	Chironomidae	PR	1
CR-7 QT	Glyptotendipes sp	Insecta	Diptera	Chironomidae	SH	9
CR-7 QT	Larsia sp	Insecta	Diptera	Chironomidae	PR	6
CR-7 QT	Paratendipes albimanus	Insecta	Diptera	Chironomidae	CG	28
CR-7 QT	Callibaetis sp	Insecta	Ephemeroptera	Baetidae	CG	1
CR-7 QT	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	6
CR-7 QT	Physella sp	Mollusca	Basommatophora	Physidae	SC	6
	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	14
	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	10
CR-7 QT	Ferrissia sp	Mollusca	Lymnophila	Ancylidae	SC	
CR-7 QT	Planorbella sp	Mollusca	Lymnophila	Planorbidae	SC	8
UIV 1 (4)	י ומווסוסטוומ סף	17.0110000	-,iopilia	. ianorbidae		

CR-7 QT	Lymnaea sp	Mollusca	Lymnophila	Lymnaeidae	SC	4
CR-7 QT	Sialis sp	Insecta	Megaloptera	Sialidae	PR	1
CR-7 QT	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	46
CR-7 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	1
CR-7 QT	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	33
CR-7 QT	Peltodytes lengi	Insecta	Coleoptera	Haliplidae	PH	7
CR-7 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	3
CR-7 QT	Dubiraphia quadrinotata	Insecta	Coleoptera	Elmidae	SC	1
CR-7 QT	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	7
CR-7 QT	Polypedilum scalaenum gr	Insecta	Diptera	Chironomidae	SH	1
CR-7 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	54
CR-7 QT	Stenochironomus sp	Insecta	Diptera	Chironomidae	CG	1
CR-7 QT	Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	2
CR-7 QT	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	1
CR-7 QT	Orthocladiinae	Insecta	Diptera	Chironomidae	CG	1
CR-7 QT	Dicrotendipes neomodestus	Insecta	Diptera	Chironomidae	CG	2
CR-7 QT	Harnischia complex sp	Insecta	Diptera	Chironomidae	CG	1
CR-7 QT	Zavrelimyia sp	Insecta	Diptera	Chironomidae	PR	1
CR-7 QT	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	4
CR-7 QT	Chironomus sp	Insecta	Diptera	Chironomidae	CG	4
CR-7 QL	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	NA
CR-7 QL	Ischnura sp	Insecta	Odonata	Coenagrionidae	PR	NA
CR-7 QL	Callibaetis sp	Insecta	Ephemeroptera	Baetidae	CG	NA
CR-7 QL	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	NA
CR-7 QL	Chironomus sp	Insecta	Diptera	Chironomidae	CG	NA
CR-7 QL	Glyptotendipes sp	Insecta	Diptera	Chironomidae	SH	NA
CR-7 QL	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	NA
CR-7 QL	Dubiraphia quadrinotata	Insecta	Coleoptera	Elmidae	SC	NA
CR-7 QL	Lopescladius sp	Insecta	Diptera	Chironomidae	CG	NA
CR-7 QL	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	NA
CR-7 QL	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	NA
CR-7 QL	Dicrotendipes neomodestus	Insecta	Diptera	Chironomidae	CG	NA
CR-7 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	NA
CR-7 QL	Peltodytes lengi	Insecta	Coleoptera	Haliplidae	PH	NA
CR-7 QL	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	NA
CR-7 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA
CR-7 QL	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	NA
CR-7 QL	Physella sp	Mollusca	Basommatophora	Physidae	SC	NA
CR-7 QL	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	NA
CR-7 QL	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	NA
CR-7 QL	Corbicula fluminea	Mollusca	Pelecypoda	Corbiculidae	CF	NA
CR-7 QL	Helisoma sp	Mollusca	Lymnophila	Planorbidae	SC	NA
CR-7 QL	Belostoma flumineum	Insecta	Hemiptera	Belostomatidae	PR	NA
CR-7 QL	Harnischia complex sp	Insecta	Diptera	Chironomidae	CG	NA
CR-7 QL	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	NA

Sample ID	Taxa Name	Class	Order	Family	FFG	Count
Site 3 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	N/A
Site 3 QL	Rhyacophila ledra/fenestra	Insecta	Trichoptera	Rhyacophilidae	PR	N/A
Site 3 QL	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	N/A
Site 3 QL	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	N/A
Site 3 QT	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	1
Site 3 QT	Perlesta sp	Insecta	Plecoptera	Perlidae	PR	1
Site 3 QT	Larsia sp	Insecta	Diptera	Chironomidae	PR	1
Site 3 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	20
Site 3 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	267
Site 4 QL	Tubificidae imm w hair setae	Oligochaeta	Haplotaxida	Tubificidae	CG	N/A
Site 4 QL	Turbellaria	Turbellaria			CG	N/A
Site 4 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	N/A
Site 4 QL	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	N/A
Site 4 QL	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	N/A
Site 4 QL	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	N/A
Site 4 QL	Physella sp	Mollusca	Basommatophora	Physidae	SC	N/A
Site 4 QL	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	N/A
Site 4 QL	Paracymus sp	Insecta	Coleoptera	Hydrophilidae	PR	N/A
Site 4 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	N/A
Site 4 QT	Pseudolimnophila sp	Insecta	Diptera	Tipulidae	PR	1
Site 4 QT	Hydrophilidae	Insecta	Coleoptera	Hydrophilidae	PR	1
Site 4 QT	Libellulinae	Insecta	Odonata	Libellulidae	PR	1
Site 4 QT	Physella sp	Mollusca	Basommatophora	Physidae	SC	1
Site 4 QT	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	2
Site 4 QT	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	4
Site 4 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	60
Site 4 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	281
Site 6 QL	Cambaridae	Malacostraca	Decapoda	Cambaridae	CG	N/A
Site 6 QL	Psephenus herricki	Insecta	Coleoptera	Psephenidae	SC	N/A
Site 6 QL	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	N/A
Site 6 QL	Eukiefferiella claripennis gr	Insecta	Diptera	Chironomidae	CG	N/A
Site 6 QL	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	N/A
Site 6 QL	Peltodytes lengi	Insecta	Coleoptera	Haliplidae	PH	N/A
Site 6 QL	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	N/A
Site 6 QL	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	N/A
Site 6 QL	Physella sp	Mollusca	Basommatophora	Physidae	SC	N/A
Site 6 QL	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	N/A
Site 6 QL	Turbellaria	Turbellaria			CG	N/A
Site 6 QL	Simulium sp	Insecta	Diptera	Simuliidae	CF	N/A
Site 6 QL	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	N/A
Site 6 QL	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	N/A
Site 6 QL	Micropsectra sp	Insecta	Diptera	Chironomidae	CG	N/A
Site 6 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	N/A
Site 6 QT	Orthocladiinae	Insecta	Diptera	Chironomidae	CG	1
Site 6 QT	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	1
Site 6 QT	Corbicula fluminea	Mollusca	Pelecypoda	Corbiculidae	CF	1
Site 6 QT	Lumbriculidae	Oligochaeta	Lumbriculida	Lumbriculidae	CG	1

Site 6 QT	Polypedilum scalaenum gr	Insecta	Diptera	Chironomidae	SH	1
Site 6 QT	Paratendipes albimanus	Insecta	Diptera	Chironomidae	CG	2
Site 6 QT	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	2
Site 6 QT	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2
Site 6 QT	Turbellaria	Turbellaria			CG	3
Site 6 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	3
Site 6 QT	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	12
Site 6 QT	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	13
Site 6 QT	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	16
Site 6 QT	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	21
Site 6 QT	Simulium sp	Insecta	Diptera	Simuliidae	CF	68
Site 6 QT	Eukiefferiella sp	Insecta	Diptera	Chironomidae	CG	73
Site 6 QT	Elimia sp	Mollusca	Mesogastropoda	Pleuroceridae	SC	75

	Taxa Name	Class	Order	Family	FFG	Tolerence	Clinger	Count	
Ē	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	0	
اَچَ	Physella sp	Mollusca	Basommatophora	Physidae	SC	8.84	FALSE	0	
ج	Chironomus sp	Insecta	Diptera	Chironomidae	90	9.63	FALSE	0	
<u>;</u> =	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	0	
<u>;</u> =	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2.84	FALSE	0	
.≒	Limnophyes sp	Insecta	Diptera	Chironomidae	90	7	FALSE	0	
ص	Paratanytarsus sp	Insecta	Diptera	Chironomidae	90	8.45	TRUE	0	
اچِ∹ا	Stictochironomus sp	Insecta	Diptera	Chironomidae	90	6.52	FALSE	0	
ص.	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	6.7	FALSE	0	
احرا	Anopheles sp	Insecta	Diptera	Culicidae	CF	8:58	FALSE	0	
😘	Naididae	Oligochaeta	Haplotaxida	Naididae	90	9.1	FALSE	0	
ا نځ	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	6.48	FALSE	0	
Ğ	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	F)	7.58	FALSE	0	
.≒.	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	90	7.85	FALSE	0	
₩	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	8.63	FALSE	0	
≩	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	ЬН	6.22	TRUE	0	
ı,⊐∣	Turbellaria	Turbellaria			90	2	FALSE	4	4
, <u>~</u> ,	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	2	2
اجد	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5.1	TRUE	7	2
<u>,</u> Έ	Cricotopus bicinctus	Insecta	Diptera	Chironomidae	SH	8.54	FALSE	∞	8
ζ,	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	24	24
<u>, </u>	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2.84	FALSE	96	25
,–,	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	90	7.1	FALSE	15	15
.≒	Limnophyes sp	Insecta	Diptera	Chironomidae	90	7	FALSE	1	1
5	Micropsectra sp	Insecta	Diptera	Chironomidae	90	1.52	FALSE	20	20
۵	Paratanytarsus sp	Insecta	Diptera	Chironomidae	90	8.45	TRUE	1	1
0	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	6	FALSE	1	1
اعب	Thienemanniella xena	Insecta	Diptera	Chironomidae	90	5.9	FALSE	2	5
:≒	Simulium sp	Insecta	Diptera	Simuliidae	CF	4.4	TRUE	ĸ	3
100	Baetis flavistriga	Insecta	Ephemeroptera	Baetidae	90	6.58	FALSE	1	1
	Naididae	Oligochaeta	Haplotaxida	Naididae	90	9.1	FALSE	4	4
·	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	90	7.85	FALSE	132	25

20 10.2 68.32 168 71 106.5 30.4 8.45 9 29.5 13.2 6.58 36.4

12.44	111.96	921.2		
2	18	161		
2	18	339		
6.22 TRUE	TRUE			
6.22	6.22		ing	7.67
CF	ЬН		%C+0 %cl	0.29 51.62 7.67
Hydropsychidae CF	Hydroptilidae PH		%E	0.26
Frichoptera	Trichoptera		%ept	5.60
Ţ	<u>_</u>		%	5.72
Insecta	Insecta		mhbi	3
Cheumatopsyche sp	Hydroptila sp		ept	23
CR-S2	CR-S2		tr	· v

Sample ID	Taxa Name	Class	Order	Family	FFG	Tolerence	Clinger	Count
CR-4 QL	Ischnura sp	Insecta	Odonata	Coenagrionidae	PR	9.52	FALSE	N/A
CR-4 QL	Polypedilum fallax gr	Insecta	Diptera	Chironomidae	SH	6.39	FALSE	N/A
CR-4 QL	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	5.9	FALSE	N/A
CR-4 QL	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	5.9	FALSE	N/A
CR-4 QL	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	6.7	FALSE	N/A
CR-4 QL	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	6.4	TRUE	N/A
CR-4 QL	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	6.4	FALSE	N/A
CR-4 QL	Lumbriculidae	Oligochaeta	Lumbriculida	Lumbriculidae	CG	7.3	FALSE	N/A
CR-4 QL	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	2.8	TRUE	N/A
CR-4 QL	Procladius sp	Insecta	Diptera	Chironomidae	PR	9.1	FALSE	N/A
CR-4 QL	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	7.18	TRUE	N/A
CR-4 QL	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	7.4	FALSE	N/A
CR-4 QL	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	6.87	TRUE	N/A
CR-4 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	N/A
CR-4 QL	Synurella sp	Malacostraca	Amphipoda	Crangonyctidae	CG	8	FALSE	N/A
CR-4 QL	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	N/A
CR-4 QL	Hydropsychidae	Insecta	Trichoptera	Hydropsychidae	CF	4	FALSE	N/A
CR-4 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	
CR-4 QL	Stempellinella sp	Insecta	Diptera	Chironomidae	CG	4.62	FALSE	N/A
CR-4 QL	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	6.48	FALSE	
CR-4 QL	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	N/A
CR-4 QL	Simulium sp	Insecta	Diptera	Simuliidae	CF	4.4	TRUE	
CR-4 QL	Ablabesmyia sp	Insecta	Diptera	Chironomidae	PR	7.2	FALSE	N/A
CR-4 QL	Phaenopsectra flavipes	Insecta	Diptera	Chironomidae	SC	7.94	FALSE	N/A
CR-4 QL	Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	8.45	TRUE	N/A
CR-4 QL	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	7.1	FALSE	N/A
CR-4 QL	Stictochironomus sp	Insecta	Diptera	Chironomidae	CG	6.52	FALSE	N/A
CR-4 QL	Turbellaria	Turbellaria	Біріста	Cilifornomiaac	CG	5	FALSE	N/A
CR-4 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5.1	TRUE	1
CR-4 QT	Stempellinella sp	Insecta	Diptera	Chironomidae	CG	4.62	FALSE	1
CR-4 QT	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2.84	FALSE	1
CR-4 QT	Chimarra aterrima	Insecta	Trichoptera	Philopotamidae	CF	2.04	TRUE	1
CR-4 QT	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	7.18	TRUE	1
CR-4 QT	Orconectes sp	Malacostraca	· · · · · · · · · · · · · · · · · · ·	Cambaridae	CG	5.49	FALSE	1
CR-4 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	1
CR-4 QT	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	1
CR-4 QT	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	6.4	TRUE	1
CR-4 QT	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	6.48	FALSE	1
CR-4 QT	Gyraulus sp	Mollusca	Lymnophila	Planorbidae	SC	7.5	FALSE	1
CR-4 QT	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	6.7	FALSE	1
CR-4 QT	Polypedilum illinoense gr		Diptera	Chironomidae	SH	9	FALSE	2
CR-4 QT	Stenacron interpunctatum	Insecta	· ·		CG	-		2
CR-4 QT	Simulium sp	Insecta	Ephemeroptera Diptera	Heptageniidae Simuliidae	CF	6.87 4.4	TRUE TRUE	
CR-4 QT	Naididae	Insecta	<u> </u>	Naididae	CG	9.1	FALSE	
	Psephenus herricki	Oligochaeta	Haplotaxida					
CR-4 QT		Insecta	Coleoptera	Psephenidae	SC	2.35	TRUE	
CR-4 QT	Hydropsyche betteni/depravata complex	Insecta	Trichoptera	Hydropsychidae Caenidae		7.4	TRUE	
CR-4 QT	Caenis diminuta gr	Insecta	Ephemeroptera		CG	7.4	FALSE	
CR-4 QT	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	5.9	FALSE	3
CR-4 QT	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	7.1	FALSE	
CR-4 QT	Turbellaria	Turbellaria	Dintor-	Chinara	CG	5	FALSE	
CR-4 QT	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	5.3	FALSE	
CR-4 QT	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	7
CR-4 QT	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae		6.22	TRUE	
CR-4 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5.1	TRUE	8
CR-4 QT	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	5.9	FALSE	
CR-4 QT	Chimarra obscura	Insecta	Trichoptera	· · · · · · · · · · · · · · · · · · ·	CF	2.8	TRUE	
CR-4 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	
CR-8 QL	Lymnaea sp	Mollusca	Lymnophila	Lymnaeidae	SC	7	FALSE	
CR-8 QL	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae		8.63	FALSE	
CR-8 QL	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	N/A

CR-8 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	N/A
CR-8 QL	Tipula sp	Insecta	Diptera	Tipulidae	SH	7.33	FALSE	N/A
CR-8 QL	Physella sp	Mollusca	Basommatophora	Physidae	SC	8.84	FALSE	N/A
CR-8 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	N/A
CR-8 QT	Erpobdella punctata	Hirudinea	Pharyngobdellida	Eropolellidae	CG	7.8	FALSE	1
CR-8 QT	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	9.1	FALSE	1
CR-8 QT	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	2.8	TRUE	1
CR-8 QT	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	6.4	FALSE	1
CR-8 QT	Physella sp	Mollusca	Basommatophora	Physidae	SC	8.84	FALSE	1
CR-8 QT	Lumbriculidae	Oligochaeta	Lumbriculida	Lumbriculidae	CG	7.3	FALSE	7
CR-8 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	10
CR-8 QT	Turbellaria	Turbellaria			CG	5	FALSE	15
CR-8 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	272

KY Division of Water/Cane Run Watershed - Wadeable Streams/Macroinvertebrate Results, 2016

StationID	StreamName	CollDate	Bioregion	Basin	CollMeth	G-TR	G-EPT	mHBI	m%EPT	%C+O	%ClngP	G-TR	G-EPT	HBI2	m%EPT	%CO	%ClngP	MBI	Ratings
Site 1	Cane Run	6/17/2016	BG	KY	Riffle Kick + MH	50	14	5.02	26.26	7.74	76.77	73.53	48.28	72.23	35.98	93.19	100.00	70.53	Excellent
Site 2	Cane Run	6/17/2016	BG	KY	Riffle Kick + MH	58	13	5.70	15.30	9.25	22.06	85.29	44.83	62.45	20.96	91.66	29.82	55.84	Fair
Site 5	Cane Run	6/16/2016	BG	KY	Riffle Kick + MH	47	6	5.84	5.86	33.64	31.17	69.12	20.69	60.41	8.03	67.03	42.13	44.57	Fair
Site 7	Cane Run	8/25/2016	BG	KY	Riffle Kick + MH	43	4	7.82	29.35	25.60	29.35	63.24	13.79	31.70	40.21	75.15	39.66	43.96	Fair
Site 9	Cane Run	6/16/2016	BG	KY	Riffle Kick + MH	35	7	5.50	3.29	7.89	19.08	51.47	24.14	65.35	4.51	93.04	25.78	44.05	Fair

KY Division of Water/Cane Run Watershed - Headwater Streams/Macroinvertebrate Results, 2017

StationID	StreamName	CollDate	Bioregion	Basin	CollMeth	G-TR	G-EPT	mHBI	m%EPT	%Ephem	%C+O	%ClngP	G-TR	G-EPT	HBI2	m%EPT	%Ephem	%C+O	%ClngP	MBI	Rating
Site 3	UT Cane Run	3/21/2017	BG	KY	Riffle Kick + MH	8	3	7.84	0.34	0.00	0.34	0.34	13.56	9.68	27.64	0.40	0.00	100.00	0.46	21.68	Poor
Site 4	UT Cane Run	3/21/2017	BG	KY	Riffle Kick + MH	13	0	7.83	0.00	0.00	0.00	0.00	22.03	0.00	27.76	0.00	0.00	100.00	0.00	21.40	Poor
Site 6	UT Cane Run	3/21/2017	BG	KY	Riffle Kick + MH	23	0	5.42	0.00	0.00	40.68	24.75	38.98	0.00	58.58	0.00	0.00	59.73	32.78	27.15	Poor
Site 10 (CR-S2)	Cane Run	4/28/2017	BG	KY	Riffle Kick + MH	23	3	5.72	5.60	0.29	51.62	7.67	38.98	9.68	54.71	6.45	0.44	48.71	10.16	24.16	Poor
CR-4	UNT Cane Run	2/23/2017	BG	KY	Riffle Kick + MH	35	6	5.82	9.26	1.85	11.11	15.12	59.32	19.35	53.47	10.66	2.78	89.50	20.03	36.45	Poor
CR-8	Cane Run	2/23/2017	BG	KY	Riffle Kick + MH	13	1	7.05	0.32	0.00	2.27	0.32	22.03	3.23	37.68	0.37	0.00	98.40	0.43	23.16	Poor

ky16-004

Wadeable (>5 mi²) Macroinvertebrate Collection Check Sheet for High-**Gradient Streams** Collector(s) Initials: Collected during the wadeable sampling period (May 1-Sept. 30). Stream Conditions Clear with Normal flow Turbid or High flow. (If so, do not sample.) No flow in riffles. (If so, do not sample.) Stream Reach 100 meters - 300 meters. How long? Number of riffles in stream reach: (at least 3) Number of runs in stream reach: (at least 3) Number of pools in stream reach: (at least 3) 1 m² Kick-net Method √ 0.25 m² quadrat from the thalwag of Riffle #1 0.25 m² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4 from the sample reach; Riffle #4 can be anywhere within the stream reach) 0.25 m² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion of the stream reach 0.25 m² quadrat from the thalwag of Riffle #3 which is located at the most downstream portion of the stream reach Multi-habitat Method Boulder Picks Boulder Pick (5 boulders from pools, 5 boulders from riffles and 5 boulders from runs within reach totaling 15 rocks) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in pools and 3 sweeps in at least 2 runs within reach; if tree roots are present in riffle at least 1 sweep required) Marginal Emergent Vegetation Sweeps (3 sweeps within reach) Bedrock/Slab-Rock Sweeps (3 from pools and one from a run within reach) Nusticia Sweeps (3 sweeps within reach) Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles) Fine Material (Silt/Sand/Fine Gravel) Scoops Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach) Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans Effective Date: September 30, 2015

	ed with attached algae and mosses sicks from pools, 3 Aufwuchs picks picks from riffles within reach)	
not more than 6 linear meters of su Conditioned Submerged Wood	cks – Must pick at least 3 linear meters of conditione ubmerged wood; wood pieces should be from 5 to 15 Picks: Linear Meters of Wood Sampled	cm in diameter.
reach)	is confluence w/ North	

Ky16-004

Wadeable (>5 mi²) Macroinvertebrate Collection Check Sheet for High-**Gradient Streams** Date: 10-17-1 Collector(s) Initials: Collected during the wadeable sampling period (May 1-Sept. 30). **Stream Conditions** Clear with Normal flow Turbid or High flow. (If so, do not sample.) No flow in riffles. (If so, do not sample.) Stream Reach 100 meters – 300 meters. How long? (at least 3) Number of riffles in stream reach: (at least 3) Number of runs in stream reach: Number of pools in stream reach: 1 m² Kick-net Method 0.25 m² quadrat from the thalwag of Riffle #1 √0.25 m² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4 from the sample reach; Riffle #4 can be anywhere within the stream reach) 0.25 m² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion of the stream / reach 0.25 m² quadrat from the thalwag of Riffle #3 which is located at the most downstream portion of the stream Multi-habitat Method **Boulder Picks** Boulder Pick (5 boulders from pools, 5 boulders from riffles and 5 boulders from runs within reach totaling 15 rocks) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in pools and 3 sweeps in at least 2 runs within reach; if tree roots are present in riffle at least 1 sweep required) No Fiffle Marginal Emergent Vegetation Sweeps (3 sweeps within reach) Bedrock/Slab-Rock Sweeps (3 from pools and one from a run within reach) Justicia Sweeps (3 sweeps within reach) , NOVE Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles) Fine Material (Silt/Sand/Fine Gravel) Scoops Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach) Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans Effective Date: September 30, 2015

Ky/6-004 Site 2

Conditioned Submerged Wood Picks – Must pick at least 3 linear meters of co not more than 6 linear meters of submerged wood; wood pieces should be from	nditioned submerge 1 5 to 15 cm in diam	d wood, but eter.
Conditioned Submerged Wood Picks: Linear Meters of Wood Sampled linear meter of wood from pools, 1 linear meter of wood from runs and 1 linear meters.	eter of wood from riff	(1 fles within
Comments: Viffles Confined to appearant, Long pools above + below. Incel ystream of Ky62, wider ite	er part	ier
reach, Long pools above + below.	Ripavia.	N ZON.
nced upstream of Ky 62, wider it	own strea	11
Y: Fifes		
1 Serday		
A Pieres		
6 = 1 = 1		
126		
KY 62		
7/// 0		

Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans
Effective Date: September 30, 2015
Page 65 of 124

Collector(s) Initials:	R. Storm.	J. storm	Station Number	site o	ut care v
Collected during	g the headwater	sampling period (March 1– May 31).		
Stream Conditions					
Clear /Normal fl Turbid/High flow No flow in riffle	w. (If so, do not				
Stream Reach					
100 meters – 300	O maters. How le	ng2 /00		meters	
Number of riffles in s		ong:	(at least 3)	Hieters	
Number of runs in str		3	(at least 3)		
Number of pools in st 4 runs and ri		0	(at least 3; for h	eadwaters with no	pools, then at least
1 m ² Kick-net Metho	<u>od</u>				
reach			nich is located at the mo		
reach		ig of Riffie #5 wif	ich is located at the mo	st downstream poi	tion of the stream
		g of Rime #3 wii	ich is located at the mo	st downstream poi	tion of the stream
reach Multi-Habitat Metho Boulder Picks	<u>od</u>		ich is located at the mo	st downstream poi	tion of the stream
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5)	od rocks from pools	s/side channels/ed			
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5) Sweeps (If any of the	od rocks from pools ese habitats are	s/side channels/ed missing, then ad	ldies within reach)	ach habitat that	is present.)
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5) Sweeps (If any of the reach)	od rocks from pools ese habitats are Roots Sweeps (3	s/side channels/ed missing, then ad 3 sweeps in 2 poo	ldies within reach) d one more sweep to e ls/side channels/eddies	ach habitat that and 3 sweeps in 2	is present.) runs/riffles within
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5) Sweeps (If any of the reach)	od rocks from pools ese habitats are Roots Sweeps (3 eeps (3 sweeps i	s/side channels/ed missing, then ad 3 sweeps in 2 poo	ldies within reach) d one more sweep to e	ach habitat that and 3 sweeps in 2	is present.) runs/riffles within
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5 greeps (If any of the reach) A Undercut Banks/reach) Sticks/Wood Sw. Other Sweeps (E. Conditioned Leaf Pacconditioned Leaf Pacconditioned Leaf	od rocks from pools ese habitats are Roots Sweeps (3 eeps (3 sweeps i x. Bedrock swee eck Picks f Pack Picks (3 c	s/side channels/ed missing, then ad 3 sweeps in 2 poo in pools/side chan eps) Comments:	Idies within reach) done more sweep to e Is/side channels/eddies nels/eddies and 3 sweep It A for the acks from pools/side ch	ach habitat that and 3 sweeps in 2 os in runs within re	is present.) runs/riffles within each)
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5 greeps (If any of the reach) A Undercut Banks/reach) Sticks/Wood Sw. Other Sweeps (E. Conditioned Leaf Pacconditioned Leaf Pacconditioned Leaf	rocks from pools ese habitats are (Roots Sweeps (3) eeps (3) sweeps it x. Bedrock swee eck Picks f Pack Picks (3) cuns and 3 condit	s/side channels/ed missing, then ad 3 sweeps in 2 poo in pools/side chan eps) Comments:	Idies within reach) done more sweep to e Is/side channels/eddies nels/eddies and 3 sweep It A for the acks from pools/side ch	ach habitat that and 3 sweeps in 2 os in runs within re	is present.) runs/riffles within each)
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5) Weeps (If any of the reach) Sticks/Wood Sw. Other Sweeps (E. Conditioned Leaf Packs from reach) Conditioned Leaf Packs from reachs	rocks from pools ese habitats are (Roots Sweeps (3) eeps (3) sweeps it x. Bedrock swee eck Picks f Pack Picks (3) cuns and 3 condit and/Fine Grave	s/side channels/ed missing, then ad 3 sweeps in 2 poo in pools/side chan eps) Comments:	Idies within reach) done more sweep to e Is/side channels/eddies nels/eddies and 3 sweep It A for the acks from pools/side ch	ach habitat that and 3 sweeps in 2 ps in rups within r	is present.) runs/riffles within each) onditioned leaf
reach Multi-Habitat Metho Boulder Picks Boulder Pick (5) Boulder Pick (5) Weeps (If any of the reach) Sticks/Wood Sw. Other Sweeps (E. Conditioned Leaf Packs from reach) Conditioned Leaf Packs from reach (Silt/Silt) Fine Material (Silt/Silt)	rocks from pools ese habitats are (Roots Sweeps (3) eeps (3) sweeps it x. Bedrock swee eck Picks f Pack Picks (3) cuns and 3 condit and/Fine Grave	s/side channels/ed missing, then ad 3 sweeps in 2 poo in pools/side chan eps) Comments:	Idies within reach) Id one more sweep to each of the sweep to each of the sweep to each of the sweep the sweep to each of the sweep to each of the sweep	ach habitat that and 3 sweeps in 2 ps in runs within received very annels/eddies, 3 ceres. 6 depositional a	is present.) runs/riffles within each) onditioned leaf

Date: 3-21-17 Time: 3 pm Collector(s) Initials: R. 5 torn, J. 5 torn Station Number Site 4 Ut Care
Collected during the headwater sampling period (March 1– May 31)
Stream Conditions
Clear /Normal flow Turbid/High flow. (If so, do not sample.) No flow in riffles. (If so, do not sample.)
Stream Reach
Number of riffles in stream reach: Number of pools in stream reach: 4 runs and riffles) Modern 100 meters (at least 3) (at least 3) (at least 3) (at least 3; for headwaters with no pools, then at least
1 m ² Kick-net Method
0.25 m² quadrat from the thalwag of Riffle #1 0.25 m² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4 from the sample reach; Riffle #4 can be anywhere within the stream reach) 0.25 m² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion of the stream reach 0.25 m² quadrat from the thalwag of Riffle #3 which is located at the most downstream portion of the stream reach
Multi-Habitat Method
Boulder Picks
Boulder Pick (5 rocks from pools/side channels/eddies within reach)
Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.)
Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within
Other Sweeps (Ex. Bedrock sweeps) Comments: Bod-och Antweeps in runs within reach)
Conditioned Leaf Pack Picks
Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles)
Fine Material (Silt/Sand/Fine Gravel) Scoops
Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach)
Conditioned Submerged Wood Picks - Total between 2 and 4 linear meters of conditioned submerged wood.
Submerged Wood Picks: Linear Meters of Wood Sampled(Wood from riffles. runs and pools/side channels/eddies within reach shall be represented.)
Field Measurements: 10.4 DO 1487 Temperature 79 pH 380 Conductivity

Lane Run

14/16-004

Wadeable (>5 mi²) Macroinvertebrate Collection Check Sheet for High-**Gradient Streams** Date: 0-16-16 Collector(s) Initials: Collected during the wadeable sampling period (May 1-Sept. 30). **Stream Conditions** Clear with Normal flow Turbid or High flow, (If so, do not sample.) No flow in riffles. (If so, do not sample.) Stream Reach 100 meters – 300 meters. How long? 200 meters (at least 3) Number of riffles in stream reach: (at least 3) Number of runs in stream reach: (at least 3) Number of pools in stream reach: 1 m² Kick-net Method 0.25 m² quadrat from the thalwag of Riffle #1 70.25 m² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4 from the sample reach; Riffle #4 can be anywhere within the stream reach) 10.25 m² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion of the stream / reach 0.25 m² quadrat from the thalwag of Riffle #3 which is located at the most downstream portion of the stream reach Multi-habitat Method **Boulder Picks** Boulder Pick (5 boulders from pools, 5 boulders from riffles and 5 boulders from runs within reach totaling 15 rocks) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in pools and 3 sweeps in at least 2 runs within reach; if tree roots are present in riffle at least 1 sweep required) NONE in FIFE Marginal Emergent Vegetation Sweeps (3 sweeps within reach) Bedrock/Slab-Rock Sweeps (3 from pools and one from a run within reach) Justicia Sweeps (3 sweeps within reach) Added ada:tional From pool Conditioned Leaf Pack Picks

Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools, 3 conditioned leaf

packs from runs and 3 conditioned leaf packs from riffles)

Fine Material (Silt/Sand/Fine Gravel) Scoops

Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach)

Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans Effective Date: September 30, 2015

Aufwuchs Picks - habitat associated with attached algae and mosses

Aufwuchs Picks (3 Aufwuchs picks from pools, 3 Aufwuchs picks from runs and 3 Aufwuchs picks from riffles within reach)

Conditioned Submerged Wood Picks - Must pick at least 3 linear meters of conditioned submerged wood, but not more than 6 linear meters of submerged wood; wood pieces should be from 5 to 15 cm in diameter.

Conditioned Submerged Wood Picks: Linear Meters of Wood Sampled

linear meter of wood from pools, 1 linear meter of wood from runs and 1 linear meter of wood from riffles within reach)

Comments: Low Flow h. Oo. levels, saspect

Low QO Qwight.

	Time: 4pm 1 J. storm Station Number Site 6 - ut core
Collected during the headwate	ter sampling period (March 1– May 31).
Stream Conditions	
Clear /Normal flow Turbid/High flow. (If so, do no	
Stream Reach	
100 meters – 300 meters. Flow	v long? 100 meters
Number of riffles in stream reach	2 (at least 3)
Number of runs in stream reach:	Z (at least 3)
Number of pools in stream reach: 4 runs and riffles)	(at least 3; for headwaters with no pools, then at least
1 m ² Kick-net Method	
V 2	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.25 m ² quadrat from the thal	Iwag of Riffle #1 Iwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4
	ffle #4 can be anywhere within the stream reach)
0.25 m ² quadrat from the thal	Iwag of Riffle #2 which is located at the most upstream portion of the stream
/ reach	2
0.25 m^2 quadrat from the thal	wag of Riffle #3 which is located at the most downstream portion of the stream
reach	
Multi-Habitat Method	
Boulder Picks	
Boulder Picks Boulder Pick (5 rocks from poor	ools/side channels/eddies within reach)
Boulder Pick (5 rocks from poo	ools/side channels/eddies within reach) re missing, then add one more sweep to each habitat that is present.)
Boulder Pick (5 rocks from poor Sweeps (If any of these habitats at Undercut Banks/Roots Sweeps	
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats at Undercut Banks/Roots Sweeps reach)	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats an Undercut Banks/Roots Sweeps reach)	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within as in pools/side channels/eddies and 3 sweeps in runs within reach)
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats and Undercut Banks/Roots Sweeps reach) Sticks/Wood Sweeps (3 sweeps Other Sweeps (Ex. Bedrock sw	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within as in pools/side channels/eddies and 3 sweeps in runs within reach)
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats and Undercut Banks/Roots Sweeps reach) Sticks/Wood Sweeps (3 sweeps Other Sweeps (Ex. Bedrock sweeps) Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within as in pools/side channels/eddies and 3 sweeps in runs within reach)
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats at Undercut Banks/Roots Sweeps reach) Sticks/Wood Sweeps (3 sweeps Other Sweeps (Ex. Bedrock sw Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within as in pools/side channels/eddies and 3 sweeps in runs within reach) weeps) Comments: 3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf ditioned leaf packs from riffles)
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats and Undercut Banks/Roots Sweeps reach) Sticks/Wood Sweeps (3 sweeps Other Sweeps (Ex. Bedrock sweeps) Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks Fine Material (Silt/Sand/Fine Gra	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within as in pools/side channels/eddies and 3 sweeps in runs within reach) weeps) Comments: 3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf ditioned leaf packs from riffles)
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats and Undercut Banks/Roots Sweeps reach) Sticks/Wood Sweeps (3 sweeps Other Sweeps (Ex. Bedrock sweeps) Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks Fine Material (Silt/Sand/Fine Gra Fine Material Scoops (Using a	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within as in pools/side channels/eddies and 3 sweeps in runs within reach) weeps) Comments: 3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf ditioned leaf packs from riffles) avel) Scoops
Boulder Pick (5 rocks from pool Sweeps (If any of these habitats and Undercut Banks/Roots Sweeps reach) Sticks/Wood Sweeps (3 sweeps Other Sweeps (Ex. Bedrock sweeps) Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks Fine Material (Silt/Sand/Fine Gra Fine Material Scoops (Using a Conditioned Submerged Wood Picks: Lines	re missing, then add one more sweep to each habitat that is present.) s (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within use in pools/side channels/eddies and 3 sweeps in runs within reach) yeeps) Comments: 3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf ditioned leaf packs from riffles) avel) Scoops US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach) icks – Total between 2 and 4 linear meters of conditioned submerged wood.

Gradient Streams	Time:	Td(z)		
Collector(s) Initials: P. A.	1 CK	Station Numb	er C/2 -	7
Collected during the w	adeable sampling perio	od (May 1-Sept. 30).		
Stream Conditions				
Clear with Normal flow				
Turbid or High flow. (If so No flow in riffles. (If so	f so, do not sample.)			
	o, do not sample.)			
Stream Reach				
100 meters - 300 meters		50	meters	
Number of riffles in stream ream ream ream ream ream ream ream		(at least 3)		
Number of pools in stream re		(at least 3) (at least 3)		
1 m2 Kick-net Method		(,		
0.25 m ² quadrat from the	he thalwag of Riffle #1	Nes (20% 0.1 design route)	l week - to t	
from the sample rea	ch: Riffle #4 can be an	nt area of Riffle #1 (If Riffl ywhere within the stream r	each)	
V 0.25 m ² quadrat from t	he thalwag of Riffle #2	which is located at the mo	ost upstream portic	on of the stream
reacn		which is located at the mo		
reach	to that rug of terme #3	which is located at the mo	st downstream poi	tion of the strea
Multi-habitat Method				
Boulder Picks				
Boulder Pick (5 boulders	s from pools 5 houlds	rs from riffles and 5 bould		11
15 rocks)	s from pools, 3 boulde	is from Times and 5 bound	iers from runs wit	hin reach totalin
Sweeps (If any of these habi	itats are missing, then	add one more sweep to e	ach habitat that i	is present.)
Undercut Banks/Roots S	weeps (3 sweeps in po	ols and 3 sweeps in at		
least 2 runs within re	each; if tree roots are pr	esent in riffle at least 1 sw	eep required)	
Marginal Emergent Vege Bedrock/Slab-Rock Swe	eps (3 from pools and o	ps within reach) one from a run within reach	1)	
Justicia Sweeps (3 sweep	ps within reach)		.,	
Conditioned Leaf Pack Pick				
Conditioned Leaf Pack P packs from runs and	icks (3 conditioned lea 3 conditioned leaf pac	f packs from pools, 3 cond ks from riffles)	itioned leaf	
ine Material (Silt/Sand/Fin	e Gravel) Scoops			
Fine Material Scoops (U	sing a US#10 sieve, sc	oop fine material and sieve	e. 6 depositional a	reas within read
Methods for Collecting Macroin	vertebrate Samples As Re	equired For TMDL Alternativ		
VO FINES	Effective Da	ite: September 30, 2015 age 64 of 124		

Aufwuchs Picks - habitat associated with attached algae and mosses

Aufwuchs Picks (3 Aufwuchs picks from pools, 3 Aufwuchs picks from runs and 3 Aufwuchs picks from riffles within reach)

Conditioned Submerged Wood Picks – Must pick at least 3 linear meters of conditioned submerged wood, but not more than 6 linear meters of submerged wood; wood pieces should be from 5 to 15 cm in diameter.

Comments: Strog is Karit upstreum of I-75, Very low flow, but deep pools, upstream or-liste Road open with corn in Field. channel is chacked with wetland veg. Downstream 80%. Canopy Loverige. liste Road 200 (esidential Tenp 24.4 PH 7.2 Cord 660 DO 5.3/64.51.

Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans
Effective Date: September 30, 2015

Page 65 of 124

X116-004

Wadeable (>5 mi²) Macroinvertebrate Collection Check Sheet for High-Gradient Streams Date: 0-Collector(s) Initials: Collected during the wadeable sampling period (May 1-Sept. 30). 38,129319 Stream Conditions -84.507478 Clear with Normal flow Turbid or High flow. (If so, do not sample.) No flow in riffles. (If so, do not sample.) Stream Reach 100 meters – 300 meters. How long? (at least 3) Number of riffles in stream reach: (at least 3) Number of runs in stream reach: Number of pools in stream reach: 1 m2 Kick-net Method 0.25 m² quadrat from the thalwag of Riffle #1 0.25 m² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4 from the sample reach; Riffle #4 can be anywhere within the stream reach) 0.25 m² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion of the stream reach 0.25 m² quadrat from the thalwag of Riffle #3 which is located at the most downstream portion of the stream reach Multi-habitat Method **Boulder Picks** Boulder Pick (5 boulders from pools, 5 boulders from riffles and 5 boulders from runs within reach totaling 15 rocks) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in pools) and 3 sweeps in at least 2 runs within reach; if tree roots are present in riffle at least 1 sweep required) Marginal Emergent Vegetation Sweeps (3 sweeps within reach) Justicia Sweeps (3 sweeps within reach) NoNe X . HAPP IN 101/5 Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles) Fine Material (Silt/Sand/Fine Gravel) Scoops Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach) Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-based Plans Effective Date: September 30, 2015

Page 64 of 124

5 te 9

Aufwuchs Picks - habitat associated with attached algae and mosses
Aufwuchs Picks (3 Aufwuchs picks from pools, 3 Aufwuchs picks from runs and 3 Aufwuchs picks from riffles within reach)
Conditioned Submerged Wood Picks – Must pick at least 3 linear meters of conditioned submerged wood, but not more than 6 linear meters of submerged wood; wood pieces should be from 5 to 15 cm in diameter.
Conditioned Submerged Wood Picks: Linear Meters of Wood Sampled
Comments: Pools shallow, flow pretty good For
Carerur, buffer on each side, Filamentous
growth present but not smathering

Headwater (<5 mi²) Macroinvertebrate Collection Check Sheet for High-Gradient Streams Date: 124-17 Fime: 344-43444 Collector(s) Initials: 124-17 Station Number 124-52
Collected during the headwater sampling period (March 1– May 31).
Stream Conditions
Clear /Normal flowTurbid/High flow. (If so, do not sample.)No flow in riffles. (If so, do not sample.)
Stream Reach
100 meters - 300 meters. How long? Number of riffles in stream reach: Number of runs in stream reach: Number of pools in stream reach: 4 runs and riffles) meters (at least 3) (at least 3) (at least 3) (at least 3; for headwaters with no pools, then at least
1 m ² Kick-net Method
0.25 m ² quadrat from the thalwag of Riffle #1 0.25 m ² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4 from the sample reach: Riffle #4 can be anywhere within the stream reach) 0.25 m ² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion of the stream reach 0.25 m ² quadrat from the thalwag of Riffle #3 which is located at the most downstream portion of the stream reach
Multi-Habitat Method
Boulder Picks
Boulder Picks Boulder Pick (5 rocks from pools/side channels/eddies within reach)
Boulder Pick (5 rocks from pools/side channels/eddies within reach)
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach)
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) Other Sweeps (Ex. Bedrock sweeps) Comments:
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) Other Sweeps (Ex. Bedrock sweeps) Comments: Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) Other Sweeps (Ex. Bedrock sweeps) Comments: Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles)
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) Other Sweeps (Ex. Bedrock sweeps) Comments: Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles) Fine Material (Silt/Sand/Fine Gravel) Scoops
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) Other Sweeps (Ex. Bedrock sweeps) Comments: Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles) Fine Material (Silt/Sand/Fine Gravel) Scoops Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach)
Boulder Pick (5 rocks from pools/side channels/eddies within reach) Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that is present.) Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within reach) Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) Other Sweeps (Ex. Bedrock sweeps) Comments: Conditioned Leaf Pack Picks Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf packs from runs and 3 conditioned leaf packs from riffles) Fine Material (Silt/Sand/Fine Gravel) Scoops Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach) Conditioned Submerged Wood Picks – Total between 2 and 4 linear meters of conditioned submerged wood. Submerged Wood Picks: Linear Meters of Wood Sampled (Wood from riffles,

Collector(s) Initials: 13	1/C6 Time: 4		n Number C	p-4/	acvo
Collected during the	headwater sampling	period (March 1– M	1ay 31).		
Stream Conditions					
Clear /Normal flow					
Turbid/High flow. (If					
No flow in riffles. (I	f so, do not sample.)				
Stream Reach					
100 meters – 300 met	ters How long?	100		meters	
Number of riffles in stream		(at	least 3)	neters	
Number of runs in stream	reach: 3	(at le			
Number of pools in stream		(at le	east 3; for headwat	ers with no pools, t	hen at leas
4 runs and riffles)				
1 m2 Kick-net Method					
√ 0.25 m ² quadrat from	n the thelwag of Piff	lo #1			
0.25 m ² quadrat from	n the thalwag of a dif	ferent area of Riffle	#) (If Riffle #1 is	small, then sample	Riffle #4
from the sample i	reach; Riffle #4 can b	e anywhere within t	he stream reach)		
<u> </u>	n the thalwag of Riffl	le #2 which is locate	ed at the most upst	ream portion of the	stream
reach 0.25 m ² quadrat fron	o the thalwag of Riffl	e #3 which is locate	d at the most down	astream portion of t	he stream
reach	Title thatwag of Rim	e 45 Willeli is locate	a at the most down	istroam portion of t	
Multi-Habitat Method					
Boulder Picks					
Boulder Pick (5 rocks	from pools/side cha	nnels/eddies within	reach)		
Sweeps (If any of these h	abitats are missing,	then add one more	sweep to each ha	bitat that is presen	it.)
Undercut Banks/Root	e Sweene (3 eweene)	n 2 pools/side chan	nels/eddies and 3 s	weens in 2 runs/riff	les within
reach)					ics within
Sticks/Wood Sweeps	(3 sweeps in pools/si	de channels/eddies		ns within reach)	
Other Sweeps (Ex. Bo	edrock sweeps) Comr	nents: 2 neg	roch		
Conditioned Leaf Pack P	icks				
		/		/ 12: 2 1:::	11 6
Conditioned Leaf Pac	ck Picks (3 conditione and 3 conditioned leaf	d leaf packs from p	ools/side channels	eddies, 3 condition	ed leaf
packs from runs a	A	N/A			
N/	Fine Gravel) Senons	/ /A			
Fine Material (Silt/Sand/	time Otheren ocoup.				
Fine Material (Silt/Sand/ Fine Material Scoops			al and sieve. 6 de	positional areas with	nin reach)
Fine Material Scoops	(Using a US#10 slev	e, scoop fine materi			
Fine Material Scoops Conditioned Submerged	(Using a US#10 siev Wood Picks – Total	e, scoop fine materi		nditioned submerg	ged wood.
Fine Material Scoops Conditioned Submerged Submerged Wood Pic	(Using a US#10 siev Wood Picks – Total	e, scoop fine materi between 2 and 4 li `Wood Sampled	near meters of co	nditioned submerg	ged wood.
Fine Material Scoops Conditioned Submerged Submerged Wood Picture and pools/sic	(Using a US#10 siev Wood Picks – Total cks: Linear Meters of de channels/eddies wi	e, scoop fine materi between 2 and 4 li 'Wood Sampled thin reach shall be r	near meters of co	nditioned submerg	ged wood. From riffle
Fine Material Scoops Conditioned Submerged Submerged Wood Picture and pools/sic	(Using a US#10 siev Wood Picks – Total	e, scoop fine materi between 2 and 4 li 'Wood Sampled thin reach shall be r	near meters of co	nditioned submerg	ged wood. From riffle

Collected during the headwater sampling period (March 1– May 31). Stream Conditions Clear /Normal flow Turbid/High flow. (If so, do not sample.) No flow in riffles. (If so, do not sample.)	
Clear /Normal flow Turbid/High flow. (If so, do not sample.)	
Turbid/High flow. (If so, do not sample.)	
Stream Reach	
100 meters – 300 meters. How long? 150 meters	
Number of riffles in stream reach; 4 (at least 3)	
Number of runs in stream reach: 3 (at least 3)	1 41 -41-
Number of pools in stream reach: (at least 3; for headwaters with no 4 runs and riffles)	pools, then at lea
1 m ² Kick-net Method	
0.25 m ² quadrat from the thalwag of Riffle #1	
0.25 m ² quadrat from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then	sample Riffle #4
from the sample reach; Riffle #4 can be anywhere within the stream reach)	n of the studen
0.25 m ² quadrat from the thalwag of Riffle #2 which is located at the most upstream portion	n of the stream
reach 0.25 m ² quadrat from the thalwag of Riffle #3 which is located at the most downstream port	tion of the stream
reach	
Multi-Habitat Method	
Boulder Picks	
boulder ricks	
Boulder Pick (5 rocks from pools/side channels/eddies within reach)	
Sweeps (If any of these habitats are missing, then add one more sweep to each habitat that i	is present.)
Undercut Banks/Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2-	" Instriction within
reach)	rans/illies with
Sticks/Wood Sweeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within re	each)
✓ Other Sweeps (Ex. Bedrock sweeps) Comments: 3 bedrock	
Conditioned Leaf Pack Picks	
Conditioned Leaf Pack Picks	
Conditioned Leaf Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 co	onditioned leaf
packs from runs and 3 conditioned leaf packs from riffles)	
Fine Material (Silt/Sand/Fine Gravel) Scoops	
The family (Shi Shi ki hi Shi Shi Shi Shi Shi Shi Shi Shi Shi	
Fine Material Scoops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional at	reas within reach
	submerged wood
Conditioned Submerged Wood Picks – Total between 2 and 4 linear meters of conditioned s	0
Conditioned Submerged Wood Picks – Total between 2 and 4 linear meters of conditioned s	
Submerged Wood Picks: Linear Meters of Wood Sampled runs and pools/side channels/eddies within reach shall be represented.)	(Wood from riffl
Submerged Wood Picks: Linear Meters of Wood Sampled	(Wood from riffl
Submerged Wood Picks: Linear Meters of Wood Sampled	(Wood from riffl

Macroinvertebrate Sample Chain of Custody Project Information Sheet

						Cat 1;	
Client Name: Klow		Project Ad	ministrator:	S. EVan	S Project Num	ber: <u>Ky 16</u>	-60 4 Due Date: 7-18-16
Sampling Site Location: Care Run Watershed County: Fayette + Scott State: ty							
System Type: Wadenble	System Type: Wa denble EcoRegion: Ba Total Number of Samples: 8 Total Number of Containers: 8						
Reporting Requirements:Laboratory Data Sheet;Excel Spreadsheet;MBI Calculations via e-Submittal; Hardcopy; Both							
Samples Relinquished By: March Date/Time: 617-16/0400 Sample Received By: March Date/Time: 6-17-16/4:700							
Samples Relinquished By:		Date/Time:	s	ample Rece	eived By:		Date/Time:
Comments/Special Instructions:_							
Sample Reference ID	Qualitative or Quantitative	Collected By	Collection Date	Sample Type	Preservative	# of Containers Per Sample	Analysis Required (KDOW Protocol, ID Level; etc.)
site (Scott Co.)	Quant	BRICO	6/11/16	KN	Ethonel		KDOW +mall Protocol
site 1	ann			MH		1	See Bert
5ite 2 (Sott Co.)	Quant			KN			
5:teZ	Qual		V	MH			
5:te 5 (Scott Co.)	Quant		6/16/16	KN			
Site 5	Qua (MH			
Site 9 (Fayette Co.)	Quant	7		KN			,
5:te 9	Qual	V	V	MH	Y	V	4
			ie on Reverse	for More S	amples -		
System Type: Headwater Stream; Wad EcoRegion: Bluegrass; Mountain; Pe	eable Stream; Larg	e River; Lotic; Ot	her River Lowlands:	Other			
Sample Type: KN KickNet; TK Travelin					HDD HD Deep; HDS	HD Shallow; OT	Other; NA Not Available
MacLIMS: Client Setup/Login By	Date <u>l</u>	20 2-17-16; Repor	ted By Mulu	Da	te <u>9-15-16</u> ; Invo	iced By	SE Date 5/20/10
		(منه					

Macroinvertebrate Sample Chain of Custody Project Information Sheet MacLINS Kyil-004-01-07a

						Cat 1; Tas	54.1
Client Name: K DW		Project Ad	lministrator:	Steve Ev	Project Num	ber: Ky 16-0	004 Due Date: 9-30-16
Sampling Site Location:(a~	e Run In.	tershed		County:	Scott		State: K \/
System Type: Wadenble	E	coRegion: B	6	_Total Num	ber of Samples:_	2 Total	Number of Containers:
Reporting Requirements: <u></u> La	aboratory Data She	et; <u>Excel Spr</u>	eadsheet;	MBI Calcula	tions via e-Su	bmittal; Ha	rdcopy; Loth
Samples Relinquished By: Mu	T Remby	Date/Time: 8	25-16/25015	n ample Rece	eived By: 1 Dac	10 P7 00	MDate/Time: 8-25-16 25
					_		Date/Time:
Comments/Special Instructions							
Sample Reference ID	Qualitative or Quantitative	Collected By	Collection Date	Sample Type	Preservative	# of Containers Per Sample	Analysis Required (KDOW Protocol, ID Level; etc.)
CR-7	Quart	BR/CR	8-2516		Ethonol	Y 2	Know
CR-7	Qual	1	V	MH	V	#1	V
	1						
		- Continu	ie on Reverse	for More S	amples -	1.	
ystem Type: Headwater Stream; W EcoRegion: Bluegrass; Mountain;	adeable Stream; Lar	ge River; Lotic; Ot	ther	Other			
ample Type: KN KickNet; TK Trave	ling Kick; MH Multiha	ibitat; S Surber; H	ID Hester-Dendy	Multiplate;	HDD HD Deep; HDS	HD Shallow; OT	Other; NA Not Available
lact IMS: Client Setun/Login Rylvon	Nata S	7210-11 : Papar	ted By Ma	Day	ta 0-15-11	sicod Ry	SF Date 5/20/10
	Date 4	, repor	ted by terret	Da	.с. <u>ты-пь</u> , шис	viceu by	Date 3/20/19

Macroinvertebrate Sample Chain of Custody Project Information Sheet

Client Name: KDOW		Project Ad	ministrator: 🗲	stac E	Project Num	ber: <u>/ / / b-</u>	04 Due Date: 630-17
Sampling Site Location: Cq~						•	
System Type: Headwite	/ Ec	oRegion: B	6	Total Num	ber of Samples:_	6 Total	Number of Containers:
Reporting Requirements:	mer Stom	Date/Time: 3	22-17/0843	mple Rece	eived By: Jmm	Ester	Date/Time: <u>3-22-17 8:</u> 43
Comments/Special Instructions:				imple rece			
Sample Reference ID	Qualitative or Quantitative	Collected By	Collection Date	Sample Type	Preservative	# of Containers Per Sample	Analysis Required (KDOW Protocol, ID Level; etc.)
5:te 3	Runt	B1975	3-21-17	W	Etheral		KDOW
site 3	Qual	RS /JS		MH			
Site 4	Quant			KN			
Site 4	Qual			MIT			
site 6	Quest		1	KN			
Site 6	anul	V	V	MH	V	V	V
			_				
System Type: Headwater Stream; Wa EcoRegion: Bluegrass; Mountain; P Sample Type: KN KickNet; TK Travel	ennyroyal; Mississippi ing Kick; MH Multihab	e River; Lotic; Ot i Valley-Interior R pitat; S Surber; H	River Lowlands; (D Hester-Dendy	Other Multiplate;	HDD HD Deep; HDS		
MacLIMS: Client Setup/Login By	Date	; Repor	ted By	Da	te; Invo	iced By	Date 5/20/10

Macroinvertebrate Sample Chain of Custody Project Information Sheet

						KY15Y3T	
Client Name: LFUCO		Project Ad	ministrator:	Steve Evan	Project Num	ber: XVIST	Due Date: 7-30-17
Sampling Site Location: Fay	ette - Lex	instun		County:	Fryette		State: Ky
System Type: 2 HW +	5 WaderbleEd	coRegion: 31	negrass	_Total Num	ber of Samples:	10 Total	Number of Containers:/O
Reporting Requirements:	/						
							Mpate/Time: 5-9-17 1700
	,						1
Samples Relinquished By:		Date/Time:	S	ample Rece	eived By:		Date/Time:
Comments/Special Instructions:							
						# of	*
	Qualitative or	Collected	Collection	Sample		Containers Per	Analysis Required
Sample Reference ID	Quantitative	Ву	Date	Туре	Preservative	Sample	(KDOW Protocol, ID Level; etc.)
CR-52	Quant	BP/co	4-28-17	KN	Ethonol		KDOW
CR-52	Qual			MH			
NE-53	Quant			KN			
NE-53	qual		V	MH	1		
EH-S9	Quant		5-8-17	KM	Ethen		
\$ EH-59	Qual		5-8-17	MH	1		
SE-SI	Quant	1	5-9-17	KN			
SE-S	Qual	V	5-9-17	MH	V	J	V
		-	-	_			_
			ue on Reverse	for More S	iamples -		
System Type: Headwater Stream; W EcoRegion: Bluegrass; Mountain;	Pennyroyal; Mississipp	oi Valley-Interior	River Lowlands;				10=2
Sample Type: KN KickNet; TK Trave	ling Kick; MH Multiha	bitat; S Surber; F	ID Hester-Dendy	/ Multiplate;	HDD HD Deep; HDS	HD Shallow; OT	Other; NA Not Available
MacLIMS: Client Setup/Login Ry	Data	Papa	rted By	<i>D</i> -	ste · lov	piced By	Date 5/20/10

Continued from Reverse Side

Sample Reference ID	Qualitative or Quantitative	Collected By	Collection Date	Sample Type	Preservative	# of Containers Per Sample	Analysis Required (KDOW Protocol, ID Level; etc.)
TB-53 TB-53	Ruant	BR/C0	5-9-17	KN	Ethoral	-	kDow tall
	Qual		5-9-17	n lt	1		
WH-50	Quent		5-8-17	KN			
WH-SO	Qual		5-8-17	mit			
WR-SI	Quant		5-9-17	KN			
WR-51 WR-51	Qual	V	5-9-17	MH			
						u	<u> </u>

Macroinvertebrate Sample Chain of Custody Project Information Sheet

			Sample Rec	eived By:	B	rdcopy;Both Date/Time: <u>ノー</u> ステーフ / 093 Date/Time:
C	tative or Colle itative By			Preservative	# of Containers Per Sample	Analysis Required (KDOW Protocol, ID Level; etc.)
CR-4 Que	+ BRI	CO 2-23	47 KN	EManol		L-DOW 55-300
CR-4 Qua	. (MH			
CR-8 Que			KN			
CP-8 Que	V		mH	V	V	
ystem Type: Headwater Stream; Wadeable Stre EcoRegion: Bluegrass; Mountain; Pennyroyal; Imple Type: KN KickNet; TK Traveling Kick; M	eam; Large River; L Mississippi Valley-Ir	otic; Other terior River Low	verse for More			

Third Rock Consultants, LLC Macroinvertebrate Sample Taxonomic & Enumeration Efficiency Form

Client Name: KDOW Sample ID: Site 2 QT

Third Rock Project No.: KY16-004

Original Taxonomist: Chelsey Olson	Second Taxonomist: Bert Remley
Original Date Completed: 6/24/16	Review Date Completed: 7/28/16
Number Organisms Enumerated (Taxonomist I): 281	Number Organisms Enumerated (Taxonomist 2): 290

Percent Difference in Enumeration (PDE) = 1.6

 $(281 - 290) \div (281 + 290) \times 100 = \%$ Difference in Enumeration (PDE)

 n_1 = # organisms counted by Taxonomist 1 n_2 = # organisms counted by Taxonomist 2

Percent Taxonomic Disagreement (PTD) = 4.5

$$PTD = [1 - (277 \div 290)] \times 100$$

 $Comp_{pos}$ = number of taxonomic agreements (see Taxonomic Comparison Form) N = total number of organisms

Comments: Passed QA/QC; discussed differences between Acerpenna and Diphetor

Third Rock Consultants, LLC Macroinvertebrate Sample Taxonomy Precision Form

Client Name: KDOW Sample ID: Site 2 QT

Third Rock Project No.: KY16-004

Taxon	Taxonomist I	Taxonomist 2	# Agreements
Dubiraphia sp	Į.	I	I
Optioservus sp	I	I	I
Optioservus sp	I	I	I
Stenelmis sp	15	15	15
Stenelmis sp	5	6	5
Psephenus herricki	7	7	7
Cambaridae	5	5	5
Ablabesmyia mallochi	I	I	I
Microtendipes pedellus gr	I	I	I
Paratanytarsus sp	I	I	
Polypedilum flavum	11	11	П
Rheotanytarsus exiguus gr	2	2	2
Thienemanniella xena	2	2	2
Thienemannimyia gr	7	7	7
Hemerodromia sp	I	I	I
Simulium sp	I	I	I
Baetis intercalaris	5	5	5
Diphetor sp	2	0	0
Caenis diminuta gr	22	20	20
Stenacron interpunctatum	6	8	6
Acerpenna pygmaeus	0	2	0
Pisidium sp	4	4	4
Sphaerium sp	11	12	11
Lirceus fontinalis	118	122	118
Sialis sp	L	I	I
Elimia sp	25	25	25
Helobdella stagnalis	I	2	I
Micrasema sp	I	I	I
Helicopsyche borealis	5	5	5
Cheumatopsyche sp	15	17	15
Hydroptila sp			
Ochrotrichia sp		I	I
Naididae	I		-
Totals:	281	290	277

Third Rock Consultants, LLC Macroinvertebrate Sample Sorting Efficiency Form

Client Name: KDOW Sample ID: CR-7 QT

Third Rock Project No.: KY16-004

Original Sorter: Tammie Fister	Resorted By: Bert Remley
Original Date Sorted: 8/31/16	Date Resorted: 9/1/16
Number Grids Sorted: 12	Number Grids Resorted: 12
Number Organisms Originally Sorted: 298	Number Additional Organisms Recovered: 0

$$s_1 \div (s_2 + s_1) = %$$
 Sorting Efficiency 298 / (0 + 298) = 100%

s₁ = # organisms originally sorted
 s₂ = # additional organisms recovered

Additional Organisms Recovered					
Taxon		Number			
	Total:				

Comments: Passed QA/QC

Third Rock Consultants, LLC Macroinvertebrate Sample Sorting Efficiency Form

Client Name: KDOW Sample ID: Site 5 QT

Third Rock Project No.: KY16-004

Original Sorter: Tammie Fister	Resorted By: Bert Remley
Original Date Sorted: 6/28/16	Date Resorted: 6/29/16
Number Grids Sorted: 5 of 4 of 30	Number Grids Resorted: 5 of 4 of 30
Number Organisms Originally Sorted: 311	Number Additional Organisms Recovered: 0

$$s_1 \div (s_2 + s_1) = %$$
 Sorting Efficiency $311/(0+311) = 100\%$

s₁ = # organisms originally sorteds₂ = # additional organisms recovered

Additional Organisms Recovered Number Number

Comments: Passed QA/QC

APPENDIX I

Comprehensive Watershed-Based Plan Combined Water Quality Monitoring and Quality Assurance Project Report

Prepared for:

Kentucky Division of Water 300 Sower Boulevard Frankfort, KY 40601 502-564-3410

Prepared By:

Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, KY 40503 859-977-2000

December 15, 2017

Cane Run Watershed Based Plan Combined Water Quality / Quality Assurance Project Report Executive Summary

Water quality monitoring was conducted at 11 sites in the Cane Run watershed monthly from June 2016 to May 2017 as a pollutant load characterization effort. General chemistries were measured *in-situ* at each site. Grab samples were collected for *E. coli*, nitrate/nitrite, ammonia, total Kjeldahl nitrogen, total phosphorus, orthophosphate, 5-day carbonaceous biochemical oxygen demand, and total suspended solids. Flow was measured at the time of collection. For microbial source tracking, 20 samples were chosen for analysis using quantitative polymerase chain reaction (qPCR) for DNA markers of general, human, and ruminant fecal contributions. Additionally, 5 more sampling events were conducted in May 2017 for *E. coli* and flow.

Water quality concentrations were compared to applicable water quality benchmarks to determine the health of the streams based on the frequency of benchmark exceedance. Existing pollutant loads for *E.coli*, ammonia, total nitrogen, and total phosphorous were calculated using the average concentrations and calculated stream flows scaled by drainage area. Load reductions were determined based on comparison to benchmark loads.

Results indicate that streams within the Cane Run Watershed are impaired for primary contact recreational use, secondary contact recreational use, and warmwater aquatic habitat use. In order to meet benchmarks, pollutant load must be reduced by the following amounts: *E.coli* by 69 trillion/year, ammonia by 10,840 lbs/year, total nitrogen by 11,100 lbs/year, and total phosphorus by 3,200 lbs/year. Because surface flow is completely diverted to the groundwater system upstream of some of the sampling sites in the headwaters of the watershed, additional load reductions may be required on streams in these locations.

The greatest pollutant load sources in the watershed were measured at the unnamed tributary to Cane Run along US-25 (Georgetown Road) and Cane Run at Citation Boulevard. Microbial source tracking identified human sources as the most dominant at both locations. The pollutant at the unnamed tributary is primarily due to 3 failing wastewater package plants located upstream, according to discharge monitoring reports. This location accounts for the majority of the *E. coli*, ammonia, nitrogen, and phosphorus reductions required. Poor sanitary sewer infrastructure in a large neighborhood, including failing private lateral lines of orangeburg and clay pipe, are indicated to be the primary source near Citation Boulevard. Significant reductions in *E. coli* due to cattle sources upstream of Cane Run near Paynes Depot Road are also necessary. Minor pollution reductions are also required at other locations in the watershed.

Cane Run Watershed Based Plan Combined Water Quality / Quality Assurance Project Report Table of Contents

I. INTE	RODUCTION	I
II. MET	HODS	I
III. BEN	CHMARK COMPARISONS AND DATA QUALITY	3
A. Re	egulatory Water Quality Standards	3
	on-Regulatory Reference Points	4
	ata Quality	4
IV. QUA	ALITY ASSURANCE	5
A. Se	ensitivity	7
	recision	7
C. A	ccuracy	9
V. FINE	DINGS AND CONCLUSIONS	П
A. Re	esults by Parameter	П
	/ater Quality Health Grades	
	icrobial Source Tracking	19
	ollutant Loads	20
	Tables	
Table I		I
Table 2	Regulatory Water Quality Standards	3
Table 3	Non-Regulatory Reference Points	4
Table 4	Acceptance Criteria for Field Measurements and Laboratory Chemistry	5
Table 5	Antecedent and Concurrent Weather Conditions	6
Table 6	Laboratory Sensitivity	8 9
Table 7	Laboratory Precision	
Table 8		10
Table 9	Laboratory Accuracy	Ш
Table 10	E. coli Concentrations	16
Table II	Water Quality Health Grades	18
Table 12	Water Quality Health Scores	19
Table 13	Microbial Source Tracking Results	20
Table 14	Karst Adjusted Drainage Areas and Estimated Flows	21
Table 15	E. coli Loading and Reductions	23
Table 16	Ammonia Loading and Reductions	26
Table 17	Total Nitrogen Loading and Reductions	27
Table 18	Total Phosphorus Loading and Reductions	27
Table 19	Loading Reductions and Source Summary	31

Cane Run Watershed Based Plan Combined Water Quality / Quality Assurance Project Report Table of Contents

Figures

Figure I Figure 2 Figure 3 Figure 4	Flow at Continuous Monitoring Stations During Sampling Period	17
	Exhibits	
Exhibit 3 Exhibit 5 Exhibit 6 Exhibit 7	Human Recreation (Primary Contact) Grades and Load Reductions	24 25 28 29 30

Appendices

Appendix A Quality Assurance Project Plan

Appendix B Supporting Documentation for Non-Regulatory Reference Points

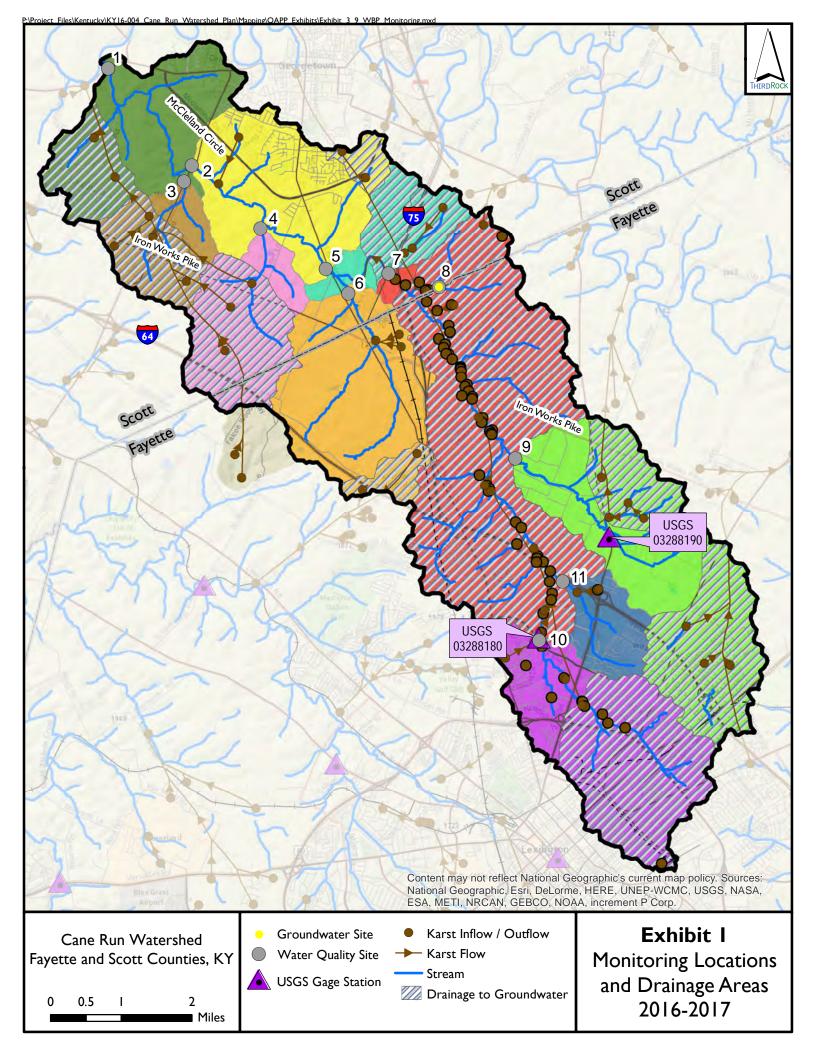
Appendix C Monitoring Results and Supporting Documentation

I. INTRODUCTION

The Cane Run Watershed (HUC#05100205280200) is a 45.4 square mile (mi²) watershed located within Fayette and Scott Counties, Kentucky. The stream has been listed as impaired since 1998 for Warmwater Aquatic Habitat (WAH) and Primary Contact Recreational (PCR) uses. Since that time, numerous tributaries have also been designated as impaired for causes including pathogens, nutrients / eutrophication, organic enrichment (sewage), and sedimentation/siltation.

In 2011, the University of Kentucky Biosystems and Agricultural Engineering department completed a watershed plan for the Fayette County portion of the watershed. To develop a plan that addresses the Scott County sources as well, the Kentucky Division of Water awarded a Section 319 (h) Nonpoint Source Implementation Program Cooperative Agreement to Third Rock Consultants, LLC (Third Rock) in 2016. The overall goal was to generate data sufficient to facilitate the identification and quantification of sources of recreational and aquatic habitat impairments. To that end, water quality monitoring was conducted by Third Rock in accordance with a Kentucky Division of Water (KDOW) August 8, 2016 approved quality assurance project plan (QAPP) (**Appendix A**). This report details the monitoring results, data quality, and pollutant loading for each site.

II. METHODS


In accordance with the approved QAPP, water quality monitoring was conducted by Third Rock at 11 sites (**Exhibit 1**, page 2) over the course of twelve months between June 2016 to May 2017. Monitoring was conducted with an antecedent dry period of 72 hours: 3 events during wet weather conditions (greater than 0.2 inches of rainfall) and 9 events during dry weather conditions.

	•	_		
Site ID	Location	Area (mi²)	Latitude	Longitude
ı	Cane Run at US 460 Bridge	45.4	38.210260	-84.611020
2	Cane Run off SR 62	39.3	38.189400	-84.589200
3	UT to Cane Run off SR 62	2.02	38.186472	-84.591300
4	UT to Cane Run on Horse Farm off Etter Lane	3.1	38.175357	-84.571630
5	Cane Run at Landscape Alternatives nursery off US 25	31.8	38.168000	-84.554250
6	UT to Cane Run in field off of US 25	5	38.163590	-84.549770
7	Cane Run at Lisle Road	24.9	38.167065	-84.538907
81	Royal Springs Cave System at Horse Park ¹	19.9	38.165237	-84.531324
9	UT to Cane Run at UK Ag Research Farm road bridge	7.4	38.128800	-84.507080
10	Cane Run at Citation Blvd	5.5	38.092322	-84.501381
11	UT to Cane at Coldstream Farm	1.3	38.103658	-84.495021

Table I - Water Quality Monitoring Sites

Field data, including turbidity, pH, dissolved oxygen (DO), specific conductance (COND), percentage oxygen saturation (DO%), and temperature (TEMP) were measured *in-situ* at each site using a Hydrolab multimeter or the equivalent. Flow was determined using an OTT MF Pro current meter with top set wading rod at intervals across the streams.

¹ Site 8 is a groundwater monitoring well site.

Grab samples were collected for *E. coli*, nitrate/nitrite (NO2+NO3), ammonia (NH3), total Kjeldahl nitrogen (TKN), total phosphorus (TP), orthophosphate (OP), 5-day carbonaceous biochemical oxygen demand (CBOD5), and total suspended solids (TSS). The sample for OP was filtered in the field. Additionally, 5 more sampling events were sampled in May 2017 for *E. coli* and flow. All samples were preserved according to method specifications and transported to the Microbac Laboratories, Inc. (Microbac) for analysis within method holding times and temperature requirements.

In an effort to track microbial sources, twenty samples were chosen for analysis using quantitative polymerase chain reaction (qPCR) for DNA markers associated with general, human, and ruminant fecal contributions. In the process of qPCR, DNA associated with a specific marker is amplified (copied) and fluorescent labeling enables the collection of data to quantify the amplified DNA present as polymerase chain reaction progresses. Thus, qPCR enables the amplified DNA to be quantified in "real time". After each monthly sampling event, an aliquot from each site was filtered, placed into sterile centrifuge tubes, and frozen for storage until selected for DNA analyses.

III. BENCHMARK COMPARISIONS AND DATA QUALITY

To evaluate the nature and extent of impairments in the Cane Run Watershed, water quality results were compared to applicable water quality benchmarks. These benchmarks also allow for comparisons between previous studies and monitoring performed for this watershed based planning project. Both regulatory water quality standards and non-regulatory reference points were used as detailed below.

A. Regulatory Water Quality Standards

The regulatory statute for surface waters in Kentucky is found in 401 KAR 10:031. The statute provides minimum water quality standards for all surface waters as well as specific standards that apply to particular designated uses. Water quality standards for WAH-designated uses were utilized as benchmarks for pH, temperature, and dissolved oxygen. Standards for PCR were utilized for *E. coli* as summarized in **Table 2**. For Secondary Contact Recreation (SCR), the regulatory standard applies to fecal coliform, which was not sampled in this study. Therefore, the relationship developed between *E. coli* and fecal coliform developed by Ormsbee and Akasapu (2010) was utilized to generate an *E. coli* equivalent standard as shown in **Table 2**.

				• •							
Parameter	Unit	Standard	Source	Description							
рН	SU	6.0 - 9.0	WAH	Shall not be less than 6.0 SU, more than 9.0 SU, nor fluctuate more than 1.0 SU over 24 hours							
Temperature	°C /°F	31.7 / 89	WAH								
Dissolved	mg/L	4.0	WAH	Shall be above 5.0 mg/L as a 24-hour average; above 4.0 mg/L for							
Oxygen	1116/ =	1.0	**/**	instantaneous measurements							
		130		Geometric mean based on ≥ 5 samples taken 30-day period.							
		240	PCR ¹	Not to exceed in 20% or more of all samples taken during a 30-day							
Γ!:	MPN	240		period. If < 5 samples are taken in a month, this standard applies.							
E. coli	or CFU	386 ²		Geometric mean based on ≥ 5 samples taken 30-day period.							
		676 ²	SCR	Not to exceed in 20% or more of all samples taken during a 30-day							
		676		period. If < 5 samples are taken in a month, this standard applies.							

Table 2 – Regulatory Water Quality Standards

¹ May I through October 31

² Calculated relationship derived by Ormsbee and Akasapu. 2010. Relationship Between Fecal Coliform and *E. coli* within the Kentucky River Basin. Kentucky Water Resources Research Institute. University of Kentucky. Lexington, Kentucky. *E. coli* = 1.44*FC^{0.8093}

B. Non-Regulatory Reference Points

For other parameters, such as nutrients, specific conductance, suspended solids, or dissolved solids, no regulatory numeric standard has been established due to the variable relationship between biological integrity and concentration levels in different streams. KDOW provided recommended water quality benchmarks for the county based on reference reach data. Similar to the Wolf Run Watershed Based Plan, a phased approach is being utilized for these non-regulatory reference points.

Because of the difficulty in establishing thresholds for these pollutants independent of other variables that impact aquatic habitat, such as poor riparian and instream habitat and poor hydrology / flow regime, non-regulatory reference points are initially established higher than reference conditions since the reference levels may be well below the level necessary to restore support of designated uses. The goals should be regularly assessed through the watershed planning process and lowered if the designated use does not become fully supported through the implementation plan efforts when target levels are achieved. Non-regulatory reference points are summarized in **Table 3**, with additional supporting documentation included as **Appendix B**.

Reference Unit **Point Description Parameter** Specific Conductance μS/cm 650 50%ile in Wolf Run Watershed Rowe, M., D. Essig, and B. Jessup. 2003. Guide to Selection of **Total Suspended Solids** mg/L 80 Sediment Targets for Use in Idaho TMDLs. IDEQ 0.35 Total Phosphorus as P mg/L 75%ile - 90%ile for reference reaches in the Inner Bluegrass Total Nitrogen as N 3.0 75%ile - 90%ile for reference reaches in the Inner Bluegrass mg/L Ammonia as N 0.1 75%ile for the Wolf Run Watershed mg/L

Table 3 – Non-Regulatory Reference Points

For comparative purposes, the nitrogen species (nitrate, nitrite, and TKN) were compared to the total nitrogen reference. Similarly, orthophosphate was compared to the total phosphorus reference.

C. Data Quality

Acceptance criteria for accuracy, precision, bias, and sensitivity were defined in the QAPP and are summarized in **Table 4**, page 5. Field duplicates were collected or measured for *in situ* measurements, field chemistries, and water quality grab samples at 5% of sites. Laboratory duplicates were also performed and internal laboratory QC samples were analyzed. As noted in the table footnote, precision limits were established for laboratory duplicates, but no precision limits were established for field duplicates. In this report, the field duplicate precision is compared to these laboratory precision values but no data was excluded based on an exceedance of these values. **Table 4** "±" values for *in-situ* measurements represent the minimum requirements of field equipment used in this project.

Table 4 - Acceptance Criteria for Field Measurements and Laboratory Chemistry

Parameter	Units	Field / Lab Method	Accuracy (%R or ±)	Precision ¹ (% RPD)	Sensitivity (Reporting Limit)
In situ Measurements					
Flow	cfs	Instream	±0.05 ft/sec	N/A	0.01 ft/sec
Dissolved Oxygen	mg/L	In situ	±0.2	20	±0.2
% Saturation	%	In situ	±Ι	20	±Ι
pН	SU	In situ	±0.5	20	±0.5
Specific Conductance	μS/cm	In situ	±Ι	20	±Ι
Temperature, Water	°F	In situ	±0.1	20	±0.1
Turbidity	NTU	In situ	±Ι	20	±Ι
Laboratory Chemistries					
	MPN/				
Escherichia coli	100mL	SM 9223 B	N/A	30	I
Total Suspended Solids	mg/L	USGS 1-3765-85	85-105	10	1.5
Phosphorus, Total as P	mg/L	EPA 365.1 Rev. 2.0	90-110	10	0.05
Orthophosphate as P	mg/L	EPA 365.1 Rev. 2.0	90-110	10	0.05
Ammonia as N	mg/L	SM 4500-NH3-B&G	90-110	10	0.076* (0.25)
Nitrogen, Total Kjeldahl as N	mg/L	SM 4500-NH3-G	90-110	10	0.4
Nitrate as N	mg/L	EPA 300.0	90-110	10	0.08* (0.11)
Nitrite as N	mg/L	EPA 300.0	90-110	10	0.08* (0.15)
Biochemical Oxygen Demand,					
5-Day Carbonaceous	mg/L	SM 5210 B	84-116	25	2* (5)
		qPCR (Layton et al, 2006;			
Molecular fecal source	DNA	Green et al, 2014;			
tracking	copies	Reischer et al, 2006)	TBD	TBD	1000/mL

Indicates minimum laboratory precision for water quality parameters

IV. QUALITY ASSURANCE

Monitoring was conducted by Third Rock staff 12 times over the course of 12 months, and an additional 5 times over the course of 30 days for *E. coli*. Eleven sites were sampled during these events if flow was present. During the first 2 events (June and July 2016), monitoring was attempted at Cane Run at the surface stream at the Horse Park and at the I-75 crossing near Equine Campus Road, but no or insufficient flow was present. In August 2016, Site 7 was moved to Lisle Road and Site 10 was moved to Citation Boulevard because karst swallets prohibited routine flow at the previous locations. Site 11 was also added at that time.

Monitoring dates and antecedent rainfall conditions are summarized in **Table 5**, page 6. The monthly monitoring events included 8 dry events, 2 wet events, and 2 intermediate events. From June 1, 2016 to May 31, 2017, measurable rain occurred on 33% of the days. On average, a rain event of greater than 0.1 inches with 3 days of dry weather occurred only 1.5 times each month during the work week, making wet weather monitoring extremely difficult to capture. Ensuring that samples could be delivered to the laboratory during business hours such that all hold times could be met further complicated the logistics of obtaining wet weather samples. In some months, waiting for wet weather to occur resulted in antecedent

^{*} Reporting to method detection limit, values between method detection limit and reporting limit (in parentheses) will be estimates. TBD = To be determined

conditions not occurring during the time remaining in the month. However, comparison of the monitoring dates with the USGS flow duration curves indicates that the monitoring is representative of the stream's flow regime, as shown in **Table 5**. Therefore, the monitoring events are representative of the range of conditions that occur on Cane Run and its tributaries.

Table 5 - Antecedent and Concurrent Weather Conditions

Mo	nitoring Event	F	Previous Ra	infall		Event Rainfall
Date	Туре	Date	Amount (in)	Prior Days Dry	Amount (in)	% of Flows that Exceed Flow During Event ¹
6/27/2016	Dry	6/23	0.9	4	0	65% (Moderate Flow)
7/18/2016	Dry	7/16	0.162	2	0	70% (Low Flow)
8/24/2016	Dry	8/21	0.08	3	0	71% (Low Flow)
9/08/2016	Dry	8/3 I	0.01	8	0	86% (Low Flow)
10/25/2016	Dry	10/21	0.18	4	0	83% (Low Flow)
11/30/2016	Intermediate	11/29	0.09	0	0.11	45% (Moderate Flow)
12/15/2016	Dry	12/12	0.17	3	0	72% (Low Flow)
1/30/2017	Dry	1/29	0.03	I	03	30% (High Flow)
2/07/2017	Wet	1/30	0.01	7	0.914	8% (High Flow)
3/17/2017	Intermediate	3/13	0.04	4	0.09	73% (Low Flow)
4/27/2017	Dry	4/23	0.01	4	0	68% (Low Flow)
5/02/2017	E. coli – Intermediate	5/1	0.98	I	0	26% (High Flow)
5/04/2017	Wet	5/1	0.98	3	0.45	28% (High Flow)
5/09/2017	E. coli – Dry	5/8	0.02	I	03	50% (Moderate Flow)
5/16/2017	E. coli – Dry	5/12	0.86	4	0	49% (Moderate Flow)
5/18/2017	E. coli – Dry	5/12	0.86	6	0	69% (Low Flow)
5/24/2017	E. coli – Intermediate	5/23	0.06	I	03	21% (High Flow)

Note: Based upon precipitation records at Bluegrass Airport, www.wunderground.com

Because the events did not capture a sufficient number of representative wet weather events, the decision was made not to separate wet weather loading and dry weather loading during the analysis phase. Rather, all results were considered together to calculate an annual mean loading. The decision to consider the aggregate of all results, rather than wet and dry loads, was also affected by the degree of karst influence upon Cane Run Creek and the lack of flow between I-64 and I-75 for more than 70% of the year.

During the 30-day *E. coli* monitoring, a sanitary sewer force main was broken near Dairy Road according to the LFUCG Division of Water Quality. The sewage from this break entered the groundwater system and resulted in the city of Georgetown having to switch its water source (from Royal Springs to Frankfort water) from May 8, 2017 to May 12, 2017. Some residual flow from this break may also have occurred after this date. Thus, *E. coli* levels at Site 8 are unusually high during samples collected during this time due to this non-routine point source contribution.

USGS Gage 03288180 at Citation Blvd

² Recorded 0.16 inches on 7/16/16, however no precipitation was measured at the northern portion of Fayette Co according to the USGS gage on Town Branch.

³ Precipitation began after sampling completed

⁴ Recorded 0.02 inches on 2/6/17, however this precipitation was part of the storm sampled on 2/7/17.

A. Sensitivity

The laboratory method blanks analyzed with each parameter were all within the QAPP-established limits as shown in **Table 6**, page 8. Additionally, the equipment utilized for the field measurements met the minimum quality control requirements. Therefore, the sensitivity of the testing was sufficient for data analysis for all parameters.

Samples collected on the rainfall event on Friday, March 17, 2017 were analyzed over the weekend by Microbac personnel in order to meet hold time requirements. Because an analyst was not available to run TP and OP using EPA 365.1, the samples were analyzed using method EPA 300.0. This resulted in reporting an orthophosphate reporting limit of 0.48 mg/L, well above the QAPP requirement of 0.05 mg/L. These results were reported by the laboratory as estimates but were utilized in load calculations.

Additionally, the laboratory analyst for nitrite by EPA 300.0 performed a 5X dilution on all non-drinking water samples from November 2016 to February 2017 in order to prevent clogging of instrumentation. In order to allow for the potential reporting of orthophosphate using this method subsequent to the March 2017 event, the analyst stopped performing dilutions for project samples. The method detection limit (MDL) for samples collected from November 2017 to February 2017 was 0.38, well above the QAPP reporting limit of 0.15 mg/L. Therefore, all results below the laboratory reporting limit during that time are reported by the laboratory as estimates.

Results associated with these elevated reporting limits and MDLs for orthophosphate and nitrite were marked as estimates but used in the load calculations.

B. Precision

The laboratory precision of nutrient parameters was within the QAPP-designated acceptance range of 10% relative percent difference (RPD) for most events and samples, as shown in **Table 7**, page 9. Nitrate, nitrite, ortho-phosphorus, and total phosphorus were within the limits for the entire project. Ammonia and TKN exceeded the QAPP precision limits for 2 events and 4 events, respectively. In each of these cases, the precision was measured from a matrix spike duplicate, so some of the variability may be due to laboratory spike preparation. However, the field duplicates associated with some of these events also showed high RPD. Lab results greater than the reporting limit are qualified as estimated for these parameters for these events. However, the results were used in loading estimates.

Table 6 - Laboratory Sensitivity

Parameter	QAPP Range	6/27	7/18	8/24	9/8	10/25	11/30	12/15	1/30	2/7	3/17	4/27	5/2	5/4	5/9	5/16	5/18	5/24
1 01 01110001	80	0,21	7,10	5,11	2.0	10.20	11,00	12,10	1,00		0,11	.,_,	0	<u> </u>	0.72	0,10	0,10	0.21
E. coli	<	<	<	<	<i< td=""><td>< </td><td>< </td><td>< </td><td>< </td><td>< </td><td>< </td><td><i< td=""><td>< </td><td><i< td=""><td>< </td><td>< </td><td>< </td><td>< </td></i<></td></i<></td></i<>	<	<	<	<	<	<	<i< td=""><td>< </td><td><i< td=""><td>< </td><td>< </td><td>< </td><td>< </td></i<></td></i<>	<	<i< td=""><td>< </td><td>< </td><td>< </td><td>< </td></i<>	<	<	<	<
CBOD	<5 (2 MDL)	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0	<2.0		<2.0				
Ammonia	<0.25 (0.076 MDL)	<0.14	<0.14	<0.14	<0.14	<0.14	<0.22	<0.22	<0.22	<0.22	<0.22	<0.22		<0.22				
Nitrate	<0.11 (0.08 MDL)	<0.027	<0.027	<0.027	<0.025	<0.025	0.035	<0.025	<0.008	0.030	0.030	<0.005		0.027				
Nitrite	<0.15 (0.08 MDL)	<0.025	<0.025	0.036	<0.018	<0.025	<0.025	<0.075	<0.075	<0.075	<0.007	0.031		0.034				
TKN	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40	<0.40		<0.40				
Ortho- phosphorus	<0.05	<0.025	<0.025	<0.035	0.015	<0.011	0.017	0.011	0.013	0.017	<0.010	<0.017		<0.017				
Total Phosphorus	<0.05	0.012	0.006	<0.046	0.012	0.0210	0.046	<0.012	<0.012	<0.012	<0.010	<0.010		<0.010				
TSS	<1.5	<	<	<	<	<	<	<	<	<	<	<		<i< td=""><td></td><td></td><td></td><td></td></i<>				

Note: Grayed dates were collected for E. coli only.

Table 7 - Laboratory I	Precision
------------------------	-----------

Parameter	QAPP RPD	6/27	7/18	8/24	9/8	10/25	11/30	12/15	1/30	2/7	3/17	4/27	5/4
Ammonia	10%	1%	15%	9%	11%	6%	8%	N/A	0%	6%	0%	10%	0%
Nitrate	10%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Nitrite	10%	0%	1%	2%	3%	2%	0%	1%	3%	4%	0%	0%	1%
TKN	10%	3%	3%	11%	11%	0%	4%	11%	19%	0%	8%	3%	4%
Ortho- phosphorus	10%	1%	1%	1%	1%	1%	2%	2%	0%	1%	1%	0%	1%
Total Phosphorus	10%	1%	2%	1%	1%	4%	1%	1%	1%	1%	2%	3%	0%

Note: Yellow shading indicates exceedance of QAPP requirement.

Table 8, page 10 shows the RPD of field replicates and field duplicates as compared to the QAPP limits. For *E. coli*, the log difference in the results is shown. All field replicates were within the precision requirements of the QAPP. For field duplicates, precision requirements were not established in the QAPP, but the laboratory precision requirements were used for comparison.

E. coli, nitrite, ammonia, TKN, total phosphorus, and total suspended solids each had I or more results where the field duplicate precision exceeded the laboratory precision limit. An average of the field duplicate and sample results was utilized for all loading calculations. For E. coli on August 24, the results for the duplicate were 2420 and 240 MPN/I00mLs. The laboratory confirmed this was recorded on the data sheet, but it is believed that I of the results represents a typographical error (The average was used in analyses). Total phosphorus and total suspended solids were both elevated on June 27 due to field variability in the turbidity at the sampling location. The elevated nitrite result on September 8 was unusual for the event as all nitrite results were less than the detection limit for the site with the exception of the sample where the field duplicate was measured. As was previously mentioned, the field precision results for ammonia and TKN correspond to similar indicators of poor laboratory precision.

C. Accuracy

Percent recovery results for laboratory control samples are summarized in **Table 9**, page 11, along with the corresponding QAPP recovery range. All results were within the acceptable range with the exception of ammonia on September 8 and March 17. On both dates, most samples were below the detection limit for most sites except for Site 6. Results on these dates were qualified due to the low bias indicated by the results.

Table 8 - Field Precision

	QAPP		7/10	0/0.4	0.10		11/20		. /2.0	0/7	2/17	4/07	- 10	= / 4		-/. /	-/10	- /O 4
Parameter	Requirement	6/27	7/18	8/24	9/8	10/25	11/30	12/15	1/30	2/7	3/17	4/27	5/2	5/4	5/9	5/16	5/18	5/24
Flow	N/A	0%	0%	12%	0%	18%	25%	0%	27%	10%	11%	8%	112%		40%	31%		0%
SpC	20% RPD	0%	0%	1%	0%	0%	1%	1%	0%	0%	N/A	0%						
Dissolved																		
Oxygen	20% RPD	4%	1%	0%	1%	0%	2%	1%	1%	1%	1%	1%						
pН	20% RPD	1%	0%	0%	1%	1%	1%	0%	3%	0%	0%	2%						
Temperature	20% RPD	1%	1%	0%	0%	0%	0%	1%	0%	0%	1%	1%						
Turbidity	20% RPD	0%	10%	N/A	N/A	0%	8%	0%	1%	0%	0%	0%						
E. Coli	Log Difference	0.45	0.02	1.00	0.09	0.04	0.00	0.28	0.10	0.14	0.02	0.00	0.39	0.19	0.21	0.04	0.12	0.00
CBOD	25% RPD Lab	4%	0%	0%	0%	0%	46%	0%	24%	0%	9%	14%		12%				
Ammonia	10% RPD Lab	7%	28%	24%	7%	0%	0%	0%	0%	0%	0%	0%		31%				
	10% RPD																	
Nitrate	Lab	12%	4%	0%	0%	0%	3%	10%	0%	0%	0%	2%		5%				
Nitrite	10% RPD Lab	0%	0%	0%	64%	0%	0%	0%	0%	0%	0%	0%		0%				
	10% RPD																	
TKN	Lab	29%	7%	32%	2%	0%	12%	0%	48%	0%	0%	0%		17%				
Ortho-	10% RPD																	
phosphorus	Lab	0%	0%	5%	2%	3%	0%	0%	0%	0%	0%	4%		3%				
Total	10% RPD																	
Phosphorus	Lab	30%	6%	0%	0%	3%	13%	3%	0%	5%	5%	4%		2%				
TSS	10% RPD Lab	67%	17%	29%	0%	100%	0%	15%	0%	0%	67%	40%		0%				

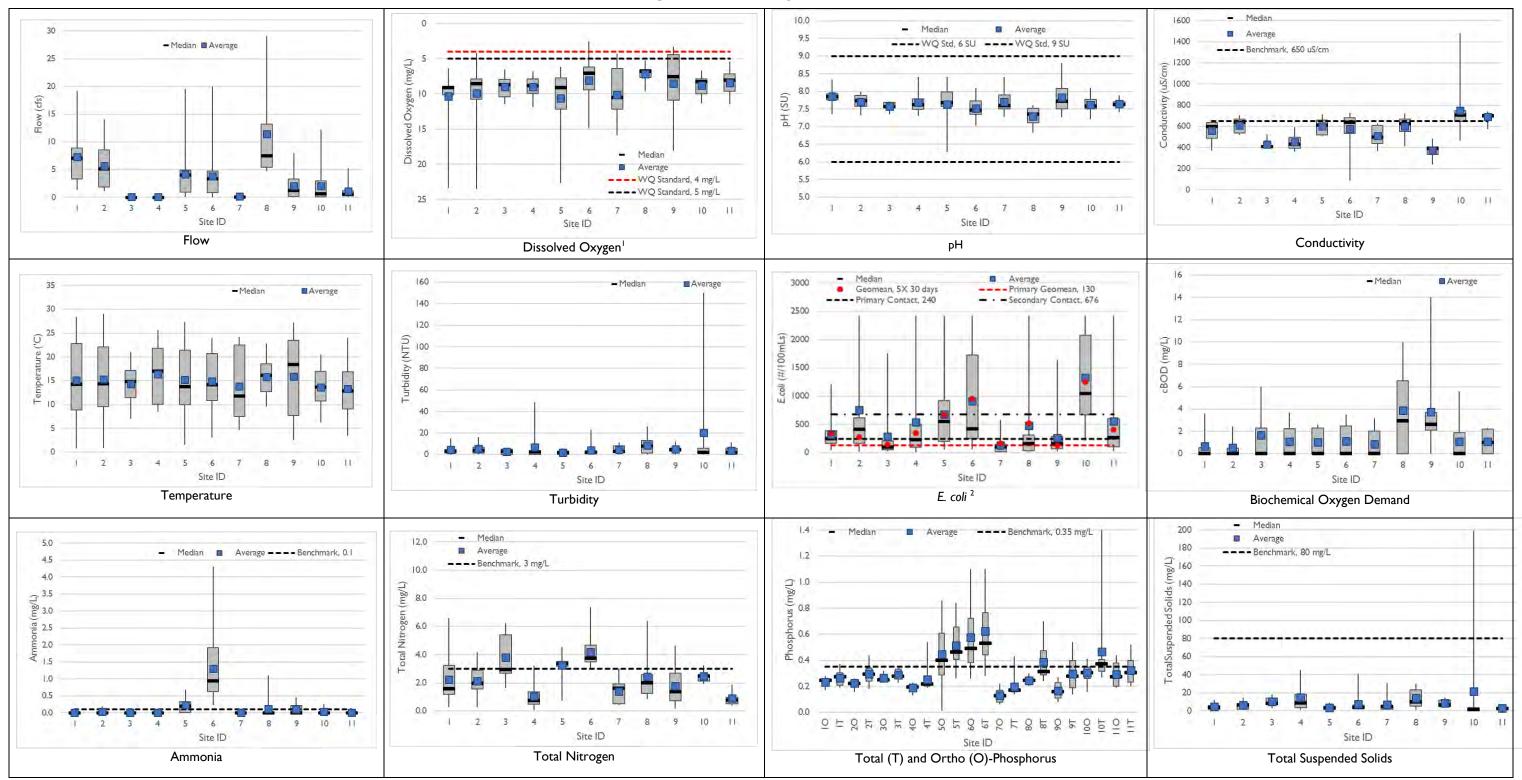
Note: Yellow shading indicates exceedance of QAPP-specified laboratory precision limit.

Blue shading indicates results above the QAPP-specified laboratory precision limit, but the actual differences in the results were minimal due to low concentrations.

Table 9 - Laboratory Accuracy

Damana	QAPP	(/27	7/10	0/2.4	0/0	10/25	11/20	12/15	1/20	2/7	2/17	4/27	F/4
Parameter	Range	6/27	7/18	8/24	9/8	10/25	11/30	12/15	1/30	2/7	3/17	4/27	5/4
CBOD	84-116%	100%	105%	99%	106%	90%	98%	91%	103%	103%	89%	99%	94%
Ammonia	90-110%	93%	98%	94%	89%	94%	96%	98%	94%	92%	88%	90%	91%
Nitrate	90-110%	104%	99%	98%	92%	96%	92%	92%	105%	102%	97%	100%	97%
Nitrite	90-110%	102%	101%	105%	105%	103%	98%	92%	92%	97%	100%	98%	99%
TKN	90-110%	90%	91%	95%	94%	99%	96%	97%	109%	101%	92%	92%	102%
Ortho- phosphorus	90-110%	108%	109%	103%	104%	102%	100%	100%	98%	100%	103%	100%	100%
Total Phosphorus	90-110%	108%	104%	112%	108%	101%	106%	102%	100%	96%	103%	101%	100%
TSS	85-105%	97%	87%	93%	93%	92%	85%	91%	96%	98%	92%	95%	98%

Note: Yellow shading indicates exceedance of QAPP requirement.


V. FINDINGS AND CONCLUSIONS

A. Results by Parameter

Monitoring results are summarized in the box plot charts in **Figure I**, page 12. Results for each sampling event and site are summarized in **Appendix C**, along with the following supporting documentation for each event and site: laboratory reports, chains of custody, field calibration logs, and field notes.

Figure I - Results by Parameter

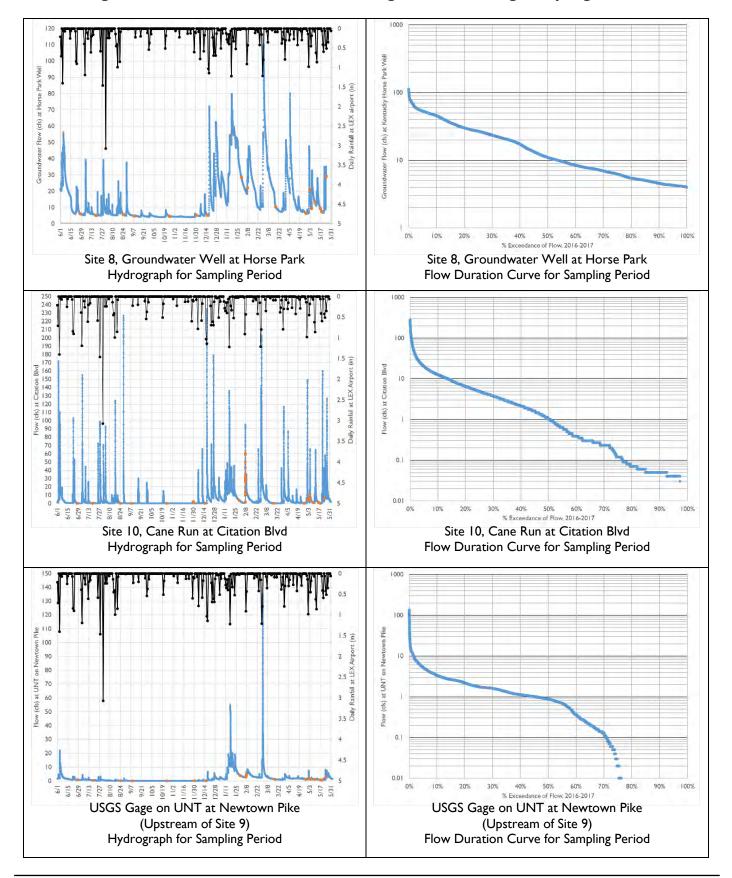
- For dissolved oxygen, the red line represents the instantaneous standard while the black line shows the 24-hour average standard. The vertical axis is flipped since low concentrations are considered exceedances.
- For E. coli, the red line represents the 30-day geomean standard (130), and the short black dotted line the instantaneous primary contact standard for secondary contact based on Ormsbee and Akasapu. 2010.

I. Flow

All sites had flowing water if sampling occurred at the location. However, flow was at times immeasurable using the current meter and top setting wading rod. When flow could not be measured with monitoring equipment, moving water was confirmed by disturbing sediment downstream of the sampling site and observing the turbid water moving downstream. Flow at these sites was recorded as less than 0.01 cubic feet per second (cfs).

On March 17, the current meter battery died during the sampling event. Therefore, flow was not measured at Sites 4, 5, or 6 during the event. To correct for this omission, flow was estimated at Sites 4, 5, and 6 based on flow ratios to Site 1, located downstream, for other sampling events.

Flow was monitored continuously at 3 sites during the sampling period. Hydrographs and flow duration curves for these sites are shown in Figure 2 alongside rainfall data measured at the Bluegrass Airport. Flow at the groundwater well at Site 8 was calculated using the following equation developed by Kentucky Geological Survey (KGS) and based on previous research by KGS at the well:


$$Q = 0.327 \times (D-0.56)$$
, where $Q = discharge (m^3/s)$ and $D = depth (m)$.

The depth of water in the well at Site 8 ranged from 1.6 feet to 32.4 feet during the monitoring period, with a calculated discharge ranging from 4.0 cfs to 112 cfs, as shown in Figure 2. The groundwater well routinely had the highest flow levels measured in the watershed, particularly under dry weather conditions. Even when surface streams did not have flow, significant flow was found in the groundwater system.

The USGS gage flows for the sampling period are also shown in **Figure 2**, page 14. The dates and times in which flow monitoring was conducted are shown in order to show the representativeness of the sampling events. Comparison of the entire monitoring record for these USGS sites indicates that flows in 2016-2017 were slightly lower than the typical year.

Figure 2 - Flow at Continuous Monitoring Stations During Sampling Period

2. In-Situ Measurements

Dissolved oxygen measurements were above the WAH instantaneous requirement of 4.0 mg/L for all sampling events at all sites, except for Site 6, located on the tributary along US 25, and Site 9, located on a University of Kentucky research farm. Site 6 had low dissolved oxygen levels on July 18, which was also the date of the lowest flow conditions measured at the site. These low flow conditions paired with high ammonia, nitrogen, and phosphorus concentrations and the presence of algae downstream indicate that aquatic life may be impacted based on pollutant concentrations at this site. It is expected that continuous dissolved oxygen monitoring at Site 6 would detect additional impacts. At Site 9, dissolved oxygen levels were less than 4.0 mg/L on July 18 and August 24, 2016. The site is located just downstream of an impoundment and the low levels are likely due to that reason.

Measured pH levels ranged from 6.3 to 8.8 SU during the monitoring period, all within the regulatory criteria. The average of all sites was 7.6 SU, indicating slightly basic stream conditions typical of limestone geology.

Specific conductance, or conductivity, levels ranged from 88 to 1480 μ S/cm. Sites 1, 3, 4, 7, and 9 never exceeded 650 μ S/cm. Sites 2, 5, 6, and 8 each regularly exceeded the benchmark, but average conditions were below the 650 μ S/cm level. Conductivity at Sites 10 and 11 averaged 751 and 691 μ S/cm for the monitoring period, respectively. These higher values could be related to runoff from impervious surfaces in the urban environment carrying road salts and other dissolved ions into waterways. During the wet weather event on February 7, the highest conductivity was measured at Site 10 – almost double the next highest concentration. This rainfall event was the first significant rainfall event after snow accumulation and road salt application from January 27 to January 30.

Temperature results were within the acceptance ranges during all measurements.

Turbidity measurements were typically less than 5 NTU at all sites. The groundwater well regularly had the most turbid waters with a median turbidity of 8 NTU. This indicates that the groundwater system is regularly transporting low levels of surface sediment through the conduit. During wet weather events, the most turbid waters were found at Site 10 at Citation Boulevard, reaching as high as 150 NTU.

3. E. coli

E. coli results ranged from 3 to >2,420 MPN/100mLs. Because of budget constraints, the laboratory did not analyze sample dilutions except during the July 18, 2017 event. Because the laboratory maximum is 2,420 MPN/100mLs, some of the results are biased low. One site exceeded 2,420 on July 18, but a value of >2,420 was utilized in calculations for data comparability. Results of >2,420 MPN/100mLs were obtained at the following at the following sites: 2 (2 times), 4 (2 times), 6 (3 times), 8 (1 time), 10 (3 times), and 11 (2 times). To account for this low bias, the average of the results for each site was utilized for loading calculations rather than a geometric mean for all sampling events.

Results indicate that most locations exceeded the PCR use levels, and several sites showed impairment for SCR use, including Sites 2, 3, 4, and 5 due to highly elevated *E. coli* concentrations. **Table 10**, page 16, summarizes the geomean of the 6 samples collected in May 2017 (monthly event + 5 additional events) along with the exceedances of PCR and SCR use levels for those 6 samples. For PCR, when the PCR limit was exceeded, it was exceeded both for the 30-day geomean standard and the percent of exceedances

standard. This was the case for all sites except site 9. The PCR levels were exceeded at site 8, but not applicable since this is a groundwater monitoring location. The SCR levels were exceeded to a lesser degree. For SCR, both the 30-day geomean and the percent of exceedances standards were over thresholds at 3 sites (Sites 5, 6, and 10). For SCR, the 30-day geomean was not exceeded at site 4, though the site is indicated as impaired for SCR based on the percent of exceedances. Likewise, the 30-day geomean limit for SCR was exceeded at site 11, though the site is not indicated as impaired for SCR based on the percent of exceedances.

As previously discussed, a sanitary sewer force main broke near Dairy Road, elevating the *E. coli* levels at Site 8 during the geomean sampling in May. Sources of *E. coli* will be discussed in the microbial source tracking section, below.

Table 10 - E. coli Geomean Concentrations and Exceedances for 6 Events in May 2017

	Comp	ared to PCR U	se Levels	Compared to SCR Use Levels					
Site ID	Geomean	Count of Exceedances	Percent of Exceedances	Geomean	Count of Exceedances	Percent of Exceedances			
I	341	4	67%	341	1	17%			
2	277	4	67%	277	0	0%			
3	143	2	33%	143	I	17%			
4	343	3	50%	343	2	33%			
5	668	5	83%	668	3	50%			
6	956	5	83%	956	4	67%			
7	165	2	33%	165	0	0%			
8	520	3	50%	520	3	50%			
9	126	I	17%	126	0	0%			
10	1248	6	100%	1,248	5	83%			
11	405	4	67%	405	I	17%			

Note: Yellow shading indicates exceedance of PCR use levels. Blue shading indicates exceedance of SCR use levels. Grey shading indicates that PCR and SCR uses are not applicable for groundwater.

4. Nitrogen

Nitrogen species including ammonia, nitrate, nitrite, and TKN were measured (as N) for this project. Total nitrogen is the sum of nitrate, nitrite, and TKN concentrations. In calculating total nitrogen, "less than" results were assigned a value of 0.

Ammonia, a form of TKN, ranged from <0.14 to 4.30 mg/L. By far the highest concentrations were measured at Site 6, which averaged 1.31 mg/L. No other site averaged concentrations above 0.2 mg/L, except Site 5 (0.22 mg/L) which is located just downstream of Site 6. Ammonia was not detected at Sites 1, 3, 4, 7, and 11 during the sampling.

As shown in **Figure 3**, total nitrogen was typically composed of about 70-80% nitrate, 20-30% TKN, and a miniscule portion of nitrite. Site 6, in particular, but also Site 9, had large contributions from organic nitrogen (TKN and ammonia).

Nitrate concentrations ranged from <0.025 mg/L to 5.70 mg/L. The seasonal contributions of nitrogen were evident in the dataset with higher concentrations at all sites in January to March 2017, with January 30, having the highest concentrations at all sites. Although flow was often not present at Site 3, concentrations of nitrate were highest at this location when flow did occur. Sites 5, 6, and 10 also had routinely high nitrate concentrations. Taken together, total nitrogen concentrations were routinely above the 3.0 mg/L benchmark at Sites 3, 5, and 6. Sites 4, 7, and 11 were regularly below 2.0 mg/L.

Figure 3 - Average Nitrogen Species by Site

5. Phosphorus

Total phosphorus and ortho-phosphorus (as P) were analyzed for each sampling location. Ortho-phosphorus is the dissolved form of phosphorus that may be directly uptaken by plants. Total phosphorus includes particulate-bound phosphorus and other forms of phosphorus. With the phosphorus-rich limestone in Central Kentucky, phosphorus levels are normally much higher than surrounding regions. As shown in **Figure I**, most of the measured phosphorus (around 80% on average) is ortho-phosphorus. Ortho-phosphorus concentrations ranged from 0.014 to 1.10 mg/L, while total phosphorus ranged from 0.0051 to 1.4 mg/L.

Sites 6 and 5 routinely had the highest concentrations of total phosphorus in the watershed, with averages above 0.5 mg/L. Average total phosphorus concentrations at Sites 8 and 10 also exceeded the 0.35 mg/L benchmark. Site 9 had a much lesser percentage of ortho-phosphorus than other sites, and Sites 8 and 10 also showed a large gap between the 2 forms.

6. Suspended Solids

Because most sampling was conducted during dry weather, total suspended solids were low at all sites during most measurements. Site 10 showed a large concentration (199 mg/L) associated with the February 7 wet weather event. However, all other total suspended solids results were below 50 mg/L. While this data is helpful in analyzing the sources of some of the other pollutants, this dataset does not provide sufficient information to evaluate sedimentation issues in the watershed. The severe erosion survey provides better focus areas for sediment issues.

B. Water Quality Health Grades

To simplify water quality data for public audiences, the percentage of exceedance (for concentration data) of the benchmarks was utilized to generate water quality health scores. These health scores, like report cards, assign letter grades to the frequency of exceedance at each site. Each parameter is "graded on a curve" such that letter scores for I parameter are similar to letter scores for other parameters. Letter grades for individual parameters are roughly based on KDOW's method for evaluating data for listing impairments or their TMDL Health Reports. The percent exceedance and the corresponding grade for each parameter are shown in **Table II** and graphically depicted on **Exhibits 2** through **7** (included later in this report). The water quality health scores for this project are summarized in **Table I2**, page I9. The pH scores are not shown because all sites were within range (A grade).

Table II - Water Quality Health Grades

		% of Results Exceeding								
Parameter	Benchmark	Α	В	С	D	F				
E. coli – Primary										
Contact (Swimming)	240	0-10%	11-20%	21-33%	34-66%	67-100%				
E. coli – Secondary										
Contact (Wading)	676	0-10%	11-20%	21-33%	34-66%	67-100%				
рН	6-9	0-5%	6-10%	11-25%	26-66%	67-100%				
Dissolved Oxygen	4	0-5%	6-10%	11-25%	26-66%	67-100%				
Specific Conductance	650	0-10%	11-25%	25-50%	51-66%	67-100%				
Total Phosphorus	0.35	0-10%	11-25%	25-50%	51-66%	67-100%				
Total Nitrogen	3.0	0-10%	11-25%	25-50%	51-66%	67-100%				
Ammonia	0.1	0-10%	11-25%	25-50%	51-66%	67-100%				

Table 12 - Water Quality Health Scores

		E. coli			Dissolved		Conductivity				Nitrogen		Phosphorus	
	Sample	(#/mLs)			Oxygen (mg/L)		(uS/cm)		(mg/L)		(mg/L)		(mg/L)	
Site	(E.coli	₹	4					_	7 0				5 0	_
ID	Count)	Grade	Grade	Avg	Grade	Avg	Grade	Avg	Grade	Avg	Grade	Avg	Grade	Avg
1	12 (17)	D	В	317	Α	10.3	Α	558	Α	0.00	С	2.23	В	0.27
2	12 (17)	F	С	753	Α	9.9	С	611	В	0.03	В	2.12	В	0.30
3	5 (10)	В	Α	282	Α	9.0	Α	427	Α	0.00	С	4.06	Α	0.29
4	10 (15)	D	В	537	Α	9.0	Α	449	Α	0.00	Α	1.02	Α	0.25
5	12 (17)	D	С	678	Α	10.6	С	598	D	0.22	F	3.25	F	0.51
6	12 (17)	F	D	907	В	8.1	С	577	F	1.31	F	4.18	F	0.63
7	9 (14)	В	Α	130	Α	10.1	Α	512	Α	0.00	В	1.51	В	0.20
8	12 (17)	D	В	475	Α	7.2	С	545	В	0.12	В	2.45	С	0.39
9	10 (15)	С	Α	261	С	8.5	Α	371	С	0.11	В	1.79	С	0.30
10	10 (15)	F	F	1327	Α	8.8	D	75 I	Α	0.03	В	2.47	D	0.46
П	10 (15)	D	В	551	Α	8.5	F	691	Α	0.00	Α	0.91	С	0.33

C. Microbial Source Tracking

For microbial source tracking, University of Kentucky Environmental Research Training Laboratories (ERTL) analyzed samples using qPCR for Bacteroides DNA markers of fecal contributions, including general (Allbac), human (qHF183), and ruminant (Bac R), which includes horses, cattle, deer, and other ruminants. The human marker is considered conservative- meaning if detected, human source is present, but if not detected, it is not necessarily absent. The ruminant marker is less conservative – meaning it is a less certain indication of fecal contamination from ruminant animal sources when it is detected (other species can create a false positive signal for this marker). A laboratory control (SKETA) was also analyzed to measure if polymerase chain reaction was inhibited by humic acid or other environmental inhibitors. Inhibitors are any factors which prevent the amplification of DNA through polymerase chain reaction; inhibitors cause amplification failure even when sufficient copies of DNA are present.

Filters from 19 samples with the highest *E. coli* concentrations were selected for analysis as well as control samples. The human control was collected from the Town Branch wastewater treatment plant (TB WWTP) influent, and the ruminant control was a fecal slurry composite from multiple cowpats at the Blue Grass Stockyards South in Stanford, Kentucky.

The results of the analysis are presented in **Table 13**, page 20, alongside the *E. coli* and ammonia concentrations measured at these sites. Overall, low levels of Bacteroides were recovered at the sites, often due to inhibition of the polymerase chain reaction due to environmental conditions, such as the presence of humic acid. Allbac recovery from all field samples was less than 1% of known samples. Two samples, Site 5 from August 24 and Site 8 from November 30, were completely inhibited, indicating polymerase chain reaction could not be performed on the samples (thus qPCR was not possible). With the

low recovery of the Allbac marker in the field samples, the detection of markers for human or ruminant sources indicates that these sources are dominant for those sampling locations.

Table 13 - Microbial Source Tracking Results

Site ID	Sample Date	E. coli (MPN/ 100mL)	Ammonia (mg/L)	General Allbac (copies/uL)	Human qHF183 (copies/uL)	Ruminant Bac R (copies/uL)	Polymerase Chain Reaction Inhibition? (SKETA control)	Dominant Fecal Source
	6/27/16	>2420	0.17	165.7	ND	<10	Y	
	7/18/16	>2420	0.18	517.2	ND	14.6	Y	Cattle
2	8/24/16	2420	<0.14	<10	ND	<10	Y	livestock
	9/8/16	1553	<0.14	375.3	ND	10.6	N	
4	6/27/16	2420	<0.14	52.5	ND	ND	Y	Unknown
5	8/24/16	2420	0.33	ND	ND	ND	Y - Total	Human
3	2/7/17	2420	0.41	157.3	<10	ND	N	sewage
	6/27/16	>2420	1.9	84.9	ND	ND	N	
6	10/25/16	>2420	2.00	<10	ND	ND	Y	Human sewage
	12/15/16	816	0.65	555.4	<10	ND	Y	sewage
8	11/30/16	816	<0.22	ND	ND	ND	Y - Total	Unknown
9	6/27/16	>2420	0.27	91.9	ND	ND	Ν	Unknown
	10/25/16	1373	<0.14	26.5	ND	ND	Y	
	11/30/16	2420	<0.22	10.3	<10	ND	Y	
10	12/15/16	1733	<0.22	234.8	<10	ND	Y	Human
	1/30/17	1046	<0.22	321	<10	ND	Ν	sewage
	2/7/17	>2420	0.25	<10	ND	ND	Y	
11	11/30/16	686.7	<0.22	25.4	ND	ND	N	Unknown
	2/7/17	>2420	<0.22	34.9	ND	ND	N	Unknown
Human Control: TB WWTP Influent			63,038.70	3,530.00	ND	N	Human sewage	
Cattle control: Stockyard Cowpat Slurry				130,444.10	ND	4,505.90	N	Cattle livestock

Note: ND = Not Detected

Because of low recoveries and method inhibition, the source of loading at Sites 4, 8, 9, and 11 is unknown. However, microbial source tracking indicates that cattle sources are the dominant source of fecal pathogen indicators at Site 2 and human sewage are the dominant source at Sites 5, 6, and 10. Because Sites 2, 6, and 10 had the highest *E. coli* concentrations overall, the identification of the sources at these sites will ensure watershed implementation efforts are effective.

D. Pollutant Loads

Pollutant loads are calculated by multiplying the concentration by the flow and a unit conversion factor. However, judgment must be used to determine how to aggregate the concentration data and what flow to utilize to best represent the annual conditions.

For this project, all concentration data was aggregated together as an average for each site because insufficient data was collected to separate loads from wet and dry weather sources with any statistical confidence. Comparison with the USGS gages located in the watershed showed that the sampling events represented all flow levels with some bias toward lower flows. Therefore, the median annual flow was chosen to compute loading.

Because wet weather flow measurements are highly dependent upon when the samplers arrive at the sampling site, comparisons of measured wet weather flows in storm events are not reliable for load calculations. Therefore, the median flows from USGS gauging stations within the watershed were scaled to represent the median annual flow at each site.

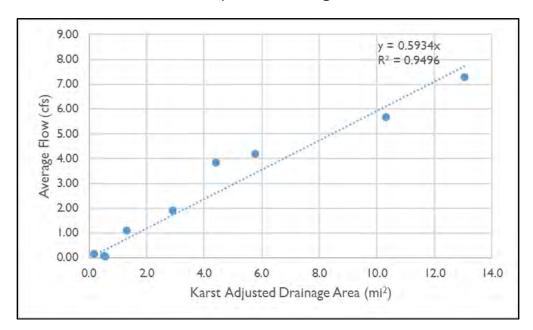
For Site 8, the groundwater well at the Kentucky Horse Park, a water depth data logger installed by KGS was utilized to estimate the flow of groundwater being transported from Fayette County sources to Royal Springs. For Site 10 on Cane Run at Citation Boulevard, the USGS gage located at the sampling site (03288180) was utilized. The flow at this location is primarily fed from a spring-fed tributary downstream of a large neighborhood, and is not representative of non-spring fed streams. The median flow at Site 8 is 11.0 cfs and at Site 10 is 1.6 cfs for the entire data record.

For all other sites, the USGS gage (03288190) located on a tributary to Cane Run at Newtown Pike upstream of Site 9 was scaled in order to estimate the median annual flow. Site 9 has a drainage area of 1.5 mi² and is located in an area of the watershed in which few karst sinks have been mapped, and therefore most drainage in the watershed is through surface flow. The median flow at this site was 1.4 cfs for the entire data record.

Historic data indicates that because of the heavy interaction between surface and groundwater, strict area-weighted scaling of the USGS gages would not produce accurate flow measurements for other monitoring stations. From 1997 to 2012, a USGS gage located at Berea Road indicated that flow was only present on Cane Run Creek between I-75 in Scott County and I-64 / I-75 in Fayette County during 28% of the year. This indicates that surface flow is completely diverted to the groundwater system during most of the year in areas with well-developed karst windows and sink points. Therefore, drainage areas of each monitoring site were adjusted based on previously mapped sink points to determine the land area typically contributing to routine stream flows. **Exhibit I** and **Table I4** show the adjusted drainage area of each sampling location.

Table 14 - Karst Adjusted Drainage Areas and Estimated Flows

Site ID	Location	Surface Drainage Area (mi²)	Karst- Adjusted Drainage Area (mi²)	Average Measured Flow (cfs)	Estimated Median Flow ¹ (cfs)
ı	Cane Run at US 460 Bridge	45.4	13.0	7.28	12.4
2	Cane Run off SR 62	39.3	10.3	5.67	9.9
3	UT to Cane Run off SR 62	2.02	0.56	0.07	0.52
4	UT to Cane Run on Horse Farm off Etter Lane	3.1	0.52	0.08	0.52
5	Cane Run at Landscape Alternatives nursery off US 25	31.8	5.8	4.21	5.6


Table 14 - Karst Adjusted Drainage Areas and Estimated Flows Continued
--

Site ID	Location	Surface Drainage Area (mi²)	Karst- Adjusted Drainage Area (mi²)	Average Measured Flow (cfs)	Estimated Median Flow ¹ (cfs)
6	UT to Cane Run in field off US 25	5	4.4	3.86	4.4
7	Cane Run at Lisle Road	24.9	0.17	0.16	0.2
8	Royal Springs Cave System at Horse Park I	19.9	19.9	11.47	11.0 ³
9	UT to Cane Run at UK Ag Research Farm road bridge	7.4	2.9	1.91	2.7
10	Cane Run at Citation Blvd	5.5	1.5	2.20	1.6 ⁴
11	UT to Cane at Coldstream Farm	1.3	1.3	1.12	1.2

¹ Flows are estimated based on scaling the median flow of the data record (1.4 cfs) of the USGS gage at Newtown Pike (03288190) based on the karst adjusted drainage area of each site unless otherwise indicated.

As shown in **Figure 4**, there is a strong relationship (R^2 =0.95) between the karst-adjusted drainage area and the average measured flow at each site. This indicates that scaling the flow at the USGS gage at Newtown Pike based on the karst-adjusted drainage area will provide a reasonable median flow estimate for other monitoring locations.

Figure 4 - Relationship Between Average Measured Flow and Karst Adjusted Drainage Area

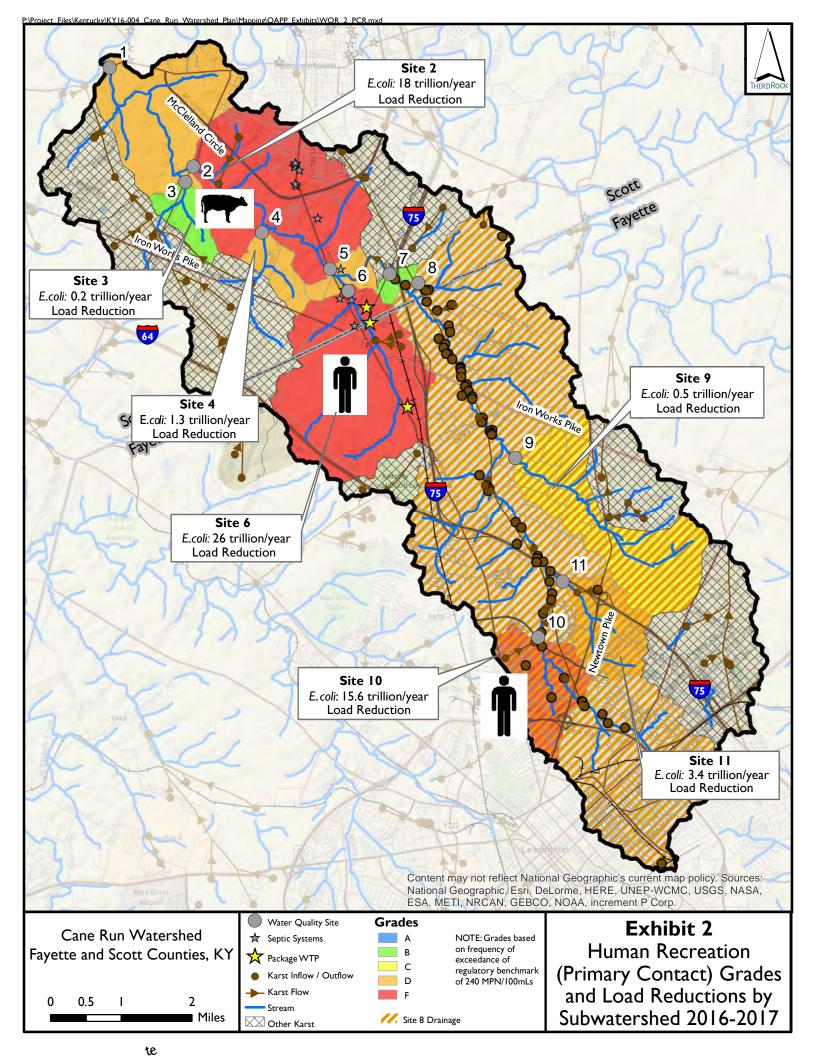
² Measured flows at Sites 3 and 4 are biased low due to flow being observed but not measurable during several sampling events.

³ Median calculated flow of at KGS data logger installed at the monitoring location.

⁴ Median flow of USGS gage Cane Run at Citation Blvd (03288180), located at the sampling site.

Therefore, the loading at each site was calculated using the average measured pollutant concentration for the monitoring period and the estimated median flow. Benchmark loads were calculated using the benchmark concentration instead of the average measured concentration. Pollutant reductions needed were then calculated by subtracting the benchmark loads from the existing loads. These reductions were then further divided into the incremental sub-drainages by subtracting reductions focused in upstream areas from downstream areas.

Although groundwater does not have human PCR, SCR or WAH use, loads and reductions were calculated based on those benchmarks. These standards were utilized to represent surface streams which flow into the karst system upstream of this site.


I. E. coli

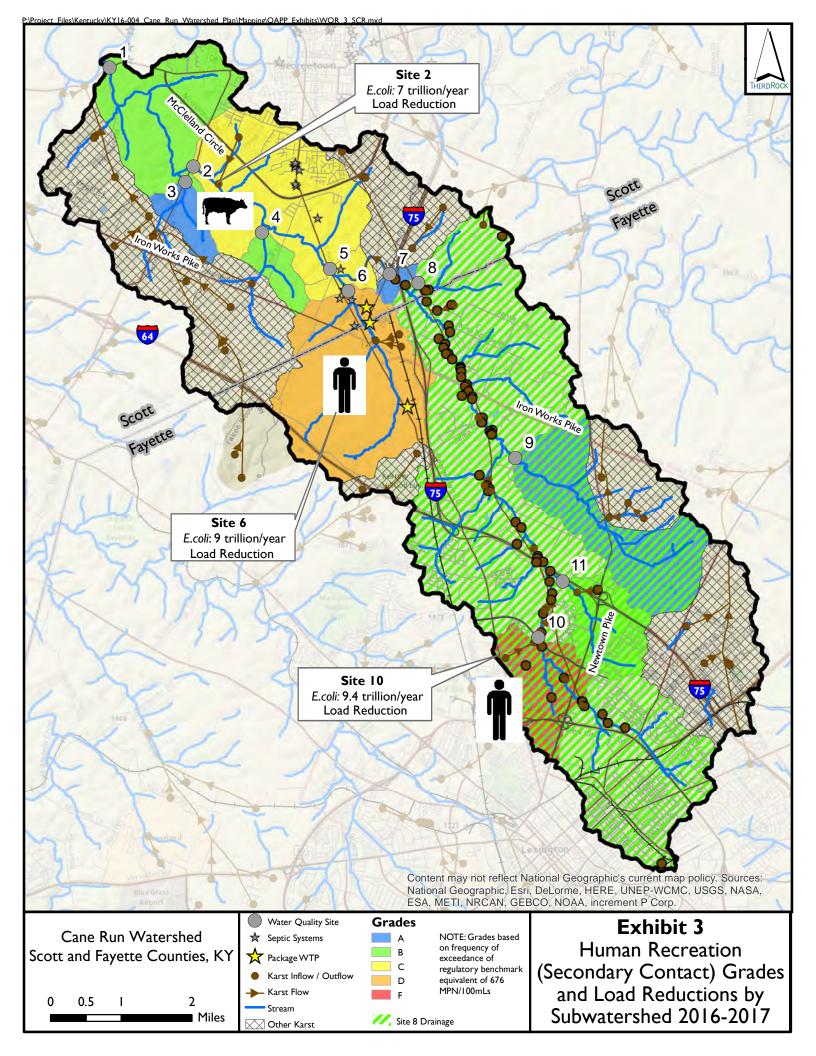

The existing *E.coli* load, benchmark loads, and reductions needed to achieve benchmark loads are summarized in **Table 15**, and shown on **Exhibits 2** and **3**, pages 24 and 25, respectively. Benchmark loads were calculated for the PCR and benchmarks with corresponding percent reductions. Load reductions are required in most subwatershed areas to meet benchmark concentrations, but remediation efforts should be focused in 3 subwatersheds where major reductions are required to meet both PCR and SCR standards.

Table 15 - E. coli Loading and Reductions

			Anr	nual Load (trillic	Load Reduction ns / year) Needed (%)			
Site ID	Average Concentration (#/100mLs)	Estimated Median Flow (cfs)		Primary Contact Benchmark (240/100 mLs)	Secondary Contact Benchmark (676/100 mLs)		Secondary Contact	Annual Load Reduction Needed ¹ (trillions/year)
	317	12.4	35	27	75	23%	-	Sites 2,3,4, & 6
2	753	9.9	66	21	59	68%	11%	18
3	282	0.5	1.3	1.1	3.1	15%	-	0.2
4	537	0.5	2.3	1	2.9	57%	-	1.3
5	678	5.6	34	12	34	65%	-	Site 6
6	907	4.4	35	9.3	26	73%	26%	26
7	130	0.2	0.18	0.34	0.96	-	-	-
8	475	11.0	46	23	66	50%	-	4.0
9	261	2.7	6.3	5.8	16	8%	-	0.5
10	1327	1.6	19	3.4	9.6	82%	49%	15.6
11	551	1.2	6	2.6	7.3	57%	-	3.4

¹ Annual load reduction needed by incremental sub-watershed

Overall, the highest existing load was calculated at Site 10. Load reductions of 82% are required to meet the Primary Contact benchmark in this area. While flow does reach the site from the sources upstream of Newtown Pike, most of the flow comes from a small tributary near a large neighborhood. Poor sanitary sewer infrastructure, including private lateral lines of orangeburg and clay pipe, are located in this neighborhood. A neighborhood-wide rehabilitation of the sanitary sewer system is recommended to aid achieving the *E.coli* load reductions. Monitoring by LFUCG should further aid in identifying *E.coli* sources upstream of this site, including the tributary near Eastern State Hospital.

Cattle in Stream, Upstream of Site 2

The next highest *E. coli* load was measured at Site 6, which is also responsible for high concentrations at Site 5, downstream. Human sources were indicated to be dominant in this subwatershed area.

Investigation of discharge monitoring reports from the 3 permitted package treatment plants located in the watershed indicate that these facilities are responsible for most of the *E. coli* loading in this area. According to the Scott County Health Department, several poorly functioning septic systems are also located in the area and are contributing to the pollution.

The third major focus area is the subwatershed of Site 2. Cattle sources were shown to be the most dominant source of the *E. coli* load at this location and numerous cattle were observed both in the creek and along the banks. Bank erosion is also being caused due to cattle access to the stream. Livestock restriction from the stream, hardened crossings, and manure management would be effective BMPs to address this fecal source.

2. Nutrients

Loads were calculated for ammonia, total nitrogen and total phosphorus. The existing load, benchmark loads, and reductions from ammonia, nitrogen, and phosphorus are summarized in **Tables 16**, **17** (page 27), and **18** (page 27), and shown on **Exhibits 4** through **6**, pages 28-30, respectively.

Table 16 - Ammonia Loading and Reductions

			Annual Lo	oad (lbs/year)	Load	
Site ID	Average Concentration (mg/L)	Estimated Median Flow (cfs)	Existing	Benchmark (0.1 mg/L)	Reduction Needed (%)	Annual Load Reduction Needed ^I (lbs/year)
I	0.00	12.4	0	2,400	-	-
2	0.03	9.9	570	1900	1	-
3	0.00	0.5	0	100	1	-
4	0.00	0.5	0	95	1	-
5	0.22	5.6	2,500	1,100	56%	Site 6
6	1.31	4.4	11,000	860	92%	10,140

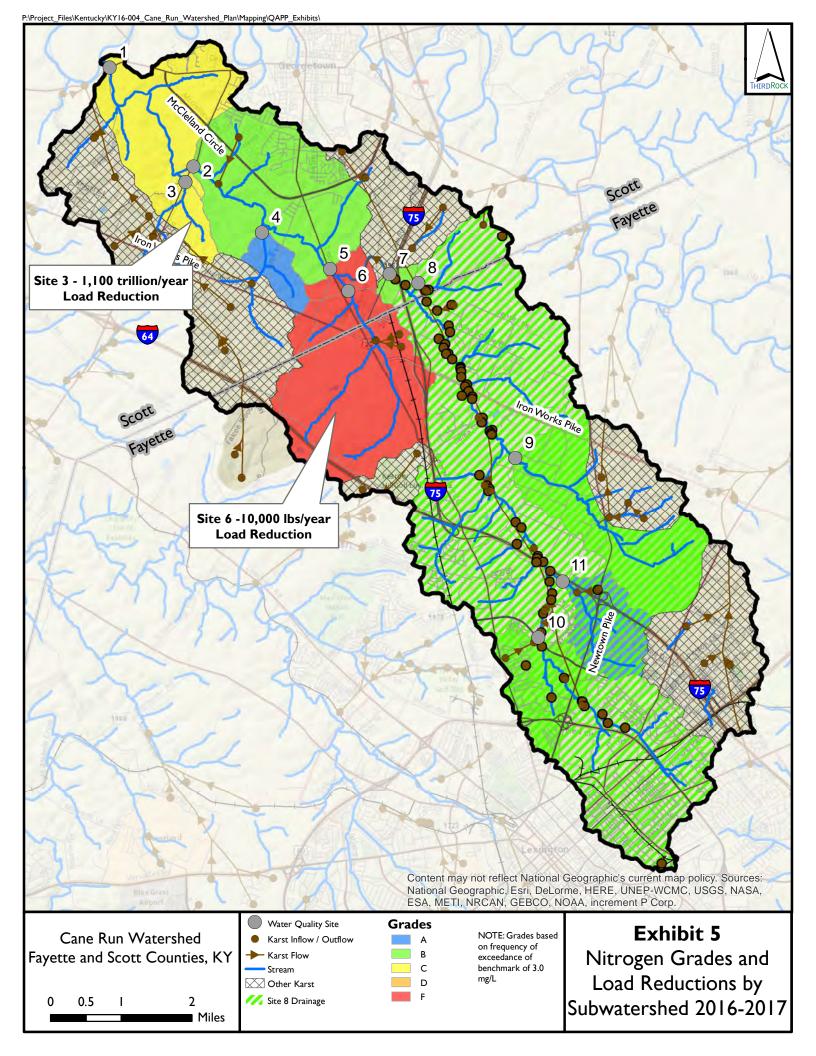
Table 16 - Ammonia Loading and Reductions Continued

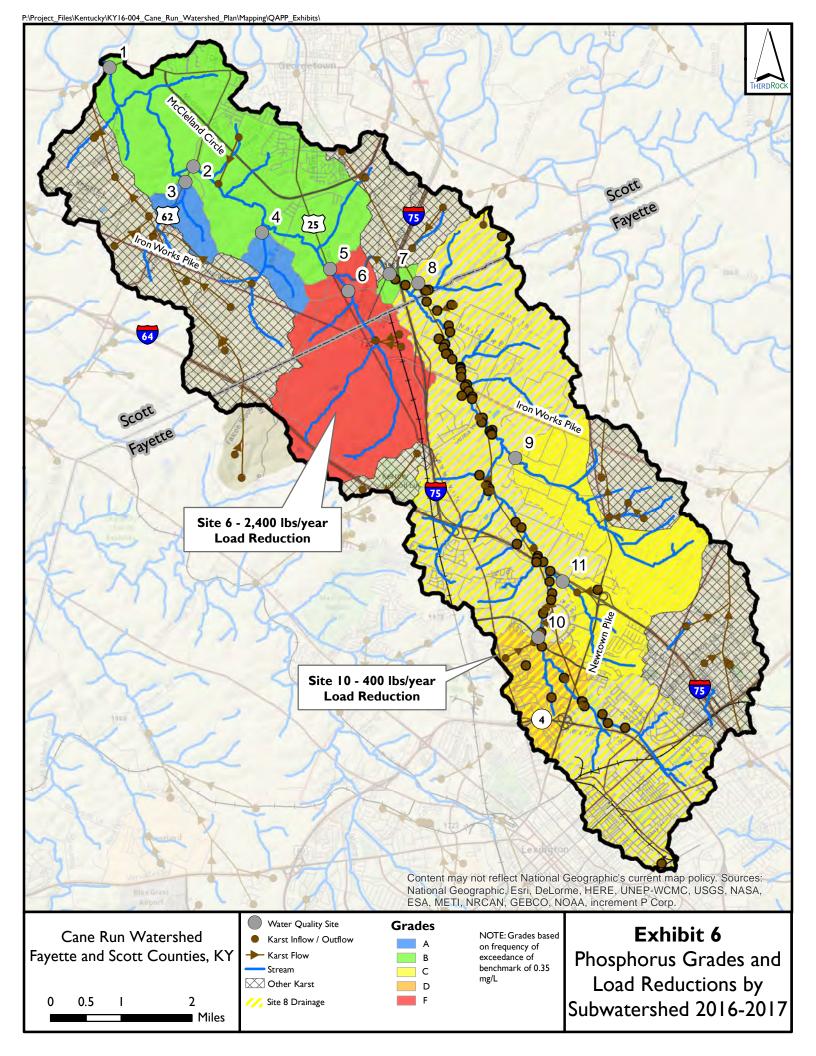
	Average	Estimated	Annual Load (lbs/year)		Load	Annual Load
Site ID	Concentration (mg/L)	Median Flow (cfs)	Existing	Benchmark (0.1 mg/L)	Reduction Needed (%)	Reduction Needed ¹ (lbs/year)
וט	(IIIg/L)	(CIS)	LAISCHIR	(U.I IIIg/L)	Necueu (%)	Meeded (IDS/year)
7	0.00	0.2	0	31	-	-
8	0.12	11.0	2,600	2,200	15%	400
9	0.11	2.7	560	530	5%	30
10	0.03	1.6	79	310	-	-
11	0.00	1.2	0	240	-	-

Annual load reduction needed by incremental sub-watershed

Table 17 - Total Nitrogen Loading and Reductions

	Average	Estimated	Annual Lo	oad (lbs/year)	Load	Annual Load
Site ID	Concentration (mg/L)	Median Flow (cfs)	Existing	Benchmark (3 mg/L)	Reduction Needed (%)	Reduction Needed¹ (lbs/year)
1	2.23	12.4	54,000	73,000	-	-
2	2.12	9.9	41,000	58,000	-	-
3	4.06	0.5	4,200	3,100	26%	1,100
4	1.02	0.5	980	2,900	-	-
5	3.25	5.6	36,000	33,000	8%	Site 6
6	4.18	4.4	36,000	26,000	28%	10,000
7	1.51	0.2	470	940	-	-
8	2.45	11.0	53,000	65,000	-	-
9	1.79	2.7	9,500	16,000	-	-
10	2.47	1.6	7,800	9,400	-	-
П	0.91	1.2	2,200	7,200	-	-


Annual load reduction needed by incremental sub-watershed


Table 18 - Total Phosphorus Loading and Reductions

	Average	Estimated	Annual Lo	oad (lbs/year)	Load	Annual Load
Site ID	Concentration (mg/L)	Median Flow (cfs)	Existing	Benchmark (0.35 mg/L)	Reduction Needed (%)	Reduction Needed (lbs/year)
I	0.27	12.4	6,500	8,600	-	-
2	0.30	9.9	5,700	6,800	-	-
3	0.29	0.5	300	360	-	-
4	0.25	0.5	240	330	-	-
5	0.51	5.6	5,700	3,900	32%	Site 6
6	0.63	4.4	5,400	3,000	44%	2400
7	0.20	0.2	61	110	-	-
8	0.39	11.0	8,400	7,600	10%	400
9	0.30	2.7	1,600	1,900	-	-
10	0.46	1.6	1,500	1,100	27%	400
П	0.33	1.2	780	840	-	-

¹ Annual load reduction needed by incremental sub-watershed

П

3.4

Cane Run Watershed Based Plan Combined Water Quality / Quality Assurance Project Report Page 31 of 32 (Plus Appendices)

The largest load reductions for ammonia, nitrogen, and phosphorus are all from the drainage area of Site 6. The nitrogen reduction needed at Site 6 is due to the high ammonia levels in the area. Based on discharge monitoring reports, most of the ammonia, nitrogen and phosphorus contributions are likely due to the failing package treatment systems associated with 3 mobile home parks located in the watershed, similar to what was observed for high *E.coli* loading. Other potential sources include failing septic systems, manure or fertilizer from horse farms, a landscaping company, and a dump site. Sources upstream of Site 6 are also responsible for the high levels of nutrients at Site 5, downstream.

Site 8 showed elevated levels of ammonia and phosphorus from tributaries located upstream. About 20% of the loading for these parameters is due to agricultural sources upstream of Site 9, located on university research property, which requires slight reductions for ammonia. However, other upstream sources should be targeted to lower nutrient levels in the groundwater system. The LFUCG monitoring study should help to identify additional potential nutrient sources.

Site 3 requires a reduction in nitrogen loads due to contributions from horse farms, which comprise the majority of the drainage area upstream of that site. Additionally, phosphorus reductions should be targeted to the Site 10 drainage area.

Sites 1, 2, 4, 7, and 11 did not show load reductions were needed to meet the benchmark nutrient loads.

3. Subwatershed Prioritization and Load Reduction Summary

Table 19 and **Exhibit 7** (page 32) summarize the water quality load reductions needed and implementation effort priority areas for each of the subwatersheds monitored in this project.

Site E. coli **A**mmonia **Nitrogen Phosphorus** ID (trillions/year) (lbs/year) (lbs/year) (lbs/year) **Potential Sources** 2 18 Cattle upstream of Payne's Depot Road 3 0.2 1,100 Two horse farms 4 1.3 Septic systems along Etter Lane, horse manure management at 3 horse farms Sanitary Package Plants at mobile home parks, along 6 26 10,140 10,000 2,400 with failing septic systems, a large dump, a landscaping company, and multiple horse farms. 8 400 400 Load reductions exclude reductions specific to 4 drainage to Sites 9 or 10, but apply to other streams or karst inputs in the drainage area. Potential sources are Lexington urban headwaters (including some industry), Kentucky Horse Park, and other areas. 9 0.5 30 Farms, including a university research farm, and several horse-related farms and businesses 10 15.6 400 Primarily private sanitary laterals and sanitary sewer in a large neighborhood. Other sources include tributary behind Eastern State Hospital and some

Table 19 - Load Reductions and Source Summary

Large neighborhoods, sanitary sewers with LFUCG

from upstream of Newtown Pike.

remedial measure plans.

Quality Assurance Project Plan (QAPP)

Cane Run Comprehensive Watershed Based Plan

Prepared By: Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, KY 40503 859-977-2000

Prepared for: Kentucky Division of Water 200 Fair Oaks Lane Frankfort, KY 40601 502-564-3410

Effective Date: May 3, 2016 Revision No. 2, August 8, 2016

1 PROJECT MANAGEMENT

1.1 Title and Approval Sheet

Action By	Signature	Date
Steven Evans Prepared, QAPP Author	MK	8/8/296
Bert Remley Reviewed, Chief Biologist	Kut Remlin	8/8/2016
Lisa Martin Reviewed, Microbac Laboratories	Los marte	8-10-16
Tricia Coakley Reviewed, UK ERTL	The Calm	8/10/16
Alyson Jinks Approved, KDOW Nonpoint Source		
Lisa Hicks Approved, KDOW Quality Assurance Officer		
James Roe Supervisor NPS and BT Section KDOW		

1.2 Revision History

Date of Revision	Page(s)/Section(s) Revised	Revision Explanation
May 3, 2016	all	New document
June 7, 2016	 General p. 9, 21 p. 10, 1.7.1 Biological Monitoring p. 10-11, 1.7.2 Water Quality Monitoring p. 12-13, Project Schedule Time Line p. 16, Table 5 p. 30 Microbial Source Tracking p. 35, Table 12 p. 36,38, 2.3.3 Site Identification, 2.5 Quality Control p. 39, 2.6 Requirements for Equipment and Supplies p. 44, 4.1 Validation and Verification Methods References 	 Included references to HUC 12 throughout Removed "remediation" from goal statement of QAPP Revised headwater index period Change time period of sampling, microbial source tracking to be sampled in office Change in timelines for tasks and deliverables Method for nitrate and nitrite revised. Reporting limits lowered Samples filtered at Third Rock office Revision to containers and preservatives Laboratory to assume duplicate sample time as earliest sample. Calibration to occur day of or day before sampling KDOW may make final determinations on data acceptability Removed reference to 2008 KDOW SOP
August 8, 2016	p.10, 1.7.2 Water Quality Monitoring p. 21-22 Table 6 and text Appendix A – Field Forms Appendix D – Maps	 Changed number of sites from ten to eleven Site 7 moved from Horse Park to Lisle Rd due to lack of flow due to karst swallet. Site 10 moved from Equine Campus Road to Citation Blvd due to karst swallet hole. Site 11 added. Corrected Site 9 description. Changed number of sites to 11. Chain of Custody includes additional site New site locations and drainages

1.3 Table of Contents

1	PR	OJECT MANAGEMENT	3
	1.1	Title and Approval Sheet	3
	1.2	Revision History	4
	1.3	Table of Contents	5
	1.4	Distribution List	7
	1.5	Project / Task Organization	8
	1.6	Project Background and Overview	9
	1.7	Project / Task Description and Schedule	9
	1.8	Data Quality Objectives (DQOs) and Criteria for Measurement Data	13
	1.9	Special Training Requirements	17
	1.10	Documentation and Records	18
2	DA	TA ACQUISITION	21
	2.1	Sampling Experimental Design	21
	2.2	Sampling Procedures and Requirements	
	2.3	Sample Handling and Custody Requirements	
	2.4	Analytical Methods Requirements	
	2.5	Quality Control Requirements	
	2.6	Requirements for Equipment and Supplies	
	2.7	Data Acquisition Requirements for Non-Direct Measurements	
	2.8	Data Management Requirements	
3		SESSMENTS	
4	RE	VIEW, EVALUATION AND REPORTING REQUIREMENTS	44
	4.1	Validation and Verification Methods	44
	4.2		
5	RE	FERENCES AND CITATIONS	47
6	AP	PENDICES	49
F	<u>igures</u>		
Fi	iaure 1	1 - Organizational Chart	8
	_	2 - Measurement of Discharge through SubSectional Measurements	

<u>Tables</u>

Table 1 - Project Schedule by Task	. 13
Table 2 - Summary of Data Quality Objectives	. 14
Table 3 - Biological Warmwater Aquatic Habitat Criteria for the Bluegrass Bioregion	
Table 4 - Water Quality Benchmarks	. 15
Table 5 - Acceptance Criteria for Field Measurements and Laboratory Chemistries	. 16
Table 6 - Cane Run Watershed Sampling Site locations	. 21
Table 7 - Standard Operating Procedures	. 22
Table 8 - Summary of Habitat Assessment Parameters	. 24
Table 9 - Benthic Macroinvertebrate Sampling Equipment	. 24
Table 10 - Summary of Sampling Methods for Macroinvertebrates	. 25
Table 11 - Water Quality Monitoring Equipment and Supplies	. 28
Table 12 - Collection Containers, Preservatives, and Hold Times	. 35
Table 13 - Field Equipment Calibration and Maintenance	. 39
Table 14 - Data Assessment and Management Reports	
Table 15 - Data Qualifiers and Response	45

1.4 Distribution List

The following individuals will receive the approved Quality Assurance Project Plan (QAPP) and any subsequent revisions.

Kentucky Division of Water 200 Fair Oaks Lane, 4th Floor Frankfort, KY 40601 (502) 564-3410

> Alyson Jinks, Technical Advisor Nonpoint Source and Basin Team Section Alyson.Jinks@ky.gov

Lisa Hicks, Quality Assurance Officer Lisa.Hicks@ky.gov

Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, KY 40503 (859) 977-2000

Steven Evans, Data Manager sevans@thirdrockconsultants.com

Bert Remley, Chief Biologist bremley@thirdrockconsultants.com

Microbac Laboratories 2520 Regency Road Lexington, KY 40503 (859) 2763506

Lisa Martin, Laboratory Supervisor lisa.martin@microbac.com

University of Kentucky - Environmental Research Training Laboratories 161 Raymond Bldg. RM 340 Lexington, KY 40506 (859) 257-6757

Tricia Coakley, Lab Manager Tricia.coakley@uky.edu

1.5 Project / Task Organization

The key personnel of project team are summarized in Figure 1 as well as the lines of authority with regards to the execution of the project. The roles and responsibilities of specific personnel are summarized below.

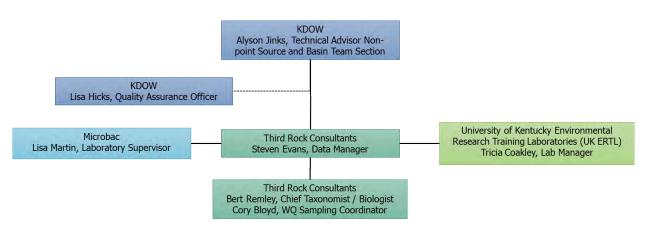


FIGURE 1 - ORGANIZATIONAL CHART

<u>Alyson Jinks, Kentucky Division of Water Technical Advisor Nonpoint Source and Basin Team Section</u>, is responsible for ensuring that the monitoring performed under this project is in compliance with the KDOW and EPA requirements.

<u>Lisa Hicks, Kentucky Division of Water QA Officer</u>, will be responsible for reviewing and approving the QA Project Plan. She may provide technical input on proposed sampling design, analytical methodologies, and data review.

<u>Steve Evans, Third Rock Consultants Data Manager</u>, will be responsible for writing and/or coordinating development of the QAPP. He will ensure that monitoring training and sampling events are coordinated as specified in the QAPP. He will review and approve all data generated for the project and prepare QA reports as required by the project. He will also be responsible for managing the data generated.

<u>Bert Remley, Third Rock Consultants Chief Taxonomist / Biologist</u>, will be responsible for biological sampling coordination and identification. He will either identify all biological samples collected or will assign appropriate laboratory staff to perform the identification of biological samples collected. He will be responsible for QA of all biological data generated from both the field and laboratory. He will report to Third Rock Consultants Data Manager and QA Manager.

<u>Cory Bloyd, Third Rock Consultants WQ Sampling Coordinator</u>, will be responsible for coordinating water quality sample collection efforts by Third Rock staff. His responsibilities include assigning to field samplers specific tasks and objectives and ensuring proper chain-of-custody of water samples collected. He has overall responsibility

for all field activities associated with water quality samples collected by Third Rock staff. He will report to Third Rock Consultants Data Manager and QA Manager.

<u>Lisa Martin, Microbac Laboratory Supervisor</u>, will be responsible for assigning appropriate laboratory staff to perform the analyses specified in this plan.

<u>Tricia Coakley, University of Kentucky Environmental Research Training Laboratories Lab Manager,</u> will be responsible for performance of microbial source tracking laboratory analysis and reporting.

1.6 Project Background and Overview

This Cane Run Comprehensive Watershed Based Plan Quality Assurance Project Plan (QAPP) has been developed to ensure data generated under this QAPP is of sufficient quality to achieve project goals for the watershed based plan.

The overall goal for this QAPP is to generate data of sufficient quality and resolution to facilitate the identification and quantification of sources of recreational and aquatic habitat impairments to the Cane Run Watershed (HUC#05100205280200).

The study area is the entirety of the Cane Run Watershed that is located in Scott and Fayette Counties. Three key monitoring elements will be performed as briefly outlined below:

- 1. Biological Monitoring
 - Habitat Assessments by Rapid Bioassessment Protocol (RBP)
 - Macroinvertebrate Collection and Identification
- 2. Water Quality Monitoring
 - Pollutant Loading Sampling Monthly
 - E. coli Geomean Sampling 5 events in 30 days
 - Microbial Source Tracking
- 3. Severe Erosion Survey
 - Visual Assessment or Windshield Survey

1.7 Project / Task Description and Schedule

1.7.1 Biological Monitoring

Habitat assessments will be conducted by visual assessments of riffle and pool substrates, stream channelization, riparian conditions, and in-stream cover. Habitat characteristics are scored on a high gradient habitat assessment field data sheet modified from US EPA 841-B-99-002 (Barbour et al., 1999). Physical habitat assessments will be conducted

simultaneously with the macroinvertebrate sampling events, at eight stream locations. *In situ* measures (described below) are also taken at that time. The habitat score is compared to regional criteria for the Bluegrass Bioregion based on stream size (headwater or wadeable) to determine a habitat rating for each site. The assessments will occur during the sampling index periods for each reach (wadeable streams from May 1 to September 30; headwater streams from March 1 to May 31).

Macroinvertebrates will be sampled by approved biologists, during their respective sampling index periods (for wadeable streams the index period is May 1 through September 30; for headwater streams it is March 1 through May 31). Benthic macroinvertebrate samples will not be collected during periods of excessively high or low flow or within two weeks of a known scouring flow event. Macroinvertebrates will be collected at eight locations.

The macroinvertebrate community will be sampled using the high gradient methods developed by KDOW (2015). These sampling methods involve the collection of two separate samples, a semi-quantitative riffle sample and qualitative multi-habitat sample, at each station. Samples will be preserved in 95% ethanol and returned to the laboratory for processing and identification.

Random 300-specimen subsamples are removed from the riffle samples using methods described by KDOW (2015). All organisms are identified to the lowest possible taxonomic level and recorded on laboratory data sheets. Macroinvertebrate results are analyzed to calculate a Macroinvertebrate Biotic Index (MBI) rating for each watershed station using appropriate metrics (KDOW 2015, Pond *et al.*, 2003). The MBI score is then compared to regional criteria for the Bluegrass Bioregion to arrive at a narrative water quality rating based on stream size (headwater or wadeable).

1.7.2 Water Quality Monitoring

Water quality monitoring will be performed at eleven sites on a monthly basis during 12 events from June 2016 to May 2017 as a pollutant load characterization effort. Three of these events will be performed during precipitation events greater than 0.2 inches. The remaining 9 events will take place during dry weather conditions. All events require an antecedent dry period of 72 hours. An effort will be made to sample when streams have flow, however due to the intermittent flow and loss of surface water to the karst system, samples may not be collected at some sites during some events. Sampling at an individual site will not occur if flow is not observed (i.e. pooled).

Field data including turbidity, pH, dissolved oxygen (DO), specific conductance (COND), percentage saturation (DO%), and temperature (TEMP) will be measured *in situ* at each site using a Hydrolab multimeter or the equivalent following methods developed by KDOW (2009a). Flow will be measured using an OTT MF Pro flow meter with top set wading rod following KDOW methods (KDOW 2010). Grab samples will be collected and transported

to Microbac for analysis for $E.\ coli$, nitrate/nitrite (NO₂+NO₃), ammonia (NH₃), total Kjeldahl nitrogen (TKN), total phosphorus (TP), orthophosphate (OP), 5-day carbonaceous biochemical oxygen demand (CBOD5), and total suspended solids (TSS) using methods developed by KDOW (2011b). OP will be filtered in the field. All samples will be preserved according to method specifications and transported to the Microbac Laboratory for analysis within method holding times and temperature requirements.

In addition to the monthly sampling five additional sampling events will be conducted in May 2017 for *E. coli*, and field parameters. Sampling will be conducted during dry weather conditions (72-hour antecedent dry period). *E. coli* will be analyzed by Microbac. Flow and field *in situ* measurements will be conducted using same methods as monthly parameters.

For microbial source tracking, 20 samples will be chosen for analysis using quantitative polymerase chain reaction (qPCR) for DNA markers of general, human, and ruminant fecal contributions. After each monthly sampling event, an aliquot from each site will be filtered, and filters will be rolled and placed into sterile centrifuge tubes, sealed, iced and transported to a deep freezer at the University of Kentucky Environmental Research Training Laboratories (UK ERTL) for storage. In April 2017, Third Rock will work with KDOW to determine the locations and events from this library that should be analyzed by UK ERTL in May 2017 to identify fecal sources.

1.7.3 Severe Erosion Surveys

Perennial and intermittent streams within the Cane Run Watershed (HUC#05100205280200) will be surveyed for areas of severe erosion. Where permission is gained to access property streams will be inspected on foot by Third Rock personnel. In areas where permission cannot be gained, a windshield survey will be conducted from public roadways.

Surveyors will follow the *Stream Corridor Assessment Survey- SCA Survey Protocols* (MDDNR 2001) during the survey, recording length of erosion, bank height, cause, and ranking the severity, correctability, and access. Streams will be walked where permission is granted, but will otherwise perform the survey from roadways. Surveyors will mark locations of severe erosion on a high resolution aerial map as well as areas that could not be accessed. For this survey, severe erosion is defined as areas where erosion greatly exceeds average reach conditions or threatens property and infrastructure. Photographs will be made of each location and the length of the erosion marked with GPS waypoints where access allows. An erosion field datasheet will be completed in the field for areas of severe erosion.

1.7.4 Deliverables

The results of these monitoring activities will be conveyed through multiple deliverable types including reports, maps, and data analysis.

- A Macroinvertebrate and Habitat Assessment Report will be generated after field sampling, and sample identification has been completed. This report will include the following:
 - o Habitat scores for each station will be compared to regional KDOW criteria and a habitat score will be assigned for each station.
 - o Habitat rating results will be presented in a table and on a summary map.
 - o Macroinvertebrate scores will be presented on a map as compared with KDOW Criteria and compared to the total habitat scores. A table of results will also be developed.
- Water quality results will be summarized in a Water Quality Report after sampling is completed. This report will include the following information:
 - o Water quality results will be compared to KDOW benchmarks and exceedances will be noted on a summary map.
 - o Results for all parameters will be presented in a table.
 - o Water quality results will be utilized to generate pollutant loading calculations, sources of pollutants, and required reductions
 - o Water quality health grades will be generated according to monitoring results
 - Fecal source contributors of *E. coli* determined through microbial source tracking will be indicated on a summary map.
- Erosional areas in need of bank stabilization or stream restoration will be prioritized and displayed on mapping and summarized in a Severe Erosion Survey Report.

These monitoring results may also be used to develop a comprehensive Watershed Based Plan in the year following the completion of the monitoring.

1.7.7 Project Schedule Time Line

Table 1 (page 13) summarizes the project schedule for the monitoring conducted for Cane Run Watershed (HUC#05100205280200).

It is expected that the laboratory will send results with a turnaround time of 7 days. An initial review of the monitoring water quality data will be conducted within 14 days of receipt and distributed to the watershed working group. Review of other monitoring activities will be conducted within the allotted time period for the sampling activity to allow for re-sampling if necessary. The Macroinvertebrate Survey and Habitat Assessment Report will be generated by August 31, 2017, and the Water Quality Monitoring Report will be submitted by August 31, 2017. The expected reporting dates of other monitoring activities are detailed in Table 1.

TABLE 1 - PROJECT SCHEDULE BY TASK

Activity Frequency /							2017											
Activity	Requirements		6	7	8	9	10	П	12	Т	2	3	4	5	6	7	8	9
I. Biological Monitoring																		
Macroinvertebrate Collection and	> 2 weeks after scour event		٧	Vadea	ble													
ID, Habitat Assessment	> 2 Weeks after scour event										Headwater							
2. Water Quality Monitoring																		
Geomean E.coli	5 events in 30 days													5x				
Monthly Pollutants	12 events, 72 hrs dry							121	vents									
Pionumy Foliatarits	3 wet weather min.								- 1 - 1 - 1 - 1									
Microbial Source Tracking	20 filters from montly events						Co	ollect					Select	Lab				
3. Severe Erosion Survey																		
Visual Assessment of Streams	FayetteOutside of Urban			Visua	d													
	Service Area and Scott			7 1541														<u> </u>
4. Reporting and Data Review				_								,						
Macroinvertebrate Survey and	_														Ma	.cro/	Hab	itat
Habitat Assessment Report	-															Rep	ort	
WQ QA and Final Reports	QAER, QA Project Report,		0	AER											_	APR,	WOM	1R
VVQ QA and Final Reports	and WQ Monitoring Report		Ų,												,	, u 10,		
Severe Erosion Survey Report	-				Ero	sion R	eport											
Gather and evaluate existing data	=																	
Calculate water quality health	Existing and based on WQ		Feet														D:	
grades	data collected		EXI	sting											C	urrent	. Proje	ect
Calculate loads and load reductions																Load	s and	
to meet benchmarks	-															Redu	ctions	

1.8 Data Quality Objectives (DQOs) and Criteria for Measurement Data

Data quality is determined primarily based on data quality objectives (DQOs) and data quality indicators (DQIs). DQOs are qualitative and quantitative statements that indicate the objectives or goals for the data. Data Quality Indicators (DQIs) are qualitative and quantitative measures of data that indicate whether the data is of sufficient quality to meet the DQOs. The specific DQOs and DQIs for this project are stated in the following sections.

The overall Quality Assurance / Quality Control (QA/QC) objective for the Cane Run QAPP is to generate data of sufficient quality and resolution to facilitate the identification and quantification of sources of recreational and aquatic habitat impairments to streams within Fayette and Scott Counties.

1.8.1 Data Quality Objectives (DQO)

The data quality objectives in this WFMP QAPP are related primarily to the field sampling. The laboratory DQOs are included, but comprehensive laboratory DQOs, including number of laboratory duplicates, known samples, etc., are stated in individual laboratory Standard Operating Procedures (SOPs) and not in this sampling plan QAPP. This plan is intended to focus on field sampling activities while establishing minimum objectives

relating to laboratory quality. The data quality objectives for the respective field sampling activities are listed in Table 2.

TABLE 2 - SUMMARY OF DATA QUALITY OBJECTIVES

Sampling Activity	Objective
Habitat Assessment	Provide a semi-quantified evaluation of the general habitat of the stream
Macroinvertebrate Collection and Identification	Calculation of the Macroinvertebrate Bioassessment Index (MBI). Macroinvertebrates have varying tolerances for water pollution and serve as long-term indicators of water quality
Flow Measurements	Identify stream flow and trends and estimate pollutant loads
In situ Measurements and Field Screening	Indicate general measures of water quality at the time of sample collection during dry weather conditions
Grab Sampling	Compare pollutant concentrations to benchmarks, quantify pollutant loading of streams, tributaries
Microbial Source Tracking	Determine fecal source contributions to high areas of E. coli or ammonia
Severe Erosion Survey	Prioritize stream reaches that require bank stabilization or stream restoration

1.8.2 Action Limits / Levels

1. Biological Metrics

In order to evaluate the habitat assessment and macroinvertebrate sampling results, the KDOW has developed metrics and narrative classification ratings to indicate whether the designated use of warmwater aquatic habitat is supported or the aquatic community is adversely impacted. The criteria are summarized in Table 3.

TABLE 3 - BIOLOGICAL WARMWATER AQUATIC HABITAT CRITERIA FOR THE BLUEGRASS BIOREGION

	Warmwater Aquatic Habitat Criteria						
Narrative Rating	Hab (RBP S	itat Score)	Macroinvertebrates (MBI Score)				
	Wadeable > 5.0 mi ²	Headwater < 5.0 mi ²	Wadeable > 5.0 mi ²	Headwater < 5.0 mi ²			
Excellent	N/A	N/A	≥ 70	≥ 58			
Good	≥ 130	≥ 156	61-69	51-57			
Fair	Fair 114-129		41-60	39-50			
Poor	113	141	21-40	19-38			
Very Poor	N/A	N/A	20	18			

2. Water Quality

The regulatory statute for surface waters in Kentucky is found in 401 KAR 10:031. The statute provides minimum water quality standards for all surface waters as well as specific standards that apply to particular designated uses. For this project, the applicable designated uses include warmwater aquatic habitat (WAH) and primary contact recreation (PCR). Where regulatory criteria exist, such standards are utilized as

benchmarks. Where no such criteria exist, KDOW will provide non-regulatory benchmarks specific to this project for load reduction calculations. Because of the sampling frequency of this monitoring program, instantaneous or acute water quality criteria will be used to evaluate results when multiple criteria are present. Table 4 summarizes the criteria used to evaluate water quality data.

TABLE 4 - WATER OUALITY BENCHMARKS

Parameter	Water Quality Benchmark					
PCR Regulatory Water Qu	uality Standard					
E. coli ¹	Instantaneous: <240 CFU/100mL; 30-day geometric mean: <130 CFU/100mL					
WAH Regulatory Water Quality Standard						
General Aesthetics or Degradation	Not degraded by: objectionable deposits; nuisance floating debris, scum, oil, or other matter; objectionable color, odor, taste, or turbidity; toxic or harmful to humans, animals, or aquatic life; causing dominance of nuisance species; or taints fish flesh					
рН	Between 6.0 and 9.0 SU, and not to fluctuate more than 1.0 SU over 24 hours					
Temperature	< 31.7°C (89°F)					
Flow	Not altered to a degree that will adversely affect the aquatic community					
Dissolved oxygen	> 5.0 mg/L as a 24-hour average; or > 4.0 mg/L for instantaneous					
Specific Conductance	Indigenous aquatic community is not adversely affected					
Total Suspended Solids	Indigenous aquatic community is not adversely affected					
Nutrients	Not elevated to a level that results in an eutrophication problem					
Un-ionized Ammonia ²	<0.05 mg/L					

NOTE: PCR = primary contact recreation, WAH = warmwater aguatic habitat,

1.8.3 Measurement and Performance Criteria / Acceptance Criteria

Measurement performance criteria are used in new data collection efforts; acceptance criteria are utilized for secondary or existing data use. Measurement criteria are usually stated in quantitative terms, such as limits on method detection limits, bias, or limits of overall variability of study results.

Measurement and performance criteria can be stated as data quality indicators (DQIs); the primary indicators are precision, bias, representativeness, comparability, completeness, and sensitivity. The performance criteria are summarized in Table 5 (page 16).

For benthic macroinvertebrate samples and habitat assessments, field sampling quality is assured through training and audits. Field personnel must document through a signed affidavit that they have read the SOPs and this QAPP annually. Additionally, they must receive an annual field certificate of training from KDOW. KDOW will also perform an annual audit of the sampling procedures. A collection check sheet shall also be used to document the habitats sampled in the field. Field photographs are used to document

 $^{^{1}}$ Geometric mean based on not less than five samples taken during a 30-day period. Instantaneous standard is not to be exceeded in 20% or more of all samples taken during a 30-day period. If less than five samples are taken in a month, this standard applies. 2 Un-ionized ammonia shall be determined from values for total ammonia-N, in mg/L, pH and temperature, by means of the following equations: Un-ionized ammonia (mg/L) = $1.2*\{\text{total ammonia (mg/L as N)/[1+10^(pH_a - pH)]}\}$, where pH_a = $0.0902 + [2730/(273.2+T_c)]$ and where T_c = temperature, $^{\circ}$ C.

accuracy for habitat assessment. For macroinvertebrate laboratory identification, sorting and taxonomic quality checks will be utilized to document precision.

TABLE 5 - ACCEPTANCE CRITERIA FOR FIELD MEASUREMENTS AND LABORATORY CHEMISTRIES

Parameter	Units	Field / Lab Method	Accuracy (%R or ±)	Precision ¹ (% RPD)	Sensitivity (Reporting Limit)	
<i>In situ</i> Measurements						
Flow	cfs	Instream	±0.05 ft/sec	N/A	0.01 ft/sec	
Dissolved Oxygen	mg/L	In situ	±0.2 20		±0.2	
% Saturation	%	In situ	± 1	20	±1	
рН	SU	In situ	±0.5	20	±0.5	
Specific Conductance	μS/cm	In situ	±1	20	±1	
Temperature, Water	° F	In situ	±0.1	20	±0.1	
Turbidity	NTU	In situ	±1	20	±1	
Laboratory Chemistries						
Escherichia coli	MPN/ 100mL	SM 9223 B	N/A	30	1	
Total Suspended Solids	mg/L	USGS 1-3765-85	85-105	10	1.5	
Phosphorus, Total as P	mg/L	EPA 365.1 Rev. 2.0	90-110	10	0.05	
Orthophosphate	mg/L	EPA 365.1 Rev. 2.0	90-110	10	0.05	
Ammonia as N	mg/L	SM 4500-NH3-B&G	90-110	10	0.076* (0.25)	
Nitrogen, Total Kjeldahl	mg/L	SM 4500-NH3-G	90-110	10	0.4	
Nitrate as N	mg/L	EPA 300.0	90-110	10	0.08* (0.11)	
Nitrite as N	mg/L	EPA 300.0	90-110	10	0.08* (0.15)	
Biochemical Oxygen Demand, 5-Day Carbonaceous	mg/L	SM 5210 B	84-116	25	2* (5)	
Molecular fecal source tracking	DNA copies	qPCR (Layton et al, 2006; Green et al, 2014; Reischer et al, 2006)	TBD	TBD	1000/mL	

¹ Indicates minimum laboratory precision for water quality parameters

Field duplicates will be collected or measured for *in situ* measurements, field chemistries, and water quality grab samples at 5% of sites. Laboratory duplicates will also be performed. Internal laboratory QC samples will be analyzed to determine if the project accuracy standards, listed in Table 5 above are met. The " \pm " values listed in Table 5 for the *in situ* measurements are the minimum requirements of field equipment to be used in this project.

Representativeness is also ensured by collection under the specified sampling conditions and index period. Comparability with other water quality data for the area has been pursued through compliance with the use of Kentucky Division of Water procedures or standardized SOPs. It is assumed that all sites will be sampled for this project unless field conditions are such that prerequisite conditions are not present or interferences

^{*}Reporting to method detection limit, values between the method detection limit and reporting limit (in parentheses) will be estimates.

TBD = To be determined

prevent representative sample collection. It must be thoroughly documented if a sample cannot be collected.

For grab sampling and *in situ* measurements, the sensitivity levels necessary for this program are specified in Table 5 above. For macroinvertebrate sampling, all organisms are to be identified to the lowest possible taxonomic level (genus or species as the key permits) in order to properly calculate the associated metrics.

1.9 Special Training Requirements

Documentation of training will be maintained by the Data Manager. The minimum training requirements for the project tasks are as follows:

1.9.1 Stream Biology

In order to perform the habitat assessments and macroinvertebrate collection and identification for the stream biology surveys, KDOW specifies the minimum training requirements:

- Graduation from a college or university with a bachelor's degree in a biological, environmental, or natural science, which includes at least thirty credit hours in the biological sciences.
- Three years of professional experience in research, environmental impact assessment, or related environmental program areas. Graduate work in the biological, environmental, or natural sciences can substitute for the required experience on a year-for-year basis.
- Proficiency in the identification of macroinvertebrates to the genus level (for macroinvertebrate identification).
- Annual training certificate and audit for macroinvertebrate collection from the KDOW.
- Annual signed affidavit that the QAPP and SOPs have been reviewed.
- Proper / valid state collecting permits.

1.9.2 Water Quality Monitoring

In order to perform field collection of water quality samples, samplers must meet one of the following qualifications:

- Reading and understanding of the associated protocols and this QAPP.
- Minimum of one year of professional experience in water sample collection, research, environmental impact assessment, or related environmental program areas. Degree in the biological, environmental, or natural sciences can substitute for the required experience.

1.9.3 Severe Erosion Surveys

In order to perform severe erosion surveys, field investigators must read and understand this QAPP and associated protocols.

1.10 Documentation and Records

In order to provide quality data that meets the project objectives, traceability and maintenance of documentation and records is essential. All records relating to the collection, analysis, or reporting data associated with the project shall be made available upon request by the KDOW. A summary of such documentation is included below.

1.10.1 Field Documentation and Records

Proper documentation of all field activities is essential to ensure that data quality objectives are achieved. Field crews are expected to document unusual or anomalous conditions that may later be useful for data interpretation and analysis. The forms described below are those that will be utilized in the sampling effort.

Data collected for this project will be recorded in field notebooks, standardized forms, or directly entered into electronic databases. All data recorded in field notebooks are to be scanned and maintained electronically in project files. The following standardized field forms will be utilized in the sampling effort:

- High-Gradient Habitat Assessment Field Data Sheet
- Aquatic Biology Sample Chain-of-Custody
- Macroinvertebrate Collection Check Sheet
- Water Quality Chain-of-Custody
- Calibration and Maintenance Logs
- Erosion Site Datasheet

These field forms are provided in Appendix A. All field standard operating procedures are provided in Appendix B.

Field documentation may include photography or video to document current field conditions. Photographs will also be used to document habitat assessments. All documentation will be retained electronically until September 2022.

1.10.2 Laboratory Documentation and Records

Draft water quality laboratory results will be submitted in an Excel spreadsheet to KDOW no later than 30 days after receipt of the laboratory results. Full results including a quality control review and data package will be submitted with the Final Water Quality Monitoring

Report. The chemical laboratory data package will include the laboratory results, completed chain(s)-of-custody, lists of qualifiers associated with the data, and a report of the quality control results.

Biological data including macroinvertebrate results, habitat assessments, and metric calculations, will be submitted via a Macroinvertebrate Survey and Habitat Assessment Report. This report will include site photographs, habitat assessment scores, macroinvertebrate sample results, macroinvertebrate benchsheets, metric scores, quality control datasheets, completed chain(s)-of-custody, calibration logs, collection check sheets, and qualifications of the field personnel. All chemical and biological data will be archived electronically until September 2022.

All laboratory forms and standard operating procedures are attached in Appendix C.

1.10.3 QA Reports

This QAPP will be distributed to all individuals on the distribution list, subsequent to updating. A list of changes between revisions will be maintained in the document.

After the first sampling event is completed a quality assurance evaluation report (QAER) will be submitted to KDOW within the sampling index period. The QAER will detail the quality processes and controls used in both field sampling and in the laboratory. The QAER will summarize the status of sampling, and outline any deficiencies and discrepancies in the data collection and analysis process. The QAER will include:

- Raw Data
- Calibration records of field instruments
- Field datasheets
- Laboratory package
 - o Cover sheet with signatures
 - o Analysis results
 - Qualifiers
 - o COCs and sample receipt summary
 - o Summary of QC
 - o Case narratives, as needed
- Summary of sampling event and QC data results
- Map of final sampling sites, if different from QAPP sites

A final Quality Assurance Project Report (QAPR) will be submitted to KDOW at the conclusion of the project. For chemical laboratory data, the report will document all the quality controls associated with the analysis of the collected samples along with a narrative description of the results and a list of all data qualifiers. Macroinvertebrate laboratory quality assurance documentation will include completion of Macroinvertebrate Sample Sorting Efficiency Form, Macroinvertebrate Sample Taxonomy Precision Form, and Macroinvertebrate Sample Taxonomic and Enumeration Efficiency Form.

Field *in situ* measurements are to be recorded on the datasheet, chain-of-custody, or in a field notebook. Equipment calibration and maintenance logs are to be documented and recorded per procedure specifications. Any field issues and corresponding corrective actions will be discussed in the QAPR. All field data will ultimately be submitted in the Water Quality Report, Macroinvertebrate Survey and Habitat Assessment Report, or the Severe Erosion Report. However, all field notes, including the location and frequency of QC sampling, *in situ* measurements, and calibration and maintenance logbooks will be retained until September 2022.

2 DATA ACQUISITION

2.1 Sampling Experimental Design

A systematic sampling design has been utilized for these activities, wherein the sample locations and parameters have been selected based upon evaluation needs.

This monitoring plan is for the Cane Run Watershed (HUC#05100205280200) in its entirety including portions in both Fayette and Scott Counties.

The three key monitoring elements chosen for this project are intended to identify sources of recreational and aquatic habitat impairments to the Cane Run Watershed, including characterization of pollutants and determine specific locations and land uses generating these pollutants.

A total of 11 sites will be sampled within the Cane Run Watershed, and are shown in Exhibit 1. Water quality monitoring will be conducted at all 11 sites, and macroinvertebrates at eight sites. Types of sampling and sampling site locations are described in Table 6. All water quality parameters sampled are critical to this project. *E. coli* is sampled to determine primary contact recreation impairments; NO₂, NO₃, TKN, NH₃, TP, and OP are sampled for nutrient/eutrophication impairments; CBOD-5 is sampled for organic enrichment (sewage) impairments; and TSS is sampled for sedimentation impairments. *In-situ* measurements (DO, DO%, pH, TEMP, Turbidity, and COND) will be sampled to document general water quality conditions. Flow is field measured and is essential to calculating pollutant loading.

TABLE 6 - CANE RUN WATERSHED SAMPLING SITE LOCATIONS

Site ID	Location	Area (mi²)	WQ	Macro/ Habitat	Latitude	Longitude
1	Cane Run at US 460 Bridge	45.4	Χ	Χ	38.210260	-84.611020
2	Cane Run off SR 62	39.3	Χ	Χ	38.189400	-84.589200
3	UT to Cane Run off SR 62	2.02	Χ	Χ	38.186472	-84.591300
4	UT to Cane Run on Horse Farm off Etter Lane	3.1	Χ	Х	38.175357	-84.571630
5	Cane Run at Landscape Alternatives nursery bridge off US 25	31.8	Χ	Х	38.168000	-84.554250
6	UT to Cane Run in field off of US 25	5	Χ	Χ	38.163590	-84.549770
7	Cane Run at Lisle Road	24.9	Χ	Χ	38.167065	-84.538907
8	Royal Springs Cave System at Horse Park ¹	N/A	Χ		38.165237	-84.531324
9	UT to Cane Run at UK Ag Research Farm road bridge	7.4	Χ	Х	38.128800	-84.507080
10	Cane Run at Citation Blvd	5.5	Χ		38.092322	-84.501381
11	UT to Cane at Coldstream Farm	1.3	Χ		38.103658	-84.495021

¹ Site 8 is a groundwater monitoring well site. Together with Site 9, these sites measure all pollutants from Fayette County portion of watershed – surface and groundwater.

Sampling locations were chosen based on historic sampling, county breaks, flow conditions, and major tributaries.

Macroinvertebrate results are utilized to calculate a Macroinvertebrate Biotic Index (MBI) rating which provides a water quality rating when compared to regional criteria. Individual macroinvertebrate sampling site locations are described in Table 6. Sites not sampled include one groundwater site (Site 8), and two sites that will be sampled under another project with an approved QAPP. Habitat assessments are utilized to compare habitat conditions at macroinvertebrate sampling sites to regional criteria.

Severe erosion surveys are intended to provide general locations of erosion such that Best Management Practices can be targeted to areas in need of stabilization.

2.2 Sampling Procedures and Requirements

The following paragraphs provide a summary of the sampling methods and equipment associated with each of the monitoring activities. For a complete discussion of the sampling methods, consult the SOPs listed in Table 7. During all monitoring activities, the sampler personnel are to bring the following materials at a minimum: waterproof field notebook, pencils, ink pens, sampling protocols, appropriate field forms, gloves, waders or boots, and a digital camera. Other equipment or materials specific to each sampling type are recorded in the sections that follow.

TABLE 7 - STANDARD OPERATING PROCEDURES

Sampling Activity	Standard Operating Procedures
Macroinvertebrate	KDOW. 2015. Methods for Collecting Macroinvertebrate Samples As Required For TMDL
Collection and	Alternative Studies and/or Watershed-Based Plans. Kentucky Department for Environmental
Identification	Protection, Division of Water, Frankfort, Kentucky. DOWSOP03039
Habitat Assessment	KDOW. 2011a. <i>Methods for Assessing Habitat in Wadeable Waters</i> . Kentucky Department for
Habitat 7.53c33iTiCitt	Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03024
	KDOW. 2009a. Standard Operating Procedure In situ Water Quality Measurements and
<i>In situ</i> Measurements	Meter Calibration. Kentucky Department for Environmental Protection, Division of Water,
	Frankfort, Kentucky. DOWSOP03014
	KDOW. 2011b. Standard Operating Procedure Sampling Surface Water Quality in Lotic
Grab Sampling	Systems. Kentucky Department for Environmental Protection, Division of Water, Frankfort,
	Kentucky. DOWSOP03015
	KDOW. 2010. Standard Operating Procedure Measuring Stream Discharge. Kentucky
Stream Discharge	Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
	DOWSOP03019
Severe Erosion	MD DNR. 2001. Stream Corridor Assessment Survey- SCA Survey Protocols. Maryland
Surveys	Department of Natural Resources, Annapolis, Maryland.

2.2.1 Habitat Assessments

Equipment

A digital camera and High Gradient Habitat Assessment Data Sheet will be utilized in Habitat Assessments.

Method

Habitat assessments include a visual assessment of ten habitat parameters that characterize the stream "micro scale" habitat, the "macro scale" features, and the riparian and bank structure features that are most often influential in affecting the other parameters. KDOW's *Methods for Assessing Habitat in Wadeable Waters* (KDOW 2011a) follows the USEPA's *Rapid Bioassessment Protocols for Use in Wadeable Streams and Rivers* (Barbour *et al.* 1999). Each of the parameters is evaluated on a "Condition Category" scale from 0 to 20. The categories within this scale include "Optimal" (scores 20 to 16), "Suboptimal" (scores 15 to 11), "Marginal" (scores 10 to 6), and "Poor" (scores 5 to 0). The score for each parameter is summed to produce a final habitat score (maximum 200).

For parameters 1 to 5, the habitat assessment should evaluate a composite of the entire biological sampling reach. For parameters 6 to 10, an area beginning approximately 100-m upstream of the sampling reach through the sampling reach should be evaluated as a composite. When determining left and right bank, face downstream. For parameters 8 to 10, each bank is scored independently from 10 to 0. At each sampling site, results will be recorded on the High-Gradient Habitat Assessment Field Data Sheet. Photographs will be taken to document the following at each site:

- Sampling zone
- Upstream
- Downstream
- Typical in-stream habitats

The individual scores for each parameter are described on the field data sheet. Table 8, page 24, summarizes each of the ten parameters assessed. Full descriptions can be found in the sampling procedure.

Each photo will be labeled with the stream name, location, station number, sampling date, and the features documented in the photo. This data is to be submitted in a photo log with results of the assessment.

TABLE 8 - SUMMARY OF HABITAT ASSESSMENT PARAMETERS

#	Parameter Name	Description
1	Epifaunal Substrate / Available Cover	Relative quantity and the variety of stable structures, such as cobble, boulders, fallen trees, logs, branches, root mats, undercut banks, aquatic vegetation, etc., that provide refugia, feeding opportunities, and sites for spawning and nursery functions.
2	Embeddedness	The extent to which rocks and snags are covered or sunken into the silt, sand, mud, or biofilms (algal, fungal, or bacterial mats) of the stream bottom.
3	Velocity / Depth Regime	Presence of the following patterns of velocity and depth: 1) slow-deep, 2) slow-shallow, 3) fast-deep, and 4) fast-shallow.
4	Sediment Deposition	The amount of sediment that has accumulated in pools and changes that have occurred to the stream bottom as a result of deposition. This may cause the formation of islands, point bars, or shoals. It could also cause runs and pools to fill.
5	Channel Flow Status	The degree to which the channel is filled with water. The score will change with the seasons. Estimate the percentage of the channel that is wet using the low water mark.
6	Channel Alteration	Channel alteration is present when 1) artificial embankments, rip-rap, and other forms of bank stabilization or structures are present, 2) the stream is very straight for significant distances, 3) dams and bridges are present that obstruct flow, and/or 4) dredging or other substrate mining activities are occurring or have occurred.
7	Frequency of Riffles (or Bends)	Estimate riffle frequency by determining the ratio of distance between riffles divided by the width of the stream. An average of the riffle ratios is determined for biological monitoring stations and the upstream segment.
8	Bank Stability	Whether the stream banks are eroded or have the potential to erode. Each bank is scored independently from 10-0.
9	Bank Vegetative Protection	Each bank is scored independently from 10-0. Determine what vegetative types (trees, understory shrubs, herbs, and non-woody plants) are present on each bank. Native vegetation scores higher than invasive or non-native vegetation.
10	Riparian Vegetative Zone Width	The width of the natural vegetation from the edge of the stream bank through the riparian zone. Each bank is scored independently from 10-0. When determining final scores, the age and density of the riparian vegetation should be evaluated (<i>e.g.</i> , A score of 9, instead of 10, should be given to a riparian zone that is over 20 m in width, but is dominated by 5-10 year old hardwood trees).

2.2.2 Macroinvertebrate Sampling

Sampling for benthic macroinvertebrates will be conducted according to the Kentucky Division of Water's *Methods for Collecting Macroinvertebrate Samples as Required for TMDL Alternative Studies and/or Watershed-Based Plans* (KDOW 2015). All streams found in the Cane Run Watershed are high gradient streams. Macroinvertebrates will be sampled at three headwater sites and five wadeable sites throughout the Cane Run Watershed. The equipment and methods specific to these collection efforts are described below.

Equipment

Table 9 (page 25) indicates the sampling equipment to be utilized during benthic macroinvertebrate sampling.

TABLE 9 - BENTHIC MACROINVERTEBRATE SAMPLING EQUIPMENT

600µm mesh, 0.25 meter wide Fine-tipped forceps rectangular net or kick seine 95% ethyl alcohol 800 x 900µm D-frame dip net White picking pans U.S. Number 10 sieve Sample jars and labels U.S. Number 30 sieve Water quality multi-meter Two - 600µm mesh wash buckets Field notebook Medium-sized bucket Chain-of-Custody 300µm nitrex sampler/mesh Collection Check Sheet

Method

A collection event consists of a composited semi-quantitative sample and a composited multi-habitat sample. Semi-quantitative samples are collected from a known area in order to indicate the macroinvertebrate community in the most productive habitat in the stream niche (*i.e.*, riffle). Multi-habitat samples are intended to identify other taxa present in the stream that may not be collected in the semi-quantitative sampling. These two sample types must be kept separate for effective diagnosis of impairment. A summary of the collection techniques used for wadeable and headwater streams is shown in Table 10 and further described in the following sections.

TABLE 10 - SUMMARY OF SAMPLING METHODS FOR MACROINVERTEBRATES

Technique	Sampling Device	Habitat	Replicates Composited for Wadeable Sites	Replicates Composited for Headwater Sites	
		Semi-Quantitative			
1m ² kicknet / seine	Kicknet / seine and wash bucket	Riffle	4 x 0.25m ² from thalweg or mid-riffle of at least 2 separated riffles	4 x 0.25m ² from thalweg of at least 2 separated riffles	
	N	/Julti-Habitat Swee	р		
Undercut banks / roots			3 from each riffle, run, and pool	3 from each riffle, run, and pool	
Sticks / wood	D (A II II I- I -	N/A	3	
Emergent vegetation	D-frame or	All applicable	3	N/A	
Bedrock / slabrock	triangular dip net and wash bucket		3	N/A	
J. americana beds	and wash bucket		3	N/A	
Leaf packs		Riffle, Run, Pool	3 from each riffle, run, and pool	3 from each riffle, run, and pool	
Silt, sand, fine gravel	US #10 Sieve	Margins	3	3	
<i>Aufwuchs</i> sample	300 µm nitrex sampler / mesh		3	N/A	
Rock pick	Fine-tipped forceps and wash	Riffle, Run, Pool	15 total (5 from each riffle, run, and pool)	5 small boulders from pools only	
Wood sample	bucket		10 - 20 linear feet, 2 - 6 in diameter	7 linear feet, 2 - 6 in diameter	

It is important to keep in-stream habitat intended for benthic macroinvertebrate sampling intact and undisturbed until the single and multi-habitat samples have been collected. Therefore, field personnel will avoid walking through areas designated for collection of benthic macroinvertebrates until sampling has been completed. Failure to use caution could result in sample degradation.

After collections are completed, large sticks and leaves are washed into a 600µm sieve bucket in the field, inspected for organisms and discarded. Rocks will be elutriated and hand washed into a bucket and 600µm sieve. This process is repeated until a manageable amount of debris and organisms (relative to size of sample container) can be preserved for laboratory sorting. Samples may be partially field picked using a white pan and fine-tipped forceps. The sample container is preserved with 95% ethanol. While at the sampling location, all macroinvertebrate samples will receive a label. The label will be placed in the sample jar (labels placed in the jar will be written in No. 2 pencil on waterproof paper) and written directly on some portion of the jar. The label will include the site number, stream name, location, type of sample (e.g., multi-habitat, riffle kick), date sampled, and the collectors' initials.

After sampling has been completed, all sampling gear will be thoroughly cleaned to remove all benthic macroinvertebrates so that specimens are not carried to the next site. The equipment shall be examined prior to sampling at the next site to ensure that no benthic macroinvertebrates are present.

DO, DO%, COND, pH, TEMP, and turbidity will be measured *in situ* with a water quality multi-meter at the time of the survey. Results will be recorded in the field notebook.

Semi-Quantitative

In both headwater and wadeable streams, semi-quantitative sampling consists of taking four (4) $0.25m^2$ quadrat kick net samples from mid-riffle or the thalweg. This is accomplished using a $0.25~m^2$, $600\mu m$ mesh kick net, dislodging benthos by vigorously disturbing the $0.25~m^2$ (20 x 20 in.) of substrate in front of the net. Large rocks will be hand washed into the net. The contents of the net are then washed and all four samples are composited to yield a $1m^2$ semi-quantitative sample. The composited sample is partially field processed using a U.S. No. 30 sieve ($600\mu m$) and wash bucket. Large stones, leaves and sticks are individually rinsed and inspected for organisms and then discarded. Small stones and sediment are removed by elutriation using the wash bucket and U.S. No. 30 sieve. This sample must be kept separate from all other sub-habitat collections.

Multi-Habitat

This method involves sampling a variety of non-riffle habitats with the aid of an 800 x $900\mu\text{m}$ mesh triangular or D-frame dip net. The habitats sampled and the number or size of replicates differs for headwater and wadeable sites, as shown in Table 10, page 25. Each of these sub-habitat samples are composited into one multi-habitat sample for each site. The sub-habitats are fully described in the procedure and summarized below:

- <u>Undercut Banks / Root Mats</u> large root wads and undercut banks in riffle, run and pool areas, if present, are each sampled separately with three (3) replicates each.
- <u>Marginal Emergent Vegetation</u> Three 1-meter sweep replicates are required to be sampled for wadeable sites and may be sampled for headwater if present.
- <u>Bedrock or Slab-Rock Habitats</u> Disturb approximately 0.1m² of area to dislodge attached organisms.
- <u>Justicia americana Beds</u> A 1m section with three replicates is required to be sampled for wadeable sites and may be sampled for headwater if present.
- <u>Leaf Packs</u> "Conditioned" (*i.e.*, not new-fall material) material when possible. Samples are taken from a diversity of habitats (*i.e.*, riffles, runs and pools). Three replicates from each habitat are to be conducted for both headwater and wadeable sites.
- <u>Silt, Sand, and Fine Gravel</u> A U.S. No. 10 sieve is used to sort larger invertebrates (*e.g.*, mussels, burrowing mayflies, dragonfly larvae) from silt, sand and fine gravel to an approximate depth of 5 cm. A variety of collection sites are sampled in order to obtain three (3) replicates in each substrate type where available.
- <u>Aufwuchs Sample</u> Rocks, sticks, leaves, filamentous algae and moss. Three replicates are to be conducted only for wadeable sites.
- Rock Picking 15 rocks (large cobble/small boulders; 5 each from riffle, run and pool) in wadeable streams and 5 small boulders from pools only in headwater streams.
- <u>Wood Sample</u> For wadeable streams, pieces of submerged wood, ranging from roughly 3 to 6 meters (10 to 20 linear feet) and ranging from 5–15 cm (2–6 inches) in diameter. For headwater streams only 2 linear meters (7 linear feet) are sampled.

2.2.3 Water Quality Monitoring

During water quality monitoring, three types of sampling will be performed: *in situ* measurements, stream flow measurement, and grab sampling.

In situ measurements will be conducted according to KDOW's Standard Operating Procedure In situ Water Quality Measurements and Meter Calibration (KDOW 2009a). Turbidity, pH, TEMP, COND, DO, and DO% are measured in situ at each site. Stream flow is typically measured in stream using KDOW's Standard Operating Procedure Measuring Stream Discharge (KDOW 2010). Grab sampling will be conducted according to KDOW's Standard Operating Procedure Sampling Surface Water Quality in Lotic Systems (KDOW 2011b). E. coli, NO₂+NO₃, NH₃, TKN, TP, OP, CBOD5, and TSS samples will be collected by grab sampling at each site.

The equipment and methods specific to these collection efforts are described below. Table 11 describes the sampling equipment and supplies to be utilized during water quality monitoring.

Equipment

TABLE 11 - WATER OUALITY MONITORING EQUIPMENT AND SUPPLIES

General	Stream Flow	<i>In-Situ</i> Measurement	Grab Sampling
Camera Sharpie marker Field notebook Pencil Chain-of- Custody Powderless latex or nitrile gloves	Equipment Ott MF Pro Flow Meter, or equivalent Top-setting wading rod Tape measure (100 feet in 1/10ft increments)	Equipment Hydrolab MS5 Multiprobe Water Quality Meter, or the equivalent	Equipment 47mm magnetic filter funnel 1L Nalgene flask Teflon or Tygon tubing Forceps Supplies Sample coolers Ice Plastic food storage bags Sample jars and preservatives 0.45µm sterile membrane filters Deionized water Packing tape

All equipment is maintained and calibrated according to user manuals, procedures, and/or manufacturer specifications at a frequency recommended by or exceeding the manufacturer. Calibration standards are to be poured into a separate container for use and discarded when done, not re-used. All calibration and maintenance data is to be recorded in a logbook associated with each piece of equipment.

Prior to conducting *in situ* measurements, the probe will be rinsed with deionized water to remove contamination. The probe will be rinsed and immersed for storage in clean water between sites.

Routine maintenance of the flowmeter involves cleaning the sensor with mild soap and water and checking battery power on a weekly basis or prior to use if used less frequently.

The filter funnel, tubing, flask, and deionized water storage bottles are cleaned prior to each event using a detergent wash and rinse, acid soak and rinse, and deionized water rinse. After every test conducted, all equipment and supplies shall be properly rinsed with deionized water.

Method

Water quality monitoring is to be conducted by two man teams. One team member is to conduct the *in situ* measurements and grab sampling while the other measures the stream flow. Stream flow measurements are to be conducted <u>downstream</u> of the *in situ* measurements and grab sampling. The samplers will approach the site from downstream, ensuring that no disturbed streambed sediment contaminates the measurements. Replicate measurements and duplicate samples are to be made on one site per sampling event.

In situ Measurements

In situ measurements are to be conducted prior to grab sampling. The instrument should be placed in the centroid of the flow (thalweg) in well-mixed location at mid-depth. When possible, the probe should not be deployed directly in riffles, as this will cause some results (DO and turbidity) to appear higher than they actually are. The instrument will be allowed to equilibrate to environmental conditions for approximately 1-2 minutes. Record results in the field notebook and on the COC.

Grab Sampling

Grab sampling is to be conducted just upstream of the *in situ* measurements to ensure that no disturbed streambed sediment contaminates the samples. Samplers will put on powderless latex or nitrile gloves for protection prior to sampling. As with the *in situ* measurements, grab samples should be collected in the centroid of flow in a section of stream in which indicators of complete mixing are evident. When sampling, point the mouth of sample container upstream/against the flow. Submerge the entire bottle and fill it with water. Care will be taken not to displace the preservative since sample bottles are pre-prepared. If the stream is too shallow to fill the bottle while submerged, fill as much as possible while submerged, ensuring the minimal amount for analysis is obtained. Rinse the caps with sample water prior to capping the bottle. Transport to Microbac Laboratory for analysis.

The collection of the orthophosphate sample requires field filtration using a hand pump. This filtration will be conducted within 15 minutes of sample collection. In order to collect this field filtered sample, collect the stream sample using the grab sample methodology. Triple rinse the funnel, funnel filter base, and flask with DI water; and single rinse the

hand pump, the inside of tubing, and tweezers with DI water. Use clean forceps to place 0.45 μ m paper filter onto funnel filter base. Attach filter base to flask and connect the tubing from the hand pump. Pour 50 mL of DI water into funnel, filter, rinse, and discard. Pour 50 mL of the stream sample water into funnel, filter, rinse, and discard the sample water. Then pour enough stream sample water into the funnel to provide enough finished sample for rinsing the storage bottle and for analysis. If the stream is particularly turbid, smaller amounts of the sample water should be used. When 0.45 μ m paper filter becomes excessively clogged, remove the filter with forceps, discard it, and replace with a fresh filter. Continue to filter until the required sample volume is achieved.

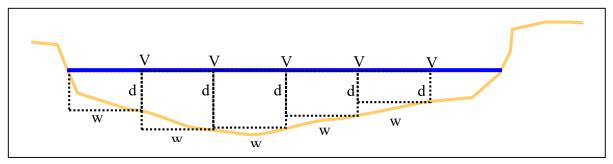
Microbial Source Tracking

For microbial source tracking, 20 samples will be chosen for analysis using quantitative polymerase chain reaction (qPCR) for DNA markers of general, human, and ruminant fecal contributions. After each monthly sampling event, a 100 mL aliquot from each site will be filtered by Third Rock at their office through UV sterilized filters. These filters will be rolled and placed in sterile centrifuge tubes, sealed, labeled with permanent marker, packed in a cooler, iced and transported to the University of Kentucky Environmental Research Training Laboratories (UK ERTL) for storage in a negative twenty degree Celcius freezer on the day after the sampling has occurred. Filters will remain at or below four degrees Celsius until they are placed in the freezer.

DNA extractions from frozen filters and PCR assays will be conducted at the ERTL facility at the University of Kentucky. DNA extractions will be completed by bead beating with an internal standard buffer solution described in USEPA 2010, Method B: Bacteroidales in water by Taqman® quantitative polymerase chain reaction (qPCR) assay. The extracts will be stored at -20°C until DNA analysis by qPCR.

All host specific biomarkers for this study were selected from peer reviewed literature and chosen based on availability and best specificity and sensitivity for each host. The markers are:

General (Allbac marker, Layton et al, 2006) Human (revised qHF183 marker, Green et al, 2014) Ruminant (BacR marker, Reischer et al, 2006)


PCR analysis will be performed with LifeTechnologies TaqMan Environmental Mastermix on an Applied Biosystems Step One Plus PCR machine following the thermocyler protocols from each of the associated biomarker publications.

In February – March 2017, Third Rock will work with KDOW to determine the locations and events from this library that should be analyzed to identify fecal sources.

Stream Discharge (Flow)

Stream discharge (Q) is calculated using two variables, flow area (A) and water velocity (V), according to the equation: Q = AV. These variables are measured in intervals across the stream and summed as shown in Figure 2. The flow area of each interval is the product of the width (w) and depth (d) for that interval.

FIGURE 2 - MEASUREMENT OF DISCHARGE THROUGH SUBSECTIONAL MEASUREMENTS

Note: Stream cross-section showing intervals where water depth and velocity are measured. Flow will be calculated for each "box" (flow area for each box is $d \cdot w$) and summed to obtain the flow for the entire stream.

To measure stream flow, a tape measure of at least 100 feet is stretched across the stream perpendicular to the stream flow. The tape measure is located directly above the cross-section to be measured and must not touch the water surface. The total width of the stream should be noted to determine a target interval width as follows:

- <20 feet wide, 12-20 intervals
- >20 feet wide, 20-30 intervals

Other considerations for intervals include:

- Average velocity in one interval should not exceed 10% of the total flow.
- Intervals should never be spaced less than 0.2 feet apart.
- Uniform spacing should only be used if the stream is of relative uniform depth and velocity regimes.

A top-setting wading rod will be used to measure water depth and confirm the proper location of the flow meter sensor within the water column at each interval. The wading rod will be held upright and parallel to the stream flow. The sampler will stand beside the flowmeter not to alter the flow. Also rocks, logs, or other obstructions will not be moved during the measurement process as this may cause the stream flow to change in an area of the stream where velocity has already been measured. Once the process of measuring velocity has begun, the stream should not be altered. The wading rod will be adjusted to the appropriate depth at each interval as follows:

- Water depth < 2.5 feet, velocity is measured at 0.6 of the depth, and
- Water depth 2.5 feet, velocity is measured at 0.2 and 0.8 of the depth.

If the flowmeter calculates the stream flow internally, this value will be record in the field notebook and electronically downloaded after the event is completed.

If the stream cannot be safely waded and a USGS gage is not located at the site, floats can be used to estimate stream discharge. The KDOW (2010) procedure should be consulted in these circumstances.

2.2.4 Severe Erosion Survey

Surveys for severe erosion areas within the Cane Run Watershed will generally follow Maryland Department of Natural Resource's *Stream Corridor Assessment Survey- SCA Survey Protocols* (MDDNR 2001).

Equipment

Equipment for severe erosion surveys include the following: camera, GPS Unit, field maps, pencil, Sharpie marker, field datasheets, clipboard, field notebook, tape measure, and binoculars.

Methods

The Cane Run Watershed will be surveyed for areas of severe erosion either on foot or by a windshield survey from public roads. For the purpose of this project severe erosion is defined as areas where erosion greatly exceeds average reach conditions or threatens property and infrastructure. In locations where permission can be obtained Third Rock staff will walk stream segments in rural Fayette and Scott counties to identify areas of severe erosion. In areas where permission to access streams cannot be obtained surveys will be conducted from public roadways with the aid of binoculars when necessary.

The objective is not to provide quantitative estimates of sediment contribution but to identify high priority areas for implementation of bank stabilization or stream restoration BMPs. During the survey the following will be recorded on an Erosion Site Field Datasheet, to the extent access allows:

- Type of Impact (downcutting, widening, headcutting, unknown)
- Cause (bend at slope, pipe outfall, below channelization, road crossing, livestock, land use change upstream, other)
- Length of Erosion
- Exposed Bank Height (average)
- Left and Right Bank Land Use
- Threat to Infrastructure
- Severity
- Correctability
- Access

Surveyors will mark locations of severe erosion on a high resolution aerial map. Photographs will be made of each location and the length of the erosion marked with GPS waypoints where access allows.

On the datasheet severity, correctability, and access are rated for each severe erosion area. Severity is ranked from 1 (severe) to 5 (minor), correctability ranked from 1 (best) to 5 (worst), and access 1 (best) to 5 (worst).

Factors used to determine erosion severity rating include:

- Length of impact
- Height of stream bank
- Erosion in both bends and run sections
- Erosion rates along stream banks
- Stream channel unstable and readjusting
- Unconsolidated gravel, sands, and silts in the banks
- Stratified soil in the banks
- Stream channel eroded below the root zone of the vegetation along the banks

Examples of severity rating provided by MDDNR (2001) are provided below:

- "Severe rating (1): A long section of stream (> 1000 ft.) that had incised several feet, with banks on both sides of the stream that are unstable and eroding at a fast rate. Usually this occurs in areas where there are soft unconsolidated sediments (gravel, sand and/or silts) and the stream has eroded below the root zone of the bank vegetation."
- "Moderate rating (3): Either a long section of stream (> 1000 ft.) that has a moderate erosion problem, or a shorter stream reach (between 1000 and 300 ft.) with very high banks (> 4 ft.), and evidence that the stream is eroding at a fast rate."
- "Minor rating (5): A short section of stream (< 300 ft.) where the erosion is limited to one or two meander bends or a site where an erosion problem is being caused by a pipe outfall and the area affected is fairly limited."

Factors used to determine correctability rating:

- Length of impact
- Adjacent land use, access and construction staging
- Heavy equipment needed
- How much material (i.e. earth, stone) will be required to be moved
- Funding required

Examples of correctability rating provided by MDDNR (2001) are provided below:

- "Best Correctability (1): A short stream reach (< 200 ft.) where the erosion problem can be corrected by simple bioengineering techniques using volunteers in one or two days."
- "Moderate Correctability (3): An erosion problem that could be corrected by a work crew over several weeks, using primarily a backhoe or other small piece of construction equipment. The project may involve using some small rock (< 100 lbs.) to stabilize the toe of a stream bank but most of the work would rely on vegetation and biodegradable material to stabilize the stream banks."
- "Worst Correctability (5): A long reach of stream (i.e., several thousand feet) that had deeply incised several feet and any attempt to actively restore the stream channel would require not only significant funding (i.e., several hundred thousand dollars) but would also involve a large amount of earth moving and disturbance to the riparian corridor."

Factors determining accessibility rating:

- Land ownership
- Surrounding land use
- Safe access
- Heavy equipment access thru existing roads or trails

Examples of accessibility rating provided by MDDNR (2001) are provided below:

- "Rating of 1 is for a site that is easily accessible both by car or on foot. Examples would include a problem in an open area inside a public park where there is sufficient room to park safely near the site. If heavy equipment was needed, it could easily access the site using existing roads or trails."
- "Rating of 3 is for sites that are easily accessible by foot but not easily accessible by a vehicle. Examples would include a stream section that could be reached by crossing a large field or a site that was accessible only by 4-wheel drive vehicles."
- "Rating of 5 is for sites that are difficult to reach both on foot and by a vehicle. Examples would include a site on private land where there are no roads or trails nearby. To reach the site it would be necessary to hike over a mile. If equipment were needed to do the restoration work, an access road would need to be built over a long distance through rough terrain."

2.3 Sample Handling and Custody Requirements

Sample handling and custody procedures for grab samples are to comply with KDOW's "Sample Control and Management" (KDOW 2009b). Sample handling and custody for

macroinvertebrate samples are to comply with the KDOW procedures corresponding with these sampling methods.

2.3.1 Sample Preservation, Packing, and Transport

The sampler is responsible for sample handling in the field and transporting of samples to the laboratory. The sampler will collect the sample in the appropriately identified collection containers with the correct preservative, as applicable, and ensure that the container lid is secured tightly to prevent leakage and/or outside contamination. Sample containers for chemical analysis shall be placed in plastic food storage bags and then immediately in a cooler on ice to reach and maintain a temperature of 4 \pm 2°C for transport to the laboratory. Sample bottles shall be placed in the cooler with lid side up. The containers, preservatives, and hold times for each parameter are to meet the requirements of Table 12. The sampler will ensure that the chain-of-custody (COC) is completely and accurately filled out.

Sample coolers should be of adequate size to allow ice to surround all sample bottles. It is the responsibility of the sampler to ensure that coolers are properly packed in the field and that they have sufficient cooler space on their vehicle for their daily sample load. Coolers shall be secured during transport such that significant disturbance of the samples is avoided.

TABLE 12 - COLLECTION CONTAINERS, PRESERVATIVES, AND HOLD TIMES

Containers	Preservation	Parameters	Maximum Hold Time
Plastic, 4 oz	Cool 4°C, Na ₂ S ₂ O ₃ (No Cl ₂)	E. coli	6 hours
Plastic, 4 oz	Cool 4°C	qPCR DNA	Filter within 6 hours
Plastic, 32 oz	Cool 40C	CBOD5	48 hours
	Cool 4°C	TSS	7 days
Plastic, 8 oz	Cool 4°C, Field filter	OP	48 hours
Plastic, 5 mL	Cool 4°C	NO3, NO2	48 hours
Plastic, 32 oz	Cool 4°C, H ₂ SO ₄ to pH < 2	TP, NH3, TKN	28 days

Upon receipt at the laboratory, the sample custodian shall review the COC for completeness and accuracy. Anomalies shall be documented. The laboratory shall measure and record the sample temperature upon receipt, and record any discrepancies with the samples and/or bottle damage on the COC.

2.3.2 Chain-of-Custody

Chain-of-custody forms will be completed for all samples collected in the field and will follow each sample throughout sample processing. A COC is a controlled document used to record sample information, to ensure the traceability of sample handling, and to ensure possession is maintained from the time of collection through analysis and final disposition. A sample is considered in custody if it is:

- In the individual's physical possession,
- In the individual's sight,
- Secured in a tamper-proof way by that individual, or secured in an area restricted to authorized personnel.

The sampling technician shall maintain possession of the sample until custody is transferred to the laboratory or another party. The COC shall accompany the sample from the time of collection until it is relinquished. Field custody is relinquished by signature, with date and time, of the sampling technician in the designated area on the COC.

All information shall be documented on the COC in black or blue waterproof permanent ink including field physical measurements and custody information. The sampling technician shall initiate sample custody at the time the sample is collected. Field custody documentation shall include:

- Verification of Sample Identification
- Number of Sample Bottles Collected
- Collection Date
- Collection Time
- Collector's Signature
- Description of Sampling Location or Site Identifier

Examples of COC forms are included in Appendix A.

2.3.3 Site Identification

A simple unique sample identification system is used to aid in the management of the results. Sites are labeled numerically from the mouth to upstream portions of the Cane Run Watershed. Site 1 is located at the mount of the watershed, and site numbers increase as sites progress upstream terminating in Site 10.

Duplicate samples are to be indicated as such in the unique site identifier ("DD"). The time of collection will not be indicated on the chain-of-custody for duplicate samples so that the laboratory is blind as to the sampling location it corresponds with. This information shall be emailed to the Data Manager. The laboratory shall assume the sampling time is the same as the earliest time on the COC.

2.4 Analytical Methods Requirements

All analytical methods must be United States Environmental Protection Agency (EPA) approved methods.

Detection limits for all parameters must be at a sensitivity level to compare to Kentucky's water quality standards. Each method and reporting limit, by parameter, are found in Table 5, page 16.

All laboratory standard operating procedures are attached in Appendix C. Grab samples collected during water quality monitoring will be analyzed by the Microbac Laboratory except for the microbial source tracking samples which will be analyzed by UK ERTL.

If during the laboratory analysis quality controls fail or contamination occurs, the data is to be reported with qualifiers. Re-sampling might be necessary for certain parameters and could occur as a result of qualified or rejected data.

Third Rock's macroinvertebrate identification laboratory will follow laboratory protocols for benthic macroinvertebrate sample processing, identification, and data reporting per KDOW (2015) with the following exceptions:

- All samples will be logged into Third Rock's Macroinvertebrate Laboratory Information Management System (MacLIMS) upon receipt.
- Sample identification date will be maintained in MacLIMS.
- Taxonomic QA/QC dates (if applicable) will be noted on individual QA/QC forms and maintained electronically in the Project File.
- Initials of the applicable party completing each task associated with sorting, identification, or quality control will be noted electronically in MacLIMS or on associated QA/QC forms.
- QA checks will be documented on applicable forms and maintained in associated project files. These forms include the Macroinvertebrate Sample Sorting Efficiency Form, Macroinvertebrate Sample Taxonomy Precision Form, and Macroinvertebrate Sample Taxonomic and Enumeration Efficiency Form.

2.5 Quality Control Requirements

2.5.1 Field Water Quality Monitoring Quality Control

Field quality control checks for water quality monitoring are collected at a frequency of one duplicate per 20 sites sampled (5%) for each sampling event. Field duplicates must be randomly determined. Based on the number of sites to be sampled on each event, bottles will be distributed to a set number of field teams for collection of a duplicate sample.

At field duplicate sites, two separate samples are to be collected for each parameter. The samples are to be collected at the same time and at the same location. One sample will

be labeled as usual, and the other sample will have the site name indicated as a "duplicate". On a form separate from the COC or in an email to the data manager, the site from which the duplicates were collected are to be documented. The laboratory should assume that the duplicate was sampled with the earliest sample for hold time purposes.

Field replicates of *in situ* measurements and field test kits are also to be made at the same site at which field duplicates are collected.

For molecular source tracking quality control, one duplicate sample and one blank will be filtered in field for each sampling event. At least one positive control fecal sample for each host animal species available will be diluted in sterile water, filtered, stored, and transported in the same manner as the samples.

2.5.3 Macroinvertebrate Quality Controls

According to the specifications listed in KDOW 2015, the following quality controls of macroinvertebrate identification will be applied for this project:

Field personnel must be trained by KDOW in macroinvertebrate collection procedures annually. Additionally field crews will be audited by KDOW personnel once a year.

Ten percent (10%) of all sorting pans will be checked by a second sorter to assure that samples have been picked thoroughly. These samples will be randomly selected. This check is documented on the Taxonomic and Enumeration Efficiency Form.

Five percent (5%) of all identified samples will be re-identified to insure QA/QC by a second taxonomist. These samples will be randomly selected, and documented on the Macroinvertebrate Sample Taxonomy Precision Form and Macroinvertebrate Sample Taxonomic and Enumeration Form. Ninety percent (90%) or greater taxonomic agreement between taxonomists is the target success criteria. If there is less than 90% agreement between the taxonomists, then taxonomy must be reconciled by both taxonomists and a third taxonomist, if necessary.

All macroinvertebrate data entry for all sites will be chosen for data entry QA/QC. Data entry errors will be corrected as they are encountered. Data entry will be 95% correct to pass quality assurance. If patterns of data entry error exist and data entry error rate is less than 95%, all sample sites will be checked for specific errors.

2.5.4 Laboratory Quality Controls

Laboratory quality controls will be analyzed as specified in the SOPs listed in Appendix C. These controls include method blanks, matrix spikes, calibration check samples, laboratory replicates, and other method-specified controls. The frequencies of analysis for these standards are all specified by the individual methods.

2.6 Requirements for Equipment and Supplies

Laboratory instrumentation will be maintained according to the methods listed in Table 5, page 16, and the associated SOPs in Appendix C. Field sampling equipment will be maintained according to the SOPs listed in Table 7, page 23, and summarized in Table 13. The record of inspection, calibration, and maintenance will be recorded in an instrument logbook maintained by the sampler. For sampling nets and bottles, inspection will ensure that the items are free from contamination, in good condition, and adequate for use.

Third Rock personnel will ensure that field multi-meters are calibrated according to manufacturer's instructions the day before or the day of sampling. The multi-meters will be calibrated using a three-point pH calibration, where possible, and a one-point conductivity calibration. Dissolved oxygen is calibrated using saturated air and the barometric pressure of the sampling location. All results are recorded in the instrument logbook.

TABLE 13 - FIELD EQUIPMENT CALIBRATION AND MAINTENANCE

Equipment Name / Type	Purpose	Inspect Before Each Collection Event	Calibration Frequency	Calibration Standard or Type	Person(s) Responsible
Multiprobe Water Quality Meter	pH, Conductivity, Dissolved Oxygen, Temperature Turbidity	Overall condition/ battery power	Within 24 hours of sampling	pH (4, 7, 10) Cond (300 - 1200) DO (Sat. Air) Turb (0, 100)	Sampling Coordinator / Sampler
Macroinvertebrate Sampling Nets	Macroinvertebrate Sampling	Overall condition/ no holes	N/A	N/A	Sampler
Sample Bottles	Sample Collection	Good condition	N/A	N/A	Sampler

Overall condition and battery power will be inspected on all equipment prior to use. Additionally, extra batteries or fuses should be kept in the field vehicle in case of power failure.

All calibration standards and reagents will be reviewed prior to use to ensure that they have not reached the expiration date.

2.7 Data Acquisition Requirements for Non-Direct Measurements

For the purpose of this project, the following sources of non-direct measurements will be utilized:

- USGS Gage Data
- Precipitation Data (Various Sources)
- LFUCG MS4 Permit Compliance Monitoring Data
- TMDL Studies
- 2011 Cane Run and Royal Springs Watershed Based Plan
- Kentucky River Watershed Watch Volunteer Data
- KDOW Monitoring Program Data
- University of Kentucky Research Projects
- Kentucky Geological Survey Groundwater Studies
- DMR Reports from KPDES Permits

Antecedent dry periods will be evaluated using local precipitation data. The UKAg Weather Center (http://www.agwx.ca.uky.edu/) will be the primary source for precipitation data in evaluating the antecedent dry period. Historic daily precipitation levels will be obtained from stations in Fayette County at either Weather Underground (http://www.wunderground.com/), Kentucky Mesonet (http://www.kymesonet.org/), USGS stream gages (http://www.noaa.gov/).

Data previously collected under the LFUCG MS4 monitoring program may be used in data comparisons, as these data were collected under similar protocols. Other sources of data that may be utilized for comparisons include TMDL studies, data from Kentucky River Watershed Watch volunteers, data from the Kentucky Division of Water monitoring program, research projects from the University of Kentucky, groundwater studies from KGS, KPDES permit DMR reports, and data collected through the 2011 Cane Run and Royal Spring Watershed-Based Plan (UKBAE 2011).

2.8 Data Management Requirements

For macroinvertebrate, and habitat data, data will be collected in the field and recorded in field notebooks, on field data sheets, or on COCs. The field samplers are responsible to ensure that all hard copies are scanned and saved electronically in Third Rock's project files. Additionally, hard copies are to be stored in the project files. Third Rock's Chief Taxonomist / Biologist will be responsible for reviewing all field results, ensuring that macroinvertebrates are properly sorted and identified, ensuring that all applicable metrics are properly calculated, and submitting the results to the Data Manager.

Data collected during water quality sampling will be recorded on COCs. Microbac Laboratory will send electronic copies of all laboratory reports and COCs used in the

collection of water quality samples to the Data Manager. These will be stored in Third Rock's files. The electronic files will be reviewed and information including the field duplicate site, precipitation levels, field measurements, and field flows will be entered by the Data Manager. All results will be reviewed and any outlier results will be investigated by the Data Manager and the laboratory. All results will be reviewed and any outlier results will be investigated by the Data Manager and the laboratory.

For severe erosion data, data will be collected in the field and recorded in field notebooks, and on field data sheets. The field samplers are responsible to ensure that all hard copies are scanned and saved electronically in Third Rock's project files. Additionally, hard copies are to be stored in the project files. Third Rock's Data Manager will be responsible for reviewing all field results, and ensuring field data sheet completeness.

All macroinvertebrate, and habitat data will be published in the Macroinvertebrate and Habitat Assessment Report. Water quality data will be published in the Water Quality Report, and the severe erosion data will be published in the Severe Erosion Summary Report.

3 ASSESSMENTS

Assessment and response actions are necessary to ensure that this QAPP will be implemented as approved. For a general summary of these assessments see Table 14.

TABLE 14 - DATA ASSESSMENT AND MANAGEMENT REPORTS

T. //2.0	Fraguero.	Durage	Parties Resp	Reporting	
Туре	Frequency Purpose -		Performing	Responding	Method
QAPP Revision	As necessary	Address non-conformances or errors in the QAPP	Project Team Members	Data Manager	Distribution of amended QAPP
KDOW Audit	As requested	Ensure conformance to project objectives	KDOW	Parties of concern	Corrective Action Response
Laboratory Demonstration of Performance	Annually, at minimum	Ensure analyst is capable of performing the method to specifications	Laboratory QA Director	Laboratory Analysts	Internal lab documentation
Laboratory On- Site Audit	Once per five Years	Maintaining Kentucky Wastewater Laboratory Certification	KDOW	Laboratory Analysts	KDOW Audit Report
Laboratory Internal Audits	Annually, at minimum	Ensure conformance to methods, regulations, and procedures	Laboratory QA Director	Laboratory Analysts	Internal lab documentation
Field Biology Training and Audit	Annually	Evaluate quality of habitat assessments and macroinvertebrate collection	KDOW	Third Rock Biologists	Training Certificate and Audit Form
Analytical Results Review	each sampling	Evaluate the conformance of laboratory data to project DQOs	Data Manager	Laboratory QA Director	Email
Quality Assurance Evaluation	After the first sampling event	Summarize quality controls for both field and laboratory, sampling status, and outline any deficiencies in data collection and analysis.	Data Manager	KDOW	Quality Assurance Evaluation Report
Project Quality Assurance	Conclusion of the project	Document all quality controls and data qualifiers for all field and laboratory results, including calibration and maintenance logs and compare the data produced to project DQIs	Data Manager	KDOW	Quality Assurance Project Report, Macroinvertebrate and Habitat Assessment Report

If at any time a project team member finds an error or non-conformance in the QAPP, the QAPP will be revised and redistributed to those on the distribution list subsequent to approval.

To ensure conformance with this QAPP and the applicable regulations, certifications, and methods by which the laboratories operate, the laboratories will perform several

assessment measures. To ensure that analysts are capable of performing the requested analytical methods to specifications, each analyst must acceptably demonstrate this ability prior to conducting sample analyses. The analyst must conduct four replicate analyses of a known standard and achieve precision and accuracy equal to or better than the acceptance ranges for laboratory duplicates and laboratory control samples, respectively. The laboratory QA Director or his appointee on an annual basis will perform internal audits. The findings of the audits, both positive and negative, will be documented, and the corrective response to the cited deviations will be made. Corrective actions will be submitted to the auditing body for review and approval.

Upon receipt of the results, a review of the laboratory and field data shall be performed by the Data Manager or his designee to ensure that the project DQOs have been satisfied. Email shall be utilized to communicate the results found in these evaluations. The quality of the data collected shall be reviewed and summarized in the Quality Assurance Project Report.

4 REVIEW, EVALUATION AND REPORTING REQUIREMENTS

Data verification, data validation, and data usability are each terms used to describe data review and evaluation. Data verification is the review of data sets for completeness, correctness, and conformance/compliance for a specific data set against the method, procedural, or contractual specifications. Data validation is an analyte and sample-specific process that determines the quality of a specific data set relative to its end use. Validation notes any deviations from the QAPP. Data usability is a determination of the adequacy of the data based on verification and validation, to ensure the QAPP criteria are met.

4.1 Validation and Verification Methods

The EPA guidance document *Guidance on Environmental Data Verification and Validation* (EPA QA/G-8) (EPA 2002) guides the overall process by which data will be validated and verified.

The sampler will perform data review for all field data initially before submitting to the laboratory. Upon submission to the laboratory, the laboratory will review the COC for completeness and document any non-conformances on the COC.

For the chemical laboratory data, the laboratory analyst will initially conduct the review, and the data will be peer reviewed by another analyst or capable reviewer. Data will be reviewed according to the laboratory QA Manual and the method specific SOP for data entry, calculations, and transformations as well review of quality control criteria. If deviations are noted, corrective actions will be taken with verification of both the reviewer and the original data collector. If consensus cannot be reached, the data will be rejected. During verification and validation of the data, all data that does not meet the DQIs listed in this QAPP will be qualified or rejected. A list of the type of qualifiers that may be applied to this data is listed in Table 15, page 45. Laboratory codes that correspond to these general types are listed in the laboratory procedures in Appendix D. All qualified data will be evaluated according to the actions listed.

If results are rejected, the laboratory should re-analyze the samples if possible. Resampling will not be conducted for the rejected parameters.

The Data Manager will document non-conformances in the data via email and in the Water Quality Monitoring Report, and the QAPR. This review will be submitted to the KDOW in the final reports. The Data Manager will be responsible for making decisions concerning data quality and acceptability. KDOW may also make determinations on data acceptability, depending on data analysis and review during audits, the QAER and other check procedures throughout the project.

TABLE 15 - DATA QUALIFIERS AND RESPONSE

Definition	Action To Be Taken
Analyte detected in associated method blank	Reject results. Indicates all, or a portion of, the amount found in a sample may be due to laboratory sources.
Diluted out	Accept results. Indicates a dilution to overcome matrix effects caused other analytes of interest to be diluted out of range. Normal quantitation is not available.
Holding time exceeded	Reject results. Method-required holding time is exceeded.
Estimated value	Accept results when used to indicate result is below the project reporting limit, but above the Method Detection Limit (MDL).
Matrix spike and/or matrix spike duplicate recovery outside acceptance limits	Accept results if associated Laboratory Control Sample is acceptable (No qualifier). Indicates matrix is adversely affecting the extraction or digestion of the analyte. If the Matrix Spike recovery is below acceptable limits, it may be likely that the reported results for the associated samples may be underestimated. Conversely, if the Matrix Spike results are high, it may be likely that the reported results for the associated samples may be overestimated.
Laboratory control sample outside acceptance limits	Reject or qualify results. Indicates that the laboratory system is out of control. Qualification should indicate the result is estimated.
Sample received exceeding proper temperature or preservation criteria	Reject results. Indicates preservatives or temperature requirements have not been met and the bias on the sample result is unknown.
Analyzed but not detected in sample	Accept results. Indicates that the result is less than the reporting limit.
Analyte exceeded calibration range	Accept results. Only reported in instances in which the calibration curve is exceeded and the sample cannot be reanalyzed.
Laboratory replicate / duplicate precision outside of acceptance limits	Reject or qualify results, unless it occurs on a matrix spike duplicate or due to low recoveries with high relative percent difference. Indicates precision is outside of normal acceptance criteria due to lack of homogeneity or other factors. Qualification should indicate the result is estimated.
Calibration criteria exceeded	Reject results. Indicates that the laboratory system is out of control.

All final reports will receive an internal peer review to evaluate the content, calculations, and data analysis in the report. The reports will also undergo an internal grammatical review to look for grammatical errors and formatting. Lastly, the final report will receive a review from the Data Manager prior to submission to the KDOW to ensure that all project objectives are achieved.

4.2 Reconciliation with Project Requirements

In each report, descriptions of all relevant background information, summary, waterbody details, monitoring results, recommended solutions, and implementation plans will be detailed. Included in these documents will be an overall assessment of the data quality and the uncertainty involved in the results.

5 REFERENCES AND CITATIONS

- 401 KAR 10:031 Energy and Environment Cabinet, Department for Environmental Protection, Surface Water Standards.
- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA 841-B-99-002. USEPA, Office of Water, Washington, D.C.
- EPA. 2002. Guidance on Environmental Data Verification and Validation (EPA QA/G-8). Office of Environmental Information, Washington, DC. EPA/240/R-02/004
- Green, H.C. et al. 2014. Improved HF183 quantitative real-time PCR assay for characterization of human fecal pollution in ambient surface water samples. Appl. Environ. Microbiol. 80:3086–3094.
- KDOW. 2009a. *In situ* Water Quality Measurements and Meter Calibration Standard Operating Procedure. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03014
 - --. 2009b. Sample Control and Management Standard Operating Procedure. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03001
 - --. 2010b. Measuring Stream Discharge Standard Operating Procedure. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03019
 - --. 2011a. Methods for Assessing Habitat in Wadeable Waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03024
 - --. 2011b. Sampling the Surface Water Quality in Lotic Systems. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03015
 - --. 2015. Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-Based Plans. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03039

- Layton, A. et al. 2006. Development of Bacteroides 16S RRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl. Environ. Microbiol. 72:4214–4224.
- MDDNR. 2001. Stream Corridor Assessment Survey SCA Survey Protocols. Watershed Restoration Division Chesapeake & Coastal Watershed Services Maryland Dept. of Natural Resources, Annapolis, MD.
- Pond, G.J.; S.M. Call; J.F. Brumley; M.C. Compton. 2003. The Kentucky Macroinvertebrate Bioassessment Index. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Reischer, G. H. et al. 2006. Quantitative PCR Method for Sensitive Detection of Ruminant Fecal Pollution in Freshwater and Evaluation of This Method in Alpine Karstic Regions. Appl. Environ. Microbiol. 72:5610-5614.
- Rosgen, D.L. 2008. River Stability Field Guide. Wildland Hydrology, Pagosa Springs, CO.
- USEPA. 2010. Method B: Bacteroidales in water by Taqman® quantitative polymerase chain reaction (qPCR) assay. Report EPA-822-R-10-00.

6 APPENDICES

All SOPs and other supporting documentation listed in these appendices to the QAPP may be provided electronically upon request.

A: Field Forms

- High-Gradient Habitat Assessment Field Data Sheet
- Photo Log Data Sheet
- Aquatic Biology Sample Chain-of-Custody
- Headwater Macroinvertebrate Collection Check Sheet for High-Gradient Streams
- Wadeable Macroinvertebrate Collection Check Sheet for High-Gradient Streams
- Water Quality Chain-of-Custodies
- Calibration and Maintenance Logs
- Severe Erosion Datasheet

B: Field Methods

- KDOW. 2015. *Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-Based Plans*. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03039
- KDOW. 2011. Methods for Assessing Habitat in Wadeable Waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03024
- KDOW. 2009. In situ Water Quality Measurements and Meter Calibration Standard Operating Procedure. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03014.
- KDOW. 2011. Sampling the Surface Water Quality in Lotic Systems. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03015
- KDOW. 2010. Measuring Stream Discharge Standard Operating Procedure.
 Kentucky Department for Environmental Protection, Division of Water, Frankfort,
 Kentucky. DOWSOP03019

C: Laboratory Forms and Methods

Forms

- Macroinvertebrate Sample Sort Efficiency Form
- Macroinvertebrate Sample Taxonomy Precision Form
- Macroinvertebrate Sample Taxonomic and Enumeration Form

Methods

- KDOW. 2015. *Methods for Collecting Macroinvertebrate Samples As Required For TMDL Alternative Studies and/or Watershed-Based Plans*. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03039
- KDOW. 2009. Sample Control and Management Standard Operating Procedure. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky. DOWSOP03001
- Microbac Laboratory SOPs.

D: Maps

Exhibit 1 Cane Run Watershed Sampling Sites

Exhibit 2 & 3 Cane Run Watershed Field Map Grid Layout

Field Maps Exhibits 1 thru 106

Wolf Run Watershed Plan Benchmark Recommendations for Nutrient Parameters Kentucky Division of Water 2/2/12

Nutrient benchmarks given here represent the best information available to the Kentucky Division of Water (KDOW) at this time. The goal is to provide estimates of typical in-stream concentrations below which it is unlikely that nutrients would be a cause of observed impairments. As such, benchmarks are useful in identifying sub-basins with potential nutrient issues when setting priorities for further monitoring or for development of load reduction strategies. In making these recommendations we consider regional and watershed-specific nutrient expectations, regional-scale patterns in biological effects, and the specific indicators of nutrient enrichment observed in the watershed. These benchmarks may be different than targets to be used ultimately as management endpoints; watershed-specific characteristics, practical considerations, and insight gained from early phase monitoring might suggest alternate values for that purpose. The Watershed Group may wish to discuss with KDOW alternative benchmarks and/or targets based on more detailed local information or consultation with experts familiar with the watershed. A summary of candidate benchmarks is given here along with a final set of recommendations to provide more assistance in interpreting nutrient data.

Ecoregional Reference Reach candidate benchmarks:

The Reference Reach network of streams represents the least-impacted conditions for aquatic life in the respective ecoregions. The Wolf Run watershed is entirely within ecoregion 71l (Inner Bluegrass). The significance of the regional placement of the watershed is that the phosphorus content of the formations of the Lexington Limestone found in the Inner Bluegrass is high relative to the geology typical of the Outer Bluegrass and Hills of the Bluegrass (ecoregions 71d and 71k). Nitrate concentrations also may be influenced by this geologic setting. These differences are reflected in the summary table below: total phosphorus and nitrate-nitrite-N are substantially higher in Reference Reaches of 71l than in the Bluegrass as whole (71l plus 71d Outer Bluegrass and 71k Hills of the Bluegrass).

	Ecoregion	Number	MIN	MAX	MED	75 th	90 th
		Samples				percentile	percentile
TP(mg/L)	711	13	0.117	0.46	0.304	0.338	0.396
	BG	114	<0.010	0.46	0.053	0.109	0.244
NN(mg/L)	711	14	0.108	4.07	1.292	2.628	3.167
	BG	117	<0.010	4.07	0.085	0.372	1.108
TKN(mg/L)	711	14	<0.200	0.756	<0.200	0.351	0.537
	BG	116	<0.200	1.230	0.216	0.404	0.625
TN(mg/L)	711	14	0.409	4.170	1.674	2.953	3.272
	BG	116	<0.200	4.170	0.439	0.798	1.520

Watershed reference candidate benchmarks:

When there are segments within the watershed or within closely comparable watersheds where uses are fully supported, then nutrient data from those streams can be summarized as a "watershed reference". These need not be Reference Reaches designated by KDOW, but should have been assessed as being fully supporting of the most sensitive use, in this case aquatic life, and are closely comparable. It is notable that most of the streams in 71l that have been assessed as fully supporting

aquatic life use are in the Kentucky River Palisades along the Kentucky River, an area with more rugged terrain where streams have higher gradients and distinctive biological communities relative to other parts of 71l. One exception is Steeles Run, which enters Town Branch 9 miles downstream of Wolf Run. Steeles Run has been assessed as fully supporting aquatic life use; however, the stream does exhibit indicators of excess nutrients such as dense algae growths. There is only one water sample from this stream, with TP 0.382 mg/L and TN 5.58 mg/L.

Effects-based (empirical) candidate benchmarks:

The entire watershed falls within the Bluegrass Bioregion and is not near a boundary. The benchmarks from a KDOW draft bioregional nutrient benchmarks report for the Bluegrass Bioregion are TP 0.1 mg/L, TN 1.2 mg/L; however, it is noted that background nutrient concentrations vary widely within the Bluegrass (as discussed above)and so these bioregional benchmarks must be modified according to local watershed characteristics. As indicated in the report, the relationships between nutrients and biological integrity are difficult to detect from analyses of KDOW's Bluegrass data. It is evident, though, that streams in the Inner Bluegrass with good instream habitat, intact riparian zones, well shaded channels, and normal flow regimes support desirable good quality aquatic communities at levels of TP and TN higher that might produce problems in streams in other regions.

Literature values

TP 0.1 mg/L is often cited as an upper threshold for preventing nuisance algae growth, which is one of the indicators of impairment observed in the Wolf Run watershed. That figure is well below 71l Reference Reach levels and also below levels in streams in the ecoregion observed to be fully supporting aquatic life use. Literature guidelines for the boundary between oligotrophic and mesotrophic conditions are TP 0.025 mg/L and TN 0.700 mg/L. The boundary between mesotrophic and eutrophic conditions are given as TP 0.075 mg/L and 1.5 mg/L. Reference Reaches and watershed reference data summarized above place those streams well into the eutrophic category for both TN and TP.

Summary

In the Inner Bluegrass it is particularly important to take an adaptive approach to setting expectations for nutrients. Background concentrations alone may be high enough that streams without good riparian condition, canopy cover, and in-stream habitat are likely to show signs of nutrient-related problems with little additional enrichment. In addition, stressors other than nutrients are common and may exacerbate nutrient impacts. The benchmark recommendations given here were derived from the median ecoregional Reference Reach data. These benchmarks should be reviewed as more information becomes available on conditions in the Wolf Run watershed, including the specific nutrient-related issues that may be occurring, the feasibility of nutrient reductions, and the importance of nutrients in causing undesirable effects to aquatic life relative to other stressors, such as high specific conductance.

Final benchmark recommendations:

 Total P
 0.30 mg/L

 TKN
 0.20 mg/L

 Nitrate-Nitrite-N
 1.3 mg/L

 Total N
 1.7 mg/L

Excerpts from Wolf Run Watershed Based Plan, Chapter IV, Pages 14-15

"For other parameters, no regulatory numeric standard has been established due to the variable relationship between biological integrity and concentration levels in different streams. Multiple factors are impacting warmwater aquatic habitat use of the Wolf Run Watershed, including poor riparian and instream habitat and poor hydrology/flow regime as well as elevated water quality parameters. Because of the uncertainty in assigning definitive thresholds for these parameters as well as the feasibility and cost-effectiveness of reducing concentrations, a phased approach was utilized in the development of benchmarks for non-regulatory water quality parameters.

Under this phased approach, non-regulatory reference points are initially established higher than reference conditions since the reference levels may be well below the level necessary to restore support of the use. These target levels are established based the extent and magnitude of the problem as well as technological feasibility, cost, and achievability. These goals would be re-assessed through the watershed planning process on regular time intervals and lowered if the designated use does not become fully supported through the implementation plan efforts when target levels are achieved. Table 23, page IV-14, lists the non-regulatory reference points for the Wolf Run Watershed. These levels were developed in consideration of the recommendations made by KDOW, are applicable only for the Wolf Run Watershed, and are not intended to have any regulatory use.

The rationale behind the selection of these non-regulatory reference points is as follows. The nutrient levels (total phosphorus at 0.35 mg/L and total nitrogen at 3.0 mg/L) were each established between the 75th and 90th percentile concentrations for reference reaches in the Inner Bluegrass. The ammonia benchmark of 0.1 mg/L was near the 75th percentile for the Wolf Run data collected. These higher concentrations were utilized based on published literature (Pond *et al.* 2003), which indicates that nutrient concentrations are not well correlated with macroinvertebrate metrics in the Bluegrass Bioregion. The main stem of the Ohio River has a specific conductance limit of 800 μ S/cm, which was considered too high for this region. The benchmark of 650 μ S/cm was established near the average of the Wolf Run sampling site medians...."

REVISED CERTIFICATE OF ANALYSIS

6061975

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Original Date Reported
 06/28/2016

 Report Reissued
 07/05/2016

 Date Received
 06/27/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysis	Date	Tech
Sample: 01 1 Sampled By Customer							Sampled	06/27/201	6@ 12:09
Flow by Calculation		3.34 CFS			EPA 600		06/27/2	016 12:09	CUS
Oxygen, Dissolved		9.10 mg/L			SM 4500 O G	0.10	06/27/2	016 12:09	cus
Specific Conductance at 25 °C		574 umhos/cm			CLIENT SPECIFIED		06/27/2	016 12:09	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1	06/27/2	016 12:09	CUS
E. coli		387.3 MPN/100mL			SM9223B (Colilert-18)		06/27/2	016 18:05	DZW
pH		7.91 SU			CLIENT SPECIFIED	1.00	06/27/2	016 12:09	CUS
Temperature		28.4 deg C			CLIENT SPECIFIED		06/27/2	016 12:09	CUS
Sample: 02 2 Sampled By Customer							Sampled	06/27/201	6@ 12:35
Flow by Calculation		1.85 CFS			EPA 600		06/27/2	016 12:35	CUS
Oxygen, Dissolved		7.90 mg/L			SM 4500 O G	0.10	06/27/2	016 12:35	CUS
Specific Conductance at 25 °C		626 umhos/cm			CLIENT SPECIFIED		06/27/2	016 12:35	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1	06/27/2	016 12:35	CUS
E. coli	;	>2419.6 MPN/100mL			SM9223B (Colilert-18)		06/27/2	016 18:05	DZW
pH		7.60 SU			CLIENT SPECIFIED	1.00	06/27/2	016 12:35	CUS
Temperature		29.0 deg C			CLIENT SPECIFIED		06/27/2	016 12:35	CUS
Sample: 03 4 Sampled By Customer							Sampled	06/27/201	6@ 13:50
Flow by Calculation		0.01 CFS			EPA 600		06/27/2	016 13:50	CUS
Oxygen, Dissolved		10.10 mg/L			SM 4500 O G	0.10	06/27/2	016 13:50	CUS
Specific Conductance at 25 °C		417 umhos/cm			CLIENT SPECIFIED		06/27/2	016 13:50	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1	06/27/2	016 13:50	CUS
E. coli		2419.6 MPN/100mL			SM9223B (Colilert-18)		06/27/2	016 18:05	DZW
pH		8.40 SU			CLIENT SPECIFIED	1.00	06/27/2	016 13:50	CUS
Temperature		25.6 deg C			CLIENT SPECIFIED		06/27/2	016 13:50	CUS
Sample: 04 5							Sampled	06/27/201	6@ 13:25

The data and other information contained on this, and other accompanying documents, represents only the sample (s) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without written approval from the laboratory.

REVISED CERTIFICATE OF ANALYSIS

6061975

Third Rock Consultants Marcia L. Wooton

Report Reissued Date Received 07/05/2016 06/27/2016

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analys	is Date	Tech
Sample: 04 5 Sampled By Custom	er							Sampled	06/27/201	6@ 13:25
Flow by Calculation			1.43 CFS			EPA 600		06/27/	2016 13:25	CUS
Oxygen, Dissolved			15.60 mg/L			SM 4500 O G	0.10	06/27/	2016 13:25	CUS
Specific Conductance at a °C	25		596 umhos/cm			CLIENT SPECIFIED		06/27/	2016 13:25	CUS
Turbidity			<1 NTU			CLIENT SPECIFIED	1	06/27/	2016 13:25	CUS
E. coli			547.5 MPN/100mL			SM9223B (Colilert-18)		06/27/	2016 18:05	DZW
pH			8.40 SU			CLIENT SPECIFIED	1.00	06/27/	2016 13:25	CUS
Temperature			27.3 deg C			CLIENT SPECIFIED		06/27/	2016 13:25	CUS
Sample: 05 6 Sampled By Custom	er							Sampled	06/27/201	6@ 14:51
Flow by Calculation			1.05 CFS			EPA 600		06/27/	2016 14:51	CUS
Oxygen, Dissolved			6.80 mg/L			SM 4500 O G	0.10	06/27/	2016 14:51	CUS
Specific Conductance at a °C	25		626 umhos/cm			CLIENT SPECIFIED		06/27/	2016 14:51	CUS
Turbidity			<1 NTU			CLIENT SPECIFIED	1	06/27/	2016 14:51	CUS
E. coli			>2419.6 MPN/100mL			SM9223B (Colilert-18)		06/27/	2016 18:05	DZW
pH			7.50 SU			CLIENT SPECIFIED	1.00	06/27/	2016 14:51	CUS
Temperature			24.0 deg C			CLIENT SPECIFIED		06/27/	2016 14:51	CUS
Sample: 06 8 Sampled By Custom	er							Sampled	06/27/201	6@ 11:05
E. coli			155.3 MPN/100mL			SM9223B (Colilert-18)		06/27/	2016 18:05	DZW
Sample: 07 9 Sampled By Custom	er							Sampled	06/27/201	6@ 15:33
Flow by Calculation			0.01 CFS			EPA 600		06/27/	2016 15:33	CUS
Oxygen, Dissolved			5.40 mg/L			SM 4500 O G	0.10	06/27/	2016 15:33	CUS
Specific Conductance at a °C	25		387 umhos/cm			CLIENT SPECIFIED		06/27/	2016 15:33	CUS
Turbidity			<1 NTU			CLIENT SPECIFIED	1	06/27/	2016 15:33	CUS
E. coli			>2419.6 MPN/100mL			SM9223B (Colilert-18)		06/27/	2016 18:05	DZW
рН			7.60 SU			CLIENT SPECIFIED	1.00	06/27/	2016 15:33	CUS

The data and other information contained on this, and other accompanying documents, represents only the sample (s) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without written approval from the laboratory.

REVISED CERTIFICATE OF ANALYSIS

6061975

Third Rock Consultants Marcia L. Wooton

Report Reissued

Date Received

07/05/2016 06/27/2016

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysis Date		Tech
Sample: 07	9							Sampled	06/27/201	6@ 15:33
Sampled By	Customer									
Temperature			27.1 deg C			CLIENT SPECIFIED		06/27/20	016 15:33	CUS

Revised to correct report subject line. LLM 7-5-16

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Laboratory</u> <u>Analysis</u>

Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

E. coli

Method SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

Original COC/TelLaboratory (Accompany Samples & Report) COC Copy - TRC Project File COC Copy - TRC Laboratory			A COLUMN TO SERVICE STATE OF THE SERVICE STATE OF T	Relinquished By			-						· ·			Laboratory#		Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.	NOTE:	Comments:	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR P	Collected By: Client -	Project Contact (for laboratory): N Phone #: 859-977-2000		Project Name: Cane Run Watershed Based Plan	COC#
у Samples & Report)			(1-27-16 (6:39)		1 90	100	9	8		6	රා	4		2	_	Sample I.D.		403, CBOD5.					Part 136		Marcia L. Wooton		hed Based Plan	
The Coc		a Chalca)) SIM	WS	SW	SW (SW	SW	SW (SW (W#8	SW (SW	Watrx -		•			EDD Required: X Yes _ No							
Сору-⊤RC			3	Received By-			6-27461	6-77-16 1		6-27-16 1		6-27-16 2		6-27-16/	6-27-16/	Date	· -] - Ice (All)	SA - H2SO4 ST - Na2S2O3	Preserva	ired: ⊻Ye							
Project File						}	533	1105		145)	325	1350		1235	1205	Time C	114	(All)	2SO4 2S2O3	reservative Code	is No				I	4		C
80		6			G Y*/N	8 77	G Y*∕N	G Y*/N	6 +**/a	G Y*/N	G Y*/N	G Y*∕N	0	G Y*/N	G Y*N	Comp	ED.						Ø K	00	IHIRDKOCI		•	CHAIN OF CUSTODY
С Сору -					-	-	7	7	-1	7	<u>}</u>	1	1	7	7			CBOD5, TSS	Requ	32oz P	60		MICROBAC"	NSUL	ロス	J)		0F @
TRCLabo			うだら	1110	1	- <u> </u> '	1	1	1	A	7	1		7	7	Analysis		NO2, NO3	Requested Lab A	50 mL 32	- SA Container/Size/	*Preservation	ВАС	. TAN	0		//	STOD
			20	To.	1	1	7	7,	1	7	1	*	<u> </u>	<i>Y</i> .	1	nalysis		PT, TKN, NH3 P.º (* Field Filtered)	ab Ana	32oz P 8oz P			1,3	S	ズ	1		
ervice		ties in	atainan		1	1	-, ,	1.3	+	- -	1.	- /	+	<i>†</i>			劉.	E-Coli	nalysis.	7 4g	SA ST	уре						
Coord		Bottles Intact: (Yes / No)	, 0,000	Bass			5.4	İ		6.8	15.6	1.01	1	74	1.2	Dis	ol	ved Oxygen (mg/L)				Field					·=	
Inator	,	s / No)	יליי (ס). ז			1	69 A	{	1	93.2	203.5	126,0	1	106.5	120	Diss Satu	olv rat	ved Oxygen (% lion)	<u> </u>	We		Field Remarks:			,		mwoot	
Services Coordinator		Bottles Intact:(Yes) No)	2	Town Hone Pensint (C): (4) (Monte and Pan	- See	-	7.6	1	1	7.5	1.81	7.5		_	182	рН	(S.	.U.)	©/∏-S(te//⊟ield Vieess	Weather Event:			Lexing 85	0707	Third Rock Consultants, I	Marc	PDF Analytical Report & Invoice To: mwooton@thirdrockconsultants.com	
		NO)			Field No		387.2			626	5%4	4168		625.5	573.7	Spe (uml		ic Conductance cm)	eld We				ington, KY 40. 859-977-2000	Regency Suite 180	k Consu	Marcia L. Wooton	al Repor	
		<u> </u>	.	1	See Field Notebook -		127.1			25	27.3	25,6			28.5	Ten	pe	erature (° ^C)	5	_Dry		,	Lexington, KY 40503 859-977-2000	Suite 180	ultants,	ooton	rt & Invo o∩sulta	
		O	1 1	2			0			0.5	O	2,7		3.5		Turk	idi	ity (N.T.U.)	mems 	Wet			w		CLC		oice To:	
						ſ	10.0	1	Ī	3	1,53	000		185	3,39	Flov	, (c	cfs)								1		

6061976

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503
 Original Date Reported
 06/28/2016

 Report Reissued
 07/05/2016

 Date Received
 06/27/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Max	Method	Analysi	s Date	Tech
Sample: 01	DD					Sampled	06/27/201	6
Sampled By E. coli	Customer		866.4 MPN/100mL		SM9223B (Colilert-18)	06/27/2	016 19:10	LLM

Revised to correct report subject line. LLM 7-5-16

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

0.440F.C.T	TO	B. #	т

Received By:	Relinquished By:	Received By:	Relinquished By:		BY		The second secon	The state of the s	Tribute to the state of the sta	The state of the s	The state of the s	The second secon		and the state of t	0,0	2006		6-27/730 DD	· Date / Time Sample ID / Description	Site / Project Name: /	Sampler: C Bland	Attention: A PO #:	Email:	Phone: () Fax: ()	City / State / Zip:	Street Address:	S Client Third Kock	MICROBAC® ACHAIN OF CUSTODY WWw.microbac.com
Date: /	Date: /	Date: /	Date: /	Date: (6 /5	Date: 6/2														ption									3323 Gilmore indust Louisville, KY 40213 502.962.6400 p 502.962.6411 f
/ Tin	/ ∏n	/ Tin	/ Tin	JT 11- TI	27/16 Tin	THE PERSON NAMED IN COLUMN TO SERVICE AND																100						3323 Gilmore industrial Blvd Louisville, KY 40213 502.962.6400 p 502.962.6411 f
Time:	∏me:	Time:	Time:	Time: 1900	Time: 750pc								Ministratural annual) P	No.	ynbe	of Co	Com	taine	rs			Due Date:	•
by Microbac	To be filled			<u> </u>	Notes:												I	501 Kz		γ.	clear	nt _{ali} g/ _{ðss,}	h _{er} Viəl		\			2520 Regency Rd. Lexington, KY 40503 859.276.3506 p 859.278.5665 f
	- 1				とよるの				***************************************									<u>ک</u>	So	11, S/L	le M dge	atrix			τις. 	,		2701 Evans 812,4 812,4
Received on Ice?	Temp. Upon Receipt (°C):				0														RO	_	W	in .		etc.		7		2701 N. Cullen Ave., Ste. A Evansville, IN 47715 812.464.9000 p 812.424.0667 f
Yes (No)	13.0			- (5 dros per														/		Cop 	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		(12)	_			
	Thermometer ID:																				\ \ \	\ \ \	\ \ \	\ \ \				5309 Reidland Rd. Paducah, KY 42003 270.898.3637 p 270.898.3666 f
Custody Seals Intact?	77.0				Darton														/ / /		\ \ \		\	<i></i>			Analyses Requested	ŭ ·
Yes No MA	No. Bottles Received:				D								The second secon							\ \ \		\ \ \	/	/ / ./	\ \ \	\ \ \	equested	100 Grand Vue Plaza, Ste. 22 Hazard, KY 41701 606.487.0511 p 606.910.0086 f
	ived:							***************************************								ļ					<u></u>		\		\ \ \			Plaza, Ste. 22 701 p

*Standard RUSH TAT Charges: Same Day x3; Next Day x2; Three Day x1.5. Please contact us for RUSH request arrangements at 502.962.6400

6061982

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Original Date Reported
 07/05/2016

 Report Reissued
 07/05/2016

 Date Received
 06/28/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Sampled By Customer CBOD, 5 Day <2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15.41	Tech	is Date	Analys	MDL	Cus Limit	Rpt Limit	Method	Max	Min	Result Units	Qualifier	000	analysis
Nitrogen, Ammonia UJ <0.14 mg/L	6@ 12:04	06/27/2016	mpled	s								tomer	•
Nitrogen, Nitrate 0.26 mg/L EPA 300.0 0.11 0.027 06/28/2016 17.43 Nitrogen, Nitrite UJ <0.025 mg/L EPA 300.0 0.15 0.025 06/28/2016 17.43 Nitrogen, Nitrite UJ <0.025 mg/L EPA 300.0 0.15 0.025 06/28/2016 17.43 Nitrogen, Total Kjeldahl <0.040 mg/L SM 4500 NH3 G 0.40 0.7701/2016 10.33 Phosphorus, Orthophosphate 0.26 mg/L EPA 365.1 0.050 0.025 06/28/2016 17.40 Phosphorus, Total Suspended 12 mg/L USGS I-3765-85 1 0.046 0.0051 06/30/2016 94.98 Solids, Total Suspended 12 mg/L USGS I-3765-85 1 0.046 0.0051 06/30/2016 19.44 Sample: 02 2 Sampled By Customer CBOD, 5 Day <2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15.41 Nitrogen, Ammonia J1 0.17 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 15.14 Nitrogen, Nitrate 0.25 mg/L EPA 300.0 0.11 0.027 06/28/2016 18.10 Nitrogen, Total Kjeldahl 0.040 mg/L SM 4500 NH3 G 0.40 0.0051 06/30/2016 19.50 Phosphorus, Orthophosphate 0.21 mg/L EPA 365.1 0.050 0.025 06/28/2016 18.10 Nitrogen, Total Kjeldahl 0.040 mg/L EPA 365.1 0.050 0.025 06/28/2016 19.50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 0.060 0.0051 06/30/2016 95.00 Solids, Total Suspended 8 mg/L EPA 300.0 0.01 0.0051 06/30/2016 95.00 Solids, Total Suspended 9 0.0051 06/30/2016 95.00 Solids, Total Suspended 9 0.0051 06/30/2016 95.00 Solids, Total Suspended 9 0.0051 06/30/2016 95.00 Solids, Total Suspended 9 0.0051 06/30/2016 95.00 Soli	EGD	2016 15:41	06/28/		2	2.0	SM 5210 B			<2.0 mg/L			BOD, 5 Day
Nitrogen, Nitrite UJ <0.025 mg/L EPA 300.0 0.15 0.025 06/28/2016 17.43 Nitrogen, Total Kjeldahl	DJR	2016 15:12	4 06/29/	0.1		0.25	SM 4500 NH3 G			<0.14 mg/L	UJ		litrogen, Ammon
Nitrogen, Total Kjeldahl	JGF	2016 17:43	7 06/28/	0.02		0.11	EPA 300.0			0.26 mg/L			litrogen, Nitrate
Phosphorus, Orthophosphate 0.26 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:40 Phosphorus, Total 0.36 mg/L EPA 365.1 0.046 0.0051 06/30/2016 9:49 Solids, Total Suspended 12 mg/L USGS I-3765-85 1 1 06/29/2016 14:48 Sample: 02 2 Sampled By Customer CBOD, 5 Day < 2.0 mg/L	JGF	2016 17:43	5 06/28/	0.02		0.15	EPA 300.0			<0.025 mg/L	UJ		litrogen, Nitrite
Phosphorus, Total	DJR	2016 10:33	07/01/			0.40	SM 4500 NH3 G			<0.40 mg/L		hl	litrogen, Total Kj
Solids, Total Suspended 12 mg/L USGS I-3765-85 1 1 06/29/2016 14:48 Sample: 02 2 Sampled By Customer Sampled By Customer CBOD, 5 Day <2.0 mg/L	DJR	2016 17:40	5 06/28/	0.02		0.050	EPA 365.1			0.26 mg/L		osphate	hosphorus, Orth
Sample: 02 2 Sampled By Customer CBOD, 5 Day < 2.0 mg/L	DJR	2016 9:49	1 06/30/	0.005		0.046	EPA 365.1			0.36 mg/L			Phosphorus, Tota
Sampled By Customer CBOD, 5 Day <2.0 mg/L	CJL	2016 14:48	06/29/		1	1	USGS I-3765-85			12 mg/L		ed	Solids, Total Susp
Nitrogen, Ammonia J1 0.17 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 15:14 Nitrogen, Nitrate 0.25 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:10 Nitrogen, Nitrite J1 0.037 mg/L EPA 300.0 0.15 0.025 06/28/2016 18:10 Nitrogen, Nitrite Nitrogen, Nitrite SM 4500 NH3 G 0.40 07/01/2016 10:35 Phosphorus, Orthophosphate 0.21 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:42 Phosphorus, Total 0.34 mg/L EPA 365.1 0.046 0.0051 06/30/2016 9:50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.6/29/2016 14:48 Sample: 03 Samp	6@ 12:35	06/27/2016	mpled	s								tomer	•
Nitrogen, Nitrate 0.25 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:10 Nitrogen, Nitrite J1 0.037 mg/L EPA 300.0 0.15 0.025 06/28/2016 18:10 Nitrogen, Nitrite J1 0.037 mg/L SM 4500 NH3 G 0.40 07/01/2016 10:35 Phosphorus, Orthophosphate 0.21 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:42 Phosphorus, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.046 0.0051 06/30/2016 9:50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.06/29/2016 14:48 Sample: 03 4 Sampled By Customer CBOD, 5 Day < 2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15:41 Nitrogen, Ammonia UJ <0.14 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 16:19 Nitrogen, Nitrate J1 0.056 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:37	EGD	2016 15:41	06/28/		2	2.0	SM 5210 B			<2.0 mg/L			BOD, 5 Day
Nitrogen, Nitrite J1 0.037 mg/L EPA 300.0 0.15 0.025 06/28/2016 18:10 Nitrogen, Total Kjeldahl <0.040 mg/L SM 4500 NH3 G 0.40 0.7/01/2016 10:35 Phosphorus, Orthophosphate 0.21 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:42 Phosphorus, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.046 0.0051 06/30/2016 9:50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 0.06/29/2016 14:48 Sample: 03 4 Sampled By Customer CBOD, 5 Day <2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15:41 Nitrogen, Ammonia UJ <0.014 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 16:19 Nitrogen, Nitrate J1 0.056 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:37	DJR	2016 15:14	4 06/29/	0.1		0.25	SM 4500 NH3 G			0.17 mg/L	J1		litrogen, Ammon
Nitrogen, Total Kjeldahl <0.40 mg/L SM 4500 NH3 G 0.40 0.7/01/2016 10:35 Phosphorus, Orthophosphate 0.21 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:42 Phosphorus, Total 0.34 mg/L EPA 365.1 0.046 0.0051 06/30/2016 9:50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 06/29/2016 14:48 Sample: 03 4 Sampled By Customer CBOD, 5 Day <2.0 mg/L	JGF	2016 18:10	7 06/28/	0.02		0.11	EPA 300.0			0.25 mg/L			litrogen, Nitrate
Phosphorus, Orthophosphate 0.21 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:42 Phosphorus, Total 0.34 mg/L EPA 365.1 0.046 0.0051 06/30/2016 9:50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 06/29/2016 14:48 Sample: 03 4 Sampled By Customer Sampled Dept Customer CBOD, 5 Day < 2.0 mg/L	JGF	2016 18:10	5 06/28/	0.02		0.15	EPA 300.0			0.037 mg/L	J1		litrogen, Nitrite
Phosphorus, Total 0.34 mg/L EPA 365.1 0.046 0.0051 06/30/2016 9:50 Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 06/29/2016 14:48 Sample: 03 4 Sampled By Customer CBOD, 5 Day < 2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15:41 Nitrogen, Ammonia UJ <0.14 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 16:19 Nitrogen, Nitrate J1 0.056 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:37	DJR	2016 10:35	07/01/			0.40	SM 4500 NH3 G			<0.40 mg/L		hl	litrogen, Total Kj
Solids, Total Suspended 8 mg/L USGS I-3765-85 1 1 06/29/2016 14:48 Sample: 03 4 Sampled By Customer CBOD, 5 Day < 2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15:41 Nitrogen, Ammonia UJ <0.14 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 16:19 Nitrogen, Nitrate J1 0.056 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:37	DJR	2016 17:42	5 06/28/	0.02		0.050	EPA 365.1			0.21 mg/L		osphate	hosphorus, Orth
Sample: 03 4 Sampled By Customer CBOD, 5 Day < 2.0 mg/L SM 5210 B 2.0 2 06/27/2016 Nitrogen, Ammonia UJ < 0.14 mg/L	DJR	2016 9:50	1 06/30/	0.005		0.046	EPA 365.1			0.34 mg/L			Phosphorus, Tota
Sampled By Customer CBOD, 5 Day < 2.0 mg/L SM 5210 B 2.0 2 06/28/2016 15:41 Nitrogen, Ammonia UJ < 0.14 mg/L	CJL	2016 14:48	06/29/2		1	1	USGS I-3765-85			8 mg/L		ed	Solids, Total Susp
Nitrogen, Ammonia UJ < 0.14 mg/L SM 4500 NH3 G 0.25 0.14 06/29/2016 16:19 Nitrogen, Nitrate J1 0.056 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:37	6@ 13:50	06/27/2016	mpled	s								tomer	•
Nitrogen, Nitrate J1 0.056 mg/L EPA 300.0 0.11 0.027 06/28/2016 18:37	EGD	2016 15:41	06/28/		2	2.0	SM 5210 B			<2.0 mg/L			BOD, 5 Day
· ·	DJR	2016 16:19	4 06/29/	0.1		0.25	SM 4500 NH3 G			<0.14 mg/L	UJ		litrogen, Ammon
Nitrogen, Nitrite UJ <0.025 mg/L EPA 300.0 0.15 0.025 06/28/2016 18:37	JGF	2016 18:37	7 06/28/	0.02		0.11	EPA 300.0			0.056 mg/L	J1		litrogen, Nitrate
	JGF	2016 18:37	5 06/28/	0.02		0.15	EPA 300.0			<0.025 mg/L	UJ		litrogen, Nitrite
Nitrogen, Total Kjeldahl <0.40 mg/L SM 4500 NH3 G 0.40 07/01/2016 10:37	DJR	2016 10:37	07/01/2			0.40	SM 4500 NH3 G			<0.40 mg/L		hl	litrogen, Total Kj
Phosphorus, Orthophosphate 0.16 mg/L EPA 365.1 0.050 0.025 06/28/2016 17:43	DJR	2016 17:43	5 06/28/	0.02		0.050	EPA 365.1			0.16 mg/L		osphate	Phosphorus, Orth
Phosphorus, Total 0.23 mg/L EPA 365.1 0.046 0.0051 06/30/2016 9:51	DJR	2016 9:51	1 06/30/	0.005		0.046	EPA 365.1			0.23 mg/L			Phosphorus, Tota

6061982

Third Rock Consultants Marcia L. Wooton

Report Reissued

Date Received

07/05/2016 06/28/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 03 4 Sampled By Customer								Sa	ımpled	06/27/201	6@ 13:50
Solids, Total Suspended		12 mg/L			USGS I-3765-85	1	1		06/29/	2016 14:48	CJL
Sample: 04 5 Sampled By Customer								Si	mpled	06/27/201	6@ 13:25
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		06/28/	2016 15:41	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 06/29/	2016 15:17	DJR
Nitrogen, Nitrate		0.71 mg/L			EPA 300.0	0.11		0.02	7 06/28/	2016 19:05	JGF
Nitrogen, Nitrite	J1	0.028 mg/L			EPA 300.0	0.15		0.02	5 06/28/	2016 19:05	JGF
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			07/01/	2016 10:39	DJR
Phosphorus, Orthophosphate		0.60 mg/L			EPA 365.1	0.050		0.02	5 06/28/	2016 17:44	DJR
Phosphorus, Total		0.65 mg/L			EPA 365.1	0.046		0.005	1 06/30/	2016 9:53	DJR
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		06/29/	2016 14:48	CJL
Sample: 05 6 Sampled By Customer								Sa	mpled	06/27/201	6@ 14:51
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		06/28/	2016 15:41	EGD
Nitrogen, Ammonia		1.9 mg/L			SM 4500 NH3 G	0.25		0.1	4 06/29/	2016 15:19	DJR
Nitrogen, Nitrate		0.48 mg/L			EPA 300.0	0.11		0.02	7 06/28/	2016 19:32	JGF
Nitrogen, Nitrite	J1	0.15 mg/L			EPA 300.0	0.15		0.02	5 06/28/	2016 19:32	JGF
Nitrogen, Total Kjeldahl		2.3 mg/L			SM 4500 NH3 G	0.40			07/01/	2016 10:41	DJR
Phosphorus, Orthophosphate		0.76 mg/L			EPA 365.1	0.050		0.02	5 06/28/	2016 17:47	DJR
Phosphorus, Total		0.85 mg/L			EPA 365.1	0.046		0.005	1 06/30/	2016 9:56	DJR
Solids, Total Suspended		10 mg/L			USGS I-3765-85	1	1		06/29/	2016 14:48	CJL
Sample: 06 8 Sampled By Customer								Sa	impled	06/27/201	6@ 11:05
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		06/28/	2016 15:41	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 06/30/	2016 10:06	DJR
Nitrogen, Nitrate		0.39 mg/L			EPA 300.0	0.11		0.02	7 06/28/	2016 19:59	JGF
Nitrogen, Nitrite	UJ	<0.025 mg/L			EPA 300.0	0.15		0.02	5 06/28/	2016 19:59	JGF
Nitrogen, Total Kjeldahl		0.44 mg/L			SM 4500 NH3 G	0.40			07/01/	2016 10:43	DJR

6061982

Third Rock Consultants Marcia L. Wooton

Report Reissued

Date Received

07/05/2016 06/28/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 06 8 Sampled By Customer								Sa	mpled	06/27/201	.6@ 11:05
Phosphorus, Orthophosphate		0.25 mg/L			EPA 365.1	0.050		0.02	5 06/28/	2016 17:48	DJR
Phosphorus, Total		0.45 mg/L			EPA 365.1	0.046		0.005	1 06/30/	2016 9:57	DJR
Solids, Total Suspended		29 mg/L			USGS I-3765-85	1	1		06/29/	2016 14:48	CJL
Sample: 07 9 Sampled By Customer								Sa	mpled	06/27/201	.6@ 15:33
CBOD, 5 Day		2.8 mg/L			SM 5210 B	2.0	2		06/28/	2016 15:41	EGD
Nitrogen, Ammonia		0.27 mg/L			SM 4500 NH3 G	0.25		0.1	4 06/30/	2016 10:08	DJR
Nitrogen, Nitrate	J1	0.040 mg/L			EPA 300.0	0.11		0.02	7 06/28/	2016 20:27	JGF
Nitrogen, Nitrite	UJ	<0.025 mg/L			EPA 300.0	0.15		0.02	5 06/28/	2016 20:27	JGF
Nitrogen, Total Kjeldahl		0.63 mg/L			SM 4500 NH3 G	0.40			07/01/	2016 10:49	DJR
Phosphorus, Orthophosphate		0.27 mg/L			EPA 365.1	0.050		0.02	5 06/28/	2016 17:49	DJR
Phosphorus, Total		0.50 mg/L			EPA 365.1	0.046		0.005	1 06/30/	2016 9:59	DJR
Solids, Total Suspended		16 mg/L			USGS I-3765-85	1	1		06/29/	2016 14:48	CJL
Sample: 08 DD Sampled By Customer								Sa	mpled	06/27/201	.6
CBOD, 5 Day		2.7 mg/L			SM 5210 B	2.0	2		06/28/	2016 15:41	EGD
Nitrogen, Ammonia		0.29 mg/L			SM 4500 NH3 G	0.25		0.1	4 06/30/	2016 10:10	DJR
Nitrogen, Nitrate	J1	0.045 mg/L			EPA 300.0	0.11		0.02	7 06/28/	2016 20:54	JGF
Nitrogen, Nitrite	UJ	<0.025 mg/L			EPA 300.0	0.15		0.02	5 06/28/	2016 20:54	JGF
Nitrogen, Total Kjeldahl		0.47 mg/L			SM 4500 NH3 G	0.40			07/01/	2016 10:51	DJR
Phosphorus, Orthophosphate		0.27 mg/L			EPA 365.1	0.050		0.02	5 06/28/	2016 17:50	DJR
Phosphorus, Total		0.37 mg/L			EPA 365.1	0.046		0.005	1 06/30/	2016 10:00	DJR
Solids, Total Suspended		8 mg/L			USGS I-3765-85	1	1		06/29/	2016 14:48	CJL

Revised to correct report subject line. LLM 7-5-16

Qualifier Definitions

J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.

6061982

Third Rock Consultants Marcia L. Wooton

Report Reissued

Date Received

07/05/2016 06/28/2016

KDOW Cane Run Watershed Project

UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)			6 Call	Relinquished By;		and the second s										Tunding J.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days	Methodology Required: 40CFR Part 136	Collected By: Client - C. Blad	Project Contact (for laboratory): Marcia L.	Client: I hird Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004	COC#
ην Samples & Report			6-28-16/0859	Date / Time	DD		9	8	The second secon	6	5	4	3	2			O3, CBOD5. at earliest time				art 136		larcia L. Wooton	ned Based Plan	
		0	MUSER		SW	WS	SW	SW	WS	WS	SW (SW	SW	SW	SW		Valley *			EDD Required∶ <u>X</u> Yes					
COC Copy - TRC Project File			Mar Postrainhe	Received By:	6-2746	A CONTRACTOR OF THE PARTY OF TH	6-27-16	6-27-16		-	_	9FEE-3	Account of the property of the party of the	6-27-16	3776		I - Ice (All) Collection Collection	SA - H2SO4 ST - Na2S2O3	* Preserva	ired: ∑Ye					
Project File			ushes	Ву:	***		533	1105		185)	1325	1350	and the second name of the second	1235	4,0%		j.	2SO4 2S2O3	Preservative Code	% _ No	~				C
	-		1		G Y*/N	↑	G Y*/N	0 √*	G ***	G Y*/N	G Y*/N	G 7*/N	4	G Y*/N	G Y'N	-	Orab / File				© MICROBAC	00	日 及 し 天 の 介		CHAIN OF CUSTODY
GOC Copy - TRC Laboratory			6.28-16	Dat	Ž 1	2	2	Y*/N 1	<u>₹</u>	2	2	2	1 4	2	Ž		CBOD5, TSS	곴	320z P		0 20	Z S C	U		OF C
y - TRC			824	Date / Time		-	_	-	+	_	<u> </u>	_		_	_		NO2, NO3 PT, TKN, NH3	Requested Lab Analysis	P 50 mL	*Preservation Type - - SA SA Container Size/Type	08,	L T A	õ	''')	USTO
Laborat			10	9	_	- Acceptance	_	_			-	_	1		_		PT, TKN, NH3	id Lab	320z P	rvation SA ler Size	Ú	Z	$\frac{Q}{Z}$		ץם
		Bottle	Contai	Temp.	_	H	<u> </u>			-			ľ	_			P (* Field Filtered)	Analys	80z	уре Уре		0,	* '		
ices Co		intact:	ners Pr	Upon R	240	r	4		+	1	1	1	+	1	1	+	E-Coli	S	40z	ΤS					
Services Coordinator		Bottles Intact: (Yes) No)	Containers Properly Preserved: (Yesy No)	Temp. Upon Receipt (C): 2.2 Measured By:		The second secon	Company or the Company	CONTRACTOR DATE			-	TO COLUMN STATE OF THE PARTY OF			de la constitución de la constit		Dissolved Oxygen (mg/L) Dissolved Oxygen (%		_	Field Remarks:				mw	95
7		೦	reserve): <u>2 2 </u>							$\frac{1}{1}$					\dagger	Saturation)	On-Sit	Weather Event:	arks:	Lex	ļ	Third F	oton©	A 201
		į	(3)	Measu	ee Fie		ig		ALL PRODUCTIONS AND ADDRESS OF THE PERSONS AND A		1		$\prod_{i=1}^{n}$			-	pH (S.U.)	e/Field	r Event		kingtor 859-9	Sui	Rock C	othirdr Marcia	12010
			/No)	red By	ld Note	The state of the s										(Specific Conductance umho/cm)	Meas	:D ₇ y		Lexington, KY 40503 859-977-2000	Suite 180	d Rock Consultants,	iyiical Keport & inv @thirdrockconsult Marcia L. Wooton	2
				1-23	See Field Notebook -						-						Temperature (° ^C)	On-Site/Field Measurements			40503 00		Third Rock Consultants, LLC	יים אחמועוניםו והפסחד מיוועסונים וס: hwooton@thirdrockconsultants.con Marcia L. Wooton	ا میروز
			(ٽل				College College College	No.	SANTEN STATE	The State of the S						Turbidity (N.T.U.)	etni	Wet				TC	mwooton@thirdrockconsultants.com Marcia L. Wooton	20 To:
			oondrown								I				- Carrier		Flow (cfs)		200			······································	V) 	

6071161

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 07/25/2016

 Date Due
 07/27/2016

 Date Received
 07/18/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	ı	MDL Analys	sis Date	Tech
Sample: 01 1								Sampled	07/18/201	16@ 10:00
Sampled By Customer										
Flow by Calculation		1.4 CFS			EPA 600				/2016 10:00	CUS
Oxygen, Dissolved		6.40 mg/L			SM 4500 O G	0.10		07/18	/2016 10:00	CUS
Specific Conductance at 25 °C		623 umhos/cm			CLIENT SPECIFIED			07/18	/2016 10:00	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1		07/18	/2016 10:00	CUS
E. coli		703.0 MPN/100mL			SM9223B (Colilert-18)			07/18	/2016 16:20	DZW
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	07/19	/2016 13:21	DJR
Nitrogen, Ammonia	UJ M2, R1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14 07/21	/2016 15:15	EGD
Nitrogen, Nitrate	111	0.74 mg/L			EPA 300.0	0.55		0.13 07/19	/2016 17:30	LJC
Nitrogen, Nitrite	J1	0.20 mg/L			EPA 300.0	0.75		0.12 07/19	/2016 17:30	LJC
Nitrogen, Total Kjeldahl	M2	0.69 mg/L			SM 4500 NH3 G	0.40		07/22	/2016 10:06	EGD
pH		7.90 SU			CLIENT SPECIFIED	1.00		07/18	/2016 10:00	CUS
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.025 07/19	/2016 17:13	EGD
Phosphorus, Total	M2	0.31 mg/L			EPA 365.1	0.046		0.0051 07/22	/2016 12:33	EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1	07/20	/2016 15:43	CJL
Temperature		25.7 deg C			CLIENT SPECIFIED			07/18	/2016 10:00	CUS
Sample: 02 2 Sampled By Customer								Sampled	07/18/201	16@ 10:45
Flow by Calculation		1.16 CFS			EPA 600			07/18	/2016 10:45	CUS
Oxygen, Dissolved		4.20 mg/L			SM 4500 O G	0.10		07/18	/2016 10:45	CUS
Specific Conductance at 25 °C		668 umhos/cm			CLIENT SPECIFIED			07/18	/2016 10:45	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1		07/18	/2016 10:45	CUS
E. coli		3448.0 MPN/100mL			SM9223B (Colilert-18)			07/18	/2016 16:20	DZW
CBOD, 5 Day		2.4 mg/L			SM 5210 B	2.0	2	07/19	/2016 13:21	DJR
Nitrogen, Ammonia	J1	0.18 mg/L			SM 4500 NH3 G	0.25		0.14 07/21	/2016 15:17	EGD
Nitrogen, Nitrate		0.68 mg/L			EPA 300.0	0.55		0.13 07/19	/2016 17:58	LJC
Nitrogen, Nitrite	J1	0.22 mg/L			EPA 300.0	0.75		0.12 07/19	/2016 17:58	LJC

6071161

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit		MDL	Analysi	s Date	Tech
Sample: 02 2 Sampled By Customer								Sa	mpled	07/18/201	6@ 10:45
Nitrogen, Total Kjeldahl		1.6 mg/L			SM 4500 NH3 G	0.40			07/22/2	016 10:08	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			07/18/2	016 10:45	CUS
Phosphorus, Orthophosphate		0.23 mg/L			EPA 365.1	0.050		0.02	5 07/19/2	016 17:14	EGD
Phosphorus, Total		0.34 mg/L			EPA 365.1	0.046		0.005	07/22/2	016 12:34	EGD
Solids, Total Suspended		8 mg/L			USGS I-3765-85	1	1		07/20/2	016 15:43	CJL
Temperature		24.0 deg C			CLIENT SPECIFIED				07/18/2	016 10:45	cus
Sample: 03 3 Sampled By Customer								Sa	mpled	07/18/201	6@ 11:10
Flow by Calculation		No Flow CFS			EPA 600				07/18/2	2016 11:10	CUS
Sample: 04 4 Sampled By Customer								Sa	mpled	07/18/201	6@ 11:25
Flow by Calculation		bserved - CFS t Detected			EPA 600				07/18/2	016 11:25	CUS
Oxygen, Dissolved	NO	7.70 mg/L			SM 4500 O G	0.10			07/18/2	016 11:25	CUS
Specific Conductance at 25 °C		456 umhos/cm			CLIENT SPECIFIED				07/18/2	2016 11:25	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			07/18/2	016 11:25	CUS
E. coli		573.0 MPN/100mL			SM9223B (Colilert-18)				07/18/2	016 16:20	DZW
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		07/19/2	016 13:21	DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	1 07/21/2	016 15:19	EGD
Nitrogen, Nitrate	J1	0.18 mg/L			EPA 300.0	0.55		0.13	3 07/19/2	016 18:12	LJC
Nitrogen, Nitrite	UJ	<0.12 mg/L			EPA 300.0	0.75		0.12	2 07/19/2	016 18:12	LJC
Nitrogen, Total Kjeldahl		0.54 mg/L			SM 4500 NH3 G	0.40			07/22/2	016 10:10	EGD
рН		7.60 SU			CLIENT SPECIFIED	1.00			07/18/2	016 11:25	CUS
Phosphorus, Orthophosphate		0.15 mg/L			EPA 365.1	0.050		0.02	5 07/19/2	016 17:15	EGD
Phosphorus, Total		0.22 mg/L			EPA 365.1	0.046		0.005	07/22/2	016 12:35	EGD
Solids, Total Suspended		20 mg/L			USGS I-3765-85	1	1		07/20/2	016 15:43	CJL
Temperature		22.5 deg C			CLIENT SPECIFIED				07/18/2	2016 11:25	CUS
Sample: 05 5 Sampled By Customer								Sa	mpled	07/18/201	6@ 11:50

6071161

Third Rock Consultants
Marcia L. Wooton

Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit		MDL	Analys	is Date	Tech
Sample: 05 5 Sampled By Custome	۵r								S	ampled	07/18/201	.6@ 11:50
Flow by Calculation	7 1		0.35 CFS			EPA 600				07/18/2	2016 11:50	cus
Oxygen, Dissolved			8.00 mg/L			SM 4500 O G	0.10			07/18/2	2016 11:50	CUS
Specific Conductance at 2 °C	25		657 umhos/cm			CLIENT SPECIFIED				07/18/2	2016 11:50	CUS
Turbidity			<1 NTU			CLIENT SPECIFIED	1			07/18/2	2016 11:50	CUS
E. coli			528.0 MPN/100mL			SM9223B (Colilert-18)				07/18/2	2016 16:20	DZW
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		07/19/2	2016 13:21	DJR
Nitrogen, Ammonia			0.68 mg/L			SM 4500 NH3 G	0.25		0.1	4 07/21/2	2016 15:22	EGD
Nitrogen, Nitrate			2.1 mg/L			EPA 300.0	0.55		0.1	3 07/19/2	2016 18:26	LJC
Nitrogen, Nitrite		J1	0.36 mg/L			EPA 300.0	0.75		0.1	2 07/19/2	2016 18:26	LJC
Nitrogen, Total Kjeldahl			1.2 mg/L			SM 4500 NH3 G	0.40			07/22/2	2016 10:12	EGD
pН			7.70 SU			CLIENT SPECIFIED	1.00			07/18/2	2016 11:50	cus
Phosphorus, Orthophosph	nate		0.74 mg/L			EPA 365.1	0.050		0.02	5 07/19/2	2016 17:17	EGD
Phosphorus, Total			0.76 mg/L			EPA 365.1	0.046		0.005	1 07/22/2	2016 12:39	EGD
Solids, Total Suspended			3 mg/L			USGS I-3765-85	1	1		07/20/2	2016 15:43	CJL
Temperature			23.9 deg C			CLIENT SPECIFIED				07/18/2	2016 11:50	CUS

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

6071161

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)		t	- Thompson Will	Relinquished By:												Laboratory #	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days	Methodology Required: 40CFR Page 1	Collected By: Client -	Phone #: 859-977-2000		Name: Cane Run Wate	COC# Client Third Rock Consultants, LI
ny Samples & Report		M-18-16124	74816/1246	Date / Time	DD	10	9	8	7	6	5	4	3	2	1	Sample I.D.	IO3, CBOD5. I at earliest time				Part 136		Marcia L. vvooton		hed Based Plan	LLC
	Ē	(6)	Process of the Party of the Par		sw	WS	WS	sw	WS	SW	sw	ws	SW	SW	SW	Matrix.*				EDD Requ						
COC Copy - TRC Project File	ストをう			Received By:							7/18/16	7/18/16	7/8/6	7/15/16	7/18/14	Collection Date	1-100		* Droconic	EDD Required: X Yes _ No						
: Project Fil	6			By:	*****						1150	1125	キ	₹ 00	1000	Collection Time	1- Ice (All)	SA - H2SO4 ST - Na2S2O3	ative Code	es _No			parteton.			
8					G	ດ	ດ	<u>ه</u>	ດ	ଜ	<u>ه</u>	G	o		G	Grab / Comp		`			9)	- -	- - 1		CHAIN OF CUSTODY
COC (Y*/N	Υ* /2	Υ* *	Y*/N	Y* N	Y*/N	Υ*/N	Υ*/N	Y*/N	۲¥ Ż	Y*/N	YN			3		<u>~</u>	2	Ê	_ 		\ Q
COC Copy - TRC Laboratory				Date / Time		_	_	1		1	1	1		_	-,	#	CBOD5, TSS	Requ	32oz P	- Pr	S) MICROBAC	C	スヒスこう	J)) E
RC La				Time	<u>-</u> `	-3	->	-7		3	_	_	_	_		# of Containers Analysis	NO2, NO3	Requested Lab An	50 mL 3	* Preservation Ty - SA Container Size/T	D S	-)	_))	//	
orator		<u> </u>	ဂ		_		_	_	_	-7					_	ontainers Analysis	PT, TKN, NH3	ab Ai	320z P	ation] SA Size/	()	C		Ź		^
y Servi		ottles	ontain	ėmp. L	- <u>`</u>	- <u>`</u>	<u></u>		<u> </u>		_	1	1	<u> </u>	<u> </u>	Per	P ^o (* Field Filtered) E-Coli	alv	80z 40z	ype - st						
es Coc		Intact: (ers Pro	pon Re	F		 				_	.7.	ν.	+	٥.	Disso	lved Oxygen (mg/L)		Z	252402						
Services Coordinator		ottles Intact: (Yes / No)	ontainers Properly Preserved: (Yes / No)	Temp. Upon Receipt (C): 5, 2Measured By:			<u> </u>				67.6 67.6	7	5	<u>に</u>	4 80.	<u> </u>	lved Oxygen (%		>	Field Remarks:			_	4	mwo	PDF
		Ū	served:	52	-S	_					1	1	1=10w		7,	pH (S)n-Site	Weather Event:	ırks:	Lex	•	252		oton@	Analy
			: (Yes /	Measur	ee Fiel								1	is v	6		fic Conductance	/Field	Event:		ington 859-97	Suit	16 Reg	arcía L	thirdro	tical R
			o)	ed By:	See Field Notebook -						_	451 3		834		(umho		Meas	Dny	·	Lexington, KY 40503 859-977-2000	Suite 180	2526 Regency Road	Marcia L. Wooton	ckcon	8 pode
			70	13	book -	_					-	23.5	1	0.t.C		Temp	erature (° ^c)	On-Site/Field Measurements		,	10503		Road	j to -	mwooton@thirdrockconsultants.com	PDF Analytical Report & Invoice To:
				ν							0.0	0,0		0.0	0.0	Turbi	dity (N.T.U.)	nts	_Wet				ָרָ הַ)	ts.com	e To:
											0.35	1	,	7	1 ,	Flow	(cfs)									

6071171

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 07/25/2016

 Date Due
 07/27/2016

 Date Received
 07/18/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis C	OOC Qualif	fier Result Units	Min	Max	Method	Rpt Limit	MDL Analysis Date Tech
Sample: 01 6							Sampled 07/18/2016 @ 10
Sampled By Customer							
Flow by Calculation		0.039 CFS			EPA 600		07/18/2016 10:00 CU
Oxygen, Dissolved		2.53 mg/L			SM 4500 O G	0.10	07/18/2016 10:00 CU
Specific Conductance at 25 °C		706 umhos/cm			CLIENT SPECIFIED		07/18/2016 10:00 CU
Turbidity		5 NTU			CLIENT SPECIFIED	1	07/18/2016 10:00 CU
E. coli		379.0 MPN/100mL			SM9223B (Colilert-18)		07/18/2016 16:20 DZ
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0	2.0 07/19/2016 13:21 DJI
Nitrogen, Ammonia		4.3 mg/L			SM 4500 NH3 G	0.25	0.14 07/21/2016 15:24 EG
Nitrogen, Nitrate		1.8 mg/L			EPA 300.0	0.55	0.13 07/19/2016 18:40 LJC
Nitrogen, Nitrite	J1	0.36 mg/L			EPA 300.0	0.75	0.12 07/19/2016 18:40 LJC
Nitrogen, Total Kjeldahl		5.2 mg/L			SM 4500 NH3 G	0.40	07/22/2016 10:18 EG
рН		7.03 SU			CLIENT SPECIFIED	1.00	07/18/2016 10:00 CU
Phosphorus, Orthophosphate	e	1.1 mg/L			EPA 365.1	0.10	0.050 07/19/2016 17:40 EG
Phosphorus, Total		1.1 mg/L			EPA 365.1	0.091	0.010 07/22/2016 13:38 EG
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1 07/20/2016 15:43 CJI
Temperature		22.5 deg C			CLIENT SPECIFIED		07/18/2016 10:00 CU
Sample: 02 8 Sampled By Customer							Sampled 07/18/2016 @ 11
Specific Conductance at 25 °C		626 umhos/cm			CLIENT SPECIFIED		07/18/2016 11:00 CU
Turbidity		10 NTU			CLIENT SPECIFIED	1	07/18/2016 11:00 CU
E. coli		20.0 MPN/100mL			SM9223B (Colilert-18)		07/18/2016 16:20 DZ
CBOD, 5 Day		6.2 mg/L			SM 5210 B	5.0	2.0 07/19/2016 13:21 DJI
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25	0.14 07/21/2016 15:26 EG
Nitrogen, Nitrate		1.3 mg/L			EPA 300.0	0.55	0.13 07/19/2016 18:55 LJC
Nitrogen, Nitrite	UJ	<0.12 mg/L			EPA 300.0	0.75	0.12 07/19/2016 18:55 LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40	07/22/2016 10:20 EG
pH		6.89 SU			CLIENT SPECIFIED	1.00	07/18/2016 11:00 CU

6071171

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit		MDL	Analysi	s Date	Tech
Sample: 02 8 Sampled By Customer								Sa	mpled	07/18/201	6@ 11:00
Phosphorus, Orthophosphate		0.24 mg/L			EPA 365.1	0.050		0.02	5 07/19/2	016 17:20	EGD
Phosphorus, Total		0.54 mg/L			EPA 365.1	0.046		0.005	1 07/22/2	016 12:43	EGD
Solids, Total Suspended		21 mg/L			USGS I-3765-85	1	1		07/20/2	016 15:43	CJL
Temperature		17.4 deg C			CLIENT SPECIFIED				07/18/2	2016 11:00	CUS
Sample: 03 9 Sampled By Customer								Sa	mpled	07/18/201	6@ 12:00
Flow by Calculation		0.01 CFS			EPA 600				07/18/2	016 12:00	CUS
Oxygen, Dissolved		3.28 mg/L			SM 4500 O G	0.10			07/18/2	016 12:00	CUS
Specific Conductance at 25 °C		406 umhos/cm			CLIENT SPECIFIED					016 12:00	CUS
Turbidity		5 NTU			CLIENT SPECIFIED	1				016 12:00	CUS
E. coli		246.0 MPN/100mL			SM9223B (Colilert-18)					016 16:20	DZW
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0				016 13:21	DJR
Nitrogen, Ammonia		0.37 mg/L			SM 4500 NH3 G	0.25		0.1	4 07/21/2	016 15:28	EGD
Nitrogen, Nitrate	J1	0.26 mg/L			EPA 300.0	0.55		0.1	3 07/19/2	016 19:37	LJC
Nitrogen, Nitrite	J1	0.22 mg/L			EPA 300.0	0.75		0.1	2 07/19/2	016 19:37	LJC
Nitrogen, Total Kjeldahl		0.81 mg/L			SM 4500 NH3 G	0.40			07/22/2	016 10:22	EGD
pH		7.27 SU			CLIENT SPECIFIED	1.00			07/18/2	016 12:00	CUS
Phosphorus, Orthophosphate		0.24 mg/L			EPA 365.1	0.050		0.02	5 07/19/2	016 17:21	EGD
Phosphorus, Total		0.45 mg/L			EPA 365.1	0.046		0.005	1 07/22/2	016 12:44	EGD
Solids, Total Suspended		11 mg/L			USGS I-3765-85	1	1		07/20/2	016 15:43	CJL
Temperature		23.9 deg C			CLIENT SPECIFIED				07/18/2	2016 12:00	CUS
Sample: 04 DD Sampled By Customer								Sa	mpled	07/18/201	6
E. coli		256.0 MPN/100mL			SM9223B (Colilert-18)				07/18/2	016 16:20	DZW
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0		2.	07/19/2	016 13:21	DJR
Nitrogen, Ammonia		0.28 mg/L			SM 4500 NH3 G	0.25		0.1	4 07/21/2	016 15:30	EGD
Nitrogen, Nitrate	J1	0.25 mg/L			EPA 300.0	0.55		0.1	3 07/19/2	016 19:51	LJC
Nitrogen, Nitrite	J1	0.22 mg/L			EPA 300.0	0.75		0.1	2 07/19/2	016 19:51	LJC

6071171

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	MDL	Ana	alysis C	Date	Tech
Sample: 04 DD								\$	ample	d	07/18/201	6
Sampled By Customer Nitrogen, Total Kjeldahl			0.87 mg/L			SM 4500 NH3 G	0.40		07/	22/201	6 10:24	EGD
Phosphorus, Orthophospha	ate		0.24 mg/L			EPA 365.1	0.050	0.0	25 07/	19/201	6 17:22	EGD
Phosphorus, Total			0.48 mg/L			EPA 365.1	0.046	0.00	51 07/	22/201	6 12:45	EGD
Solids, Total Suspended			13 mg/L			USGS I-3765-85	1	1	07/	21/201	6 17:31	CJL

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

I isa Martin Δ M

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)	91.81.1 Colombia	Relinquished By: D		4			1								Laboratory# Sa	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days	Methodology Required: 40CFR Part 136	Collected By: Client - C 8/9 0	Project Contact (for laboratory): Marci Phone #: 859-977-2000	Project #: KY16-004	Project Name: Cane Run Watershed Based Plan	COC#
Imples & Report	16/1853		DD	io	9	8	Ĭ	6	-		_	<u> </u>		.,	Sample I.D.	CBOD5.			ıg Days	136		Marcia L. Wooton		Based Plan	
	V		SW	3	SW	WS	VVV	WS	JVV	399	000	746		CVAL.	Watrix *				EDD Required: X Yes _ No						
COC Copy - TRC Project File	V	Repeliyed By:	77876		118-16	7.18.16	1	1-18-16							Collection Date	I - Ice (All)	SA - H2SO4 ST - Na2S2O3		lired: ∑Ye						
Project File	m	By:	***		128	OOI		000							Collection G	(All)	Preservative Code SA - H2SO4 ST - Na2S2O3		s _ No	^		***************************************	4		
	+	-	ਚ ਪ	P	G ≺	G Y) K	G Y	4		9	9		يملسم	Grab/ Fi								l 		HAIN
OC Copy	1/1/6/1	Date	Y*/N 1	1	Y*/N 1	Y*/N 1	*131	Y*/N 1	-	*	714		*		YN Filed	CBOD5, TSS	Re	40CE		SYMICKOBAC		スしてつ	 -		CHAIN OF CUSTODY
IRC	16-15	Date/Time	ŀ	-	>	->	ļ			1	ı				# of Co Al	NO2, NO3		50 mL	*Preservation - sA Container Size/	i C) r) - .)	įÔ		"	JST0
aborat		Ţ	1	1	_	_	1	1	1	ļ.	-				of Containers Analysis	PT, TKN, NH3	d Lab	3207 P	rvation SA er Size	Ć				•	YO
Bottles)ry Serv	Contail	Temp.	1				-		-3	1	į				s Per	P ^o (* Field Filtered)	naly P	8oz	Туре		,	., •	-		
Intact:	ners Pro	Upon R	11		W	T I	+	1 2.	1	1	1	#			Diago	E-Coli	Ø D	40z ·	Fie						
Bottles Intact: (Yes / No)	Containers Properly Preserved: (Yes / No)	Temp. Upon Receipt (C): 444 Measured By:		1	04 25	K,		2.53 29.3	ł						Disso	lved Oxygen (%		Ş	Field Remarks:		•	-		mwo	
	served:		- Se	1	075	165		<u></u>	1	H					Satura pH (S	·	n-Site	Weather Event	ırks:	\ Lexi	-	hird Ro 252	Z	Analytoton@	
	(Yes/N	Measure	See Field Notebook		17 400 100 17	60 60		23 70	1	H			Щ	H	Speci	fic Conductance	On-Site/Field Measurements	Event-		Esinglon, Nr. 40303 859-977-2000	Suite 180	Third Rock Consultants, 2526 Regency Road	Marcia L. Wooton	mwooton@thirdrockconsultants.com	
	9	d By: /o	Notebo	H	6 239 339	26/17	-	00 X	1				+		(umho		heasur	٦ ٧		7-2000	180	nsultar incy Ro	Wootc	kconsu	
			Ř.	ł	3915	1861	lacksquare	5651	-		1			$\ $		erature (° ^c)	ements	Wet		000	n 0	nts, LLC oad		ultants.	
		(A		570) X	}	Ċ C					\prod	H		lity (N.T.U.)		≠				O		com	1
					0,0	/	J	039					'		Flow	(cfs)									

6081841

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 09/02/2016

 Date Due
 09/02/2016

 Date Received
 08/24/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis Oo	OC Qualifier	Result Units	Min	Max		Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 01 1 Sampled By Customer								Sa	mpled	08/24/201	6@ 9:15
Flow by Calculation		8.9 CFS			EPA 600				08/24/2	016 9:15	CUS
Specific Conductance at 25 °C		632 umhos/cm			CLIENT SPECIFIED				08/24/2	016 9:15	CUS
E. coli		325.5 MPN/100mL			SM9223B (Colilert-18)				08/24/2	016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		08/25/2	016 14:04	DJR
Nitrogen, Ammonia	UJ M2	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	016 11:02	EGD
Nitrogen, Nitrate		1.9 mg/L			EPA 300.0	0.11		0.02	5 08/25/2	016 16:50	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 08/25/2	016 16:50	LJC
Nitrogen, Total Kjeldahl		4.7 mg/L			SM 4500 NH3 G	0.40			08/31/2	016 11:25	EGD
рН		8.01 SU			CLIENT SPECIFIED	1.00			08/24/2	016 9:15	CUS
Phosphorus, Orthophosphate		0.28 mg/L			EPA 365.1	0.050		0.03	5 08/25/2	016 15:27	EGD
Phosphorus, Total	L2	0.37 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	016 17:36	EGD
Solids, Total Suspended		8 mg/L			USGS I-3765-85	1	1		08/25/2	016 17:11	CJL
Temperature		22.2 deg C			CLIENT SPECIFIED				08/24/2	016 9:15	CUS
Sample: 02 2								Sa	mpled	08/24/201	6@ 10:00
Sampled By Customer Flow by Calculation		12.6 CFS			EPA 600				08/24/2	016 10:00	CUS
Oxygen, Dissolved		7.18 mg/L			SM 4500 O G	0.10				016 10:00	CUS
Specific Conductance at 25		651 umhos/cm			CLIENT SPECIFIED	0.10				016 10:00	CUS
°C E. coli		2419.6 MPN/100mL			SM9223B (Colilert-18)					016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2			016 14:04	DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25	2	0.1		016 11:04	EGD
Nitrogen, Nitrate	03	2.1 mg/L			EPA 300.0	0.23				016 17:47	LJC
	UJ	<0.018 mg/L			EPA 300.0	0.11				016 17:47	LJC
Nitrogen, Nitrite	M2, R1	•			SM 4500 NH3 G			0.01		016 17:47	EGD
Nitrogen, Total Kjeldahl	ıvı∠, K l	0.73 mg/L 7.72 SU			CLIENT SPECIFIED	0.40					CUS
pH Control of the phosphore of the phos						1.00		0.03		016 10:00 016 15:28	EGD
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.03	00/20/2	010 15.28	EGD

6081841

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Analysis 000	Qualifier	Result Units	Min	Max		Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 02 2 Sampled By Customer								Sa	impled	08/24/201	.6@ 10:00
Phosphorus, Total	L2	0.44 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	2016 17:40	EGD
Solids, Total Suspended		15 mg/L			USGS I-3765-85	1	1		08/25/2	2016 17:11	CJL
Temperature		21.5 deg C			CLIENT SPECIFIED				08/24/2	2016 10:00	CUS
Sample: 03 4 Sampled By Customer								Sa	mpled	08/24/201	.6@ 10:35
Flow by Calculation		0.69 CFS			EPA 600				08/24/2	2016 10:35	CUS
Specific Conductance at 25		508 umhos/cm			CLIENT SPECIFIED				08/24/2	2016 10:35	CUS
°C E. coli		224.7 MPN/100mL			SM9223B (Colilert-18)				08/24/2	2016 15:37	LKE
CBOD, 5 Day		3.7 mg/L			SM 5210 B	2.0	2		08/25/2	2016 14:04	DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	2016 11:06	EGD
Nitrogen, Nitrate		0.45 mg/L			EPA 300.0	0.11		0.02	5 08/25/2	2016 18:01	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 08/25/2	2016 18:01	LJC
Nitrogen, Total Kjeldahl		0.91 mg/L			SM 4500 NH3 G	0.40			09/01/2	2016 15:51	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			08/24/2	2016 10:35	CUS
Phosphorus, Orthophosphate		0.22 mg/L			EPA 365.1	0.050		0.03	5 08/25/2	2016 15:29	EGD
Phosphorus, Total	L2	0.54 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	2016 17:41	EGD
Solids, Total Suspended		45 mg/L			USGS I-3765-85	1	1		08/25/2	2016 17:11	CJL
Temperature		20.9 deg C			CLIENT SPECIFIED				08/24/2	2016 10:35	CUS
Sample: 04 5 Sampled By Customer								Sa	mpled	08/24/201	.6@ 11:25
Flow by Calculation		4.3 CFS			EPA 600				08/24/2	2016 11:25	CUS
Oxygen, Dissolved		8.52 mg/L			SM 4500 O G	0.10			08/24/2	2016 11:25	CUS
Specific Conductance at 25 °C		630 umhos/cm			CLIENT SPECIFIED				08/24/2	2016 11:25	CUS
E. coli		2419.6 MPN/100mL			SM9223B (Colilert-18)				08/24/2	2016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		08/25/2	2016 14:04	DJR
Nitrogen, Ammonia		0.33 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	2016 11:08	EGD
Nitrogen, Nitrate		2.7 mg/L			EPA 300.0	0.11		0.02	5 08/25/2	2016 18:16	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 08/25/2	2016 18:16	LJC

6081841

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max		Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 04 5 Sampled By Customer								Sa	mpled	08/24/201	6@ 11:25
Nitrogen, Total Kjeldahl		0.52 mg/L			SM 4500 NH3 G	0.40			09/01/2	016 15:53	EGD
pH		7.59 SU			CLIENT SPECIFIED	1.00			08/24/2	016 11:25	CUS
Phosphorus, Orthophosphate		0.37 mg/L			EPA 365.1	0.050		0.03	5 08/25/2	016 15:30	EGD
Phosphorus, Total	L2	0.46 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	016 17:42	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		08/25/2	016 17:11	CJL
Temperature		20.6 deg C			CLIENT SPECIFIED				08/24/2	016 11:25	CUS
Sample: 05 6 Sampled By Customer								Sa	mpled	08/24/201	6@ 11:55
Flow by Calculation		3.5 CFS			EPA 600				08/24/2	016 11:55	CUS
Oxygen, Dissolved		7.20 mg/L			SM 4500 O G	0.10			08/24/2	016 11:55	CUS
Specific Conductance at 25 °C		652 umhos/cm			CLIENT SPECIFIED				08/24/2	016 11:55	CUS
E. coli		198.9 MPN/100mL			SM9223B (Colilert-18)				08/24/2	016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		08/25/2	016 14:04	DJR
Nitrogen, Ammonia		0.64 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	016 11:10	EGD
Nitrogen, Nitrate		2.6 mg/L			EPA 300.0	0.11		0.02	5 08/25/2	016 18:30	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 08/25/2	016 18:30	LJC
Nitrogen, Total Kjeldahl		1.1 mg/L			SM 4500 NH3 G	0.40			09/01/2	016 15:59	EGD
pH		7.30 SU			CLIENT SPECIFIED	1.00			08/24/2	016 11:55	CUS
Phosphorus, Orthophosphate		0.41 mg/L			EPA 365.1	0.050		0.03	5 08/25/2	016 15:34	EGD
Phosphorus, Total	L2	0.48 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	016 17:44	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		08/25/2	016 17:11	CJL
Temperature		20.2 deg C			CLIENT SPECIFIED				08/24/2	016 11:55	CUS
Sample: 06 DD Sampled By Customer								Sa	mpled	08/24/201	6
E. coli		240.0 MPN/100mL			SM9223B (Colilert-18)				08/24/2	016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		08/25/2	016 14:04	DJR
Nitrogen, Ammonia		0.26 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	016 11:12	EGD
Nitrogen, Nitrate		2.7 mg/L			EPA 300.0	0.11		0.02	5 08/25/2	016 18:44	LJC

6081841

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max		Rpt Limit	Cus Limit	MDL	Analysi	is Date	Tech
Sample: 06 DD Sampled By Customer								Sa	mpled	08/24/201	.6
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 08/25/2	2016 18:44	LJC
Nitrogen, Total Kjeldahl		0.72 mg/L			SM 4500 NH3 G	0.40			09/01/2	2016 16:01	EGD
Phosphorus, Orthophosphate		0.39 mg/L			EPA 365.1	0.050		0.03	5 08/25/2	2016 15:35	EGD
Phosphorus, Total	L2	0.46 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	2016 17:45	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		08/25/2	2016 17:11	CJL
Sample: 07 7 Sampled By Customer								Sa	mpled	08/24/201	.6@ 11:20
Flow by Calculation		0.05 CFS			EPA 600				08/24/2	2016 11:20	CUS
Oxygen, Dissolved		6.40 mg/L			SM 4500 O G	0.10			08/24/2	2016 11:20	CUS
Specific Conductance at 25 °C		628 umhos/cm			CLIENT SPECIFIED				08/24/2	2016 11:20	CUS
E. coli		218.7 MPN/100mL			SM9223B (Colilert-18)				08/24/2	2016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		08/25/2	2016 14:04	DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	2016 11:18	EGD
Nitrogen, Nitrate		1.9 mg/L			EPA 300.0	0.11		0.02	5 08/25/2	2016 18:58	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 08/25/2	2016 18:58	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/01/2	2016 16:03	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			08/24/2	2016 11:20	CUS
Phosphorus, Orthophosphate		0.13 mg/L			EPA 365.1	0.050		0.03	5 08/25/2	2016 15:36	EGD
Phosphorus, Total	L2	0.17 mg/L			EPA 365.1	0.050		0.04	6 08/29/2	2016 17:45	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		08/25/2	2016 17:11	CJL
Temperature		22.5 deg C			CLIENT SPECIFIED				08/24/2	2016 11:20	CUS
Sample: 08 8 Sampled By Customer								Sa	mpled	08/24/201	6@ 12:20
Oxygen, Dissolved		6.26 mg/L			SM 4500 O G	0.10			08/24/2	2016 12:20	CUS
Specific Conductance at 25 °C		634 umhos/cm			CLIENT SPECIFIED				08/24/2	2016 12:20	CUS
E. coli		151.5 MPN/100mL			SM9223B (Colilert-18)				08/24/2	2016 15:37	LKE
CBOD, 5 Day		2.3 mg/L			SM 5210 B	2.0	2		08/25/2	2016 14:04	DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/01/2	2016 11:20	EGD

6081841

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max		Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 08 8 Sampled By Customer								Sa	mpled	08/24/201	6@ 12:20
Nitrogen, Nitrate		1.5 mg/L			EPA 300.0	0.11		0.02	08/25/2	016 19:12	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.018	8 08/25/2	016 19:12	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/01/2	016 16:05	EGD
рН		7.35 SU			CLIENT SPECIFIED	1.00			08/24/2	016 12:20	CUS
Phosphorus, Orthophosphate		0.25 mg/L			EPA 365.1	0.050		0.03	08/25/2	016 15:37	EGD
Phosphorus, Total	L2	0.31 mg/L			EPA 365.1	0.050		0.046	08/29/2	016 17:46	EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		08/25/2	016 17:11	CJL
Temperature		19.6 deg C			CLIENT SPECIFIED				08/24/2	016 12:20	CUS
Sample: 09 9 Sampled By Customer								Sa	mpled	08/24/201	6@ 10:40
Flow by Calculation		0.12 CFS			EPA 600				08/24/2	016 10:40	CUS
Oxygen, Dissolved		3.80 mg/L			SM 4500 O G	0.10			08/24/2	016 10:40	CUS
Specific Conductance at 25 °C		432 umhos/cm			CLIENT SPECIFIED				08/24/2	016 10:40	CUS
E. coli		165.8 MPN/100mL			SM9223B (Colilert-18)				08/24/2	016 15:37	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		08/25/2	016 14:04	DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	09/01/2	016 11:22	EGD
Nitrogen, Nitrate		0.15 mg/L			EPA 300.0	0.11		0.02	08/25/2	016 19:26	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.018	8 08/25/2	016 19:26	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/01/2	016 16:07	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			08/24/2	016 10:40	CUS
Phosphorus, Orthophosphate		0.080 mg/L			EPA 365.1	0.050		0.03	08/25/2	016 15:37	EGD
Phosphorus, Total	L2	0.14 mg/L			EPA 365.1	0.050		0.046	08/29/2	016 17:47	EGD
Solids, Total Suspended		6 mg/L			USGS I-3765-85	1	1		08/25/2	016 17:11	CJL
Temperature		21.7 deg C			CLIENT SPECIFIED				08/24/2	016 10:40	CUS
Sample: 10 10 Sampled By Customer								Sa	mpled	08/24/201	6@ 9:15
Flow by Calculation		0.08 CFS			EPA 600				08/24/2	016 9:15	CUS
Oxygen, Dissolved		7.80 mg/L			SM 4500 O G	0.10			08/24/2	016 9:15	CUS

6081841

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min Ma	x	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
Sample: 10 10							Sa	mpled 08/24/2	016@ 9:15
Sampled By Customer		700		OLIENT OPEQUEED				00/04/0040 0 45	
Specific Conductance at 25 °C		703 umhos/cm		CLIENT SPECIFIED				08/24/2016 9:15	5 CUS
E. coli		547.5 MPN/100mL		SM9223B (Colilert-18)				08/24/2016 15:3	7 LKE
CBOD, 5 Day		<2.0 mg/L		SM 5210 B	2.0	2		08/25/2016 14:0	4 DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L		SM 4500 NH3 G	0.25		0.1	4 09/01/2016 11:2	4 EGD
Nitrogen, Nitrate		2.5 mg/L		EPA 300.0	0.11		0.02	5 08/25/2016 19:4	0 LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L		EPA 300.0	0.15		0.01	8 08/25/2016 19:4	0 LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L		SM 4500 NH3 G	0.40			09/01/2016 16:0	9 EGD
pH		7.20 SU		CLIENT SPECIFIED	1.00			08/24/2016 9:15	5 CUS
Phosphorus, Orthophosphate		0.35 mg/L		EPA 365.1	0.050		0.03	5 08/25/2016 15:3	8 EGD
Phosphorus, Total	L2	0.40 mg/L		EPA 365.1	0.050		0.04	6 08/29/2016 17:4	8 EGD
Solids, Total Suspended		<1 mg/L		USGS I-3765-85	1	1		08/25/2016 17:1	1 CJL
Temperature		17.9 deg C		CLIENT SPECIFIED				08/24/2016 9:15	cus
Sample: 11 11 Sampled By Customer							Sa	mpled 08/24/2	016@ 10:00
Flow by Calculation		0.24 CFS		EPA 600				08/24/2016 10:0	0 CUS
Oxygen, Dissolved		7.30 mg/L		SM 4500 O G	0.10			08/24/2016 10:0	0 CUS
Specific Conductance at 25 °C		688 umhos/cm		CLIENT SPECIFIED				08/24/2016 10:0	0 CUS
E. coli		101.7 MPN/100mL		SM9223B (Colilert-18)				08/24/2016 15:3	7 LKE
CBOD, 5 Day		<2.0 mg/L		SM 5210 B	2.0	2		08/25/2016 14:0	4 DJR
Nitrogen, Ammonia	UJ	<0.14 mg/L		SM 4500 NH3 G	0.25		0.1	4 09/01/2016 11:2	6 EGD
Nitrogen, Nitrate		0.50 mg/L		EPA 300.0	0.11		0.02	5 08/25/2016 20:2	3 LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L		EPA 300.0	0.15		0.01	8 08/25/2016 20:2	3 LJC
Nitrogen, Total Kjeldahl		0.42 mg/L		SM 4500 NH3 G	0.40			09/01/2016 16:1	1 EGD
pH		7.60 SU		CLIENT SPECIFIED	1.00			08/24/2016 10:0	0 CUS
Phosphorus, Orthophosphate		0.44 mg/L		EPA 365.1	0.050		0.03	5 08/25/2016 15:3	9 EGD
Phosphorus, Total	L2	0.52 mg/L		EPA 365.1	0.050		0.04	6 08/29/2016 17:4	9 EGD
Solids, Total Suspended		4 mg/L		USGS I-3765-85	1	1		08/25/2016 17:1	1 CJL
Temperature		20.9 deg C		CLIENT SPECIFIED				08/24/2016 10:0	0 CUS

6081841

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Analysis	0	OC Q	tualifier	Result Units	Min	Max	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 11	11								Sa	mpled	08/24/201	.6@ 10:00
Sampled By	Customer											

Qualifier Definitions

- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- L2 Lab control sample (LCS) recovery above upper Control Limit.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Laboratory</u>
Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

Analysis E. coli Method SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Z Client Third Rock Consultants, LLC
Project Name: Cane Run Watershed Based Plan 6081841 6081Methodology Required: Collected By: Client A Project #: KY16-004 Phone #: 859-977-2000 Project Contact (for laboratory): Marcia L. Wooton #200C# Report to MDLs for NH3, NO2, NO3, CBOD5 NOTE: OP and PT RL of 0.05. TSS RL of 1.5, Comments: for hold purposes. ***** Assume duplicate sampled at earliest time Turnaround Time Required: 7 Working Days Original COC To Laboratory (Accompany Samples & Report) Relinquished By: Laboratory # 40CFR Part 136 Sample I.D Date / Time 00 그 5 ထ ω တ 5 4 ω EDD Required: WS SW. S.S. WS WS WS WS WS WS WS Š SW. COC Copy - TRC Project File 8-24 万多 8-24 Received By: 75-24 Date ST - Na2S2O3 I - Ice (All) reservative Code X Yes 10:35 9:15 Collection Time 00.00 1:53 I No CHAIN OF CUSTODY Grab ⟨♥⟩ MICROBAC G 0 ດ G 0 G G ഗ CONSULTANTS Y*/N Y*/N Y*/N Y*/N ≺ 2 ≺ Ż Y*/N Y*/N ≺* Ž Υ*/N Υ* 2 ≺* ≥ ĭ₽ COC Copy - TRC Laboratory Services Coordinator 3202 P Date / Time Requested Lab Analysis CBOD5, TSS * Preservation Type Container Size/Type # of Containers Per 50 mL 32oz P NO2, NO3 PT, TKN, NH3 S Bottles Intact: (Yes / No) Containers Properly Preserved: (Yes) I No) ъ 8 2 Temp. Upon Receipt (C): 1 Weasured By: P O (* Field Filtered) ъ <u>4</u> တ္ E-Coli 7.18 Field Remarks: Dissolved Oxygen (mg/L) 91.18 mwooton@thirdrockconsultants.com 85.7 7.73 41.8 8.0 PDF Analytical Report & Invoice To: Dissolved Oxygen (% Weather Event: XDry Saturation) On-Site/Field Measurements Third Rock Consultants, LLC 65t Lexington, KY 40503 2526 Regency Road Marcia L. Wooton See Field Notebook pH (S.U.) 359-977-2000 Suite 180 5083 20.9 652 8,1% 6509 21.53 Specific Conductance (umho/cm) ຂຸດຊ Temperature (° ^C) Turbidity (N.T.U.) 0.6 43 00 <u>1</u> Flow (cfs)

> ි<u>ට)</u> Page 8 of 9

ort) COC Copy - TRC Project File COC Copy - TRC Labo	Date / Time Received By: Date / Time	DD SW ****** G Y*/N 1 1 1 1 1 - See Field Notebook -	SW 3/24/16 1000 G	1.2	1040 6 Y*N 1 1 1 1 1	G Y*N 1 1 1 1 1 600 64,4 7,35 634	1 1 1 1 1 6,4 - 7.5 678	6 SW G Y*N 1 1 1 1 1	5 SW G Y*N 1 1 1 1 1	4 SW G Y*N 1 1 1 1 1	SW G	2 SW G Y*N 1 1 1 1 1 1	SW G Y*N 1 1 1 1 1	Dissol Dissol Satura pH (S Specif (umho)	.U.) ic Conductance (cm) erature (° ^c)	SA - H2SO4 Requested Lab Analysis On-Site/Field Measurements	Comments: *Preservative Code 32oz P 50 mL 32oz P 60 P P P P Weather Event:DryWet	Turnaround Time Required: 7 Working Days	* Preservation Type Field Remarks:	Methodology Required: 40CFR Part 136 (型) MICROBAC Lexington, KY 40503 859-977-2000		2526 Regency Roa	Project #: KY16-004 Marcia L. Wooton Third Rock Consultants, LLC	Run Watershed Based Plan	Client: Third Rock Consultants, LLC PDF Analytical Report & Invoice To:
	New of the State o	tebook -		1 52			215 -								erature (^{o c}) ity (N.T.U.)	asurements				40503 000	ŏ	y Road	ooton ltants, LLC	onsultants.com	t & Invoice To:

6090457

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 09/16/2016

 Date Due
 09/19/2016

 Date Received
 09/08/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 01 7 Sampled By Customer								Si	ampled	09/08/201	.6@ 12:00
Flow by Calculation		No Flow CFS			EPA 600				09/08/2	016 12:00	CUS
Oxygen, Dissolved		4.95 mg/L			SM 4500 O G	0.10			09/08/2	016 12:00	CUS
Specific Conductance at 25 °C		540 umhos/cm			CLIENT SPECIFIED	_				016 12:00	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1				016 12:00	CUS
E. coli		98.8 MPN/100mL			SM9223B (Colilert-18)					016 15:09	LKE
CBOD, 5 Day		3.2 mg/L			SM 5210 B	2.0	2			016 6:17	DJR
Nitrogen, Ammonia	UJ L1, M2, R1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/2	016 10:48	EGD
Nitrogen, Nitrate	ÚJ	<0.025 mg/L			EPA 300.0	0.11		0.02	5 09/09/2	016 15:40	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 09/09/2	016 15:40	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/14/2	016 13:23	EGD
pH		7.28 SU			CLIENT SPECIFIED	1.00			09/08/2	016 12:00	CUS
Phosphorus, Orthophosphate		0.11 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	016 10:44	EGD
Phosphorus, Total		0.18 mg/L			EPA 365.1	0.050		0.01	2 09/15/2	016 10:51	EGD
Solids, Total Suspended		6 mg/L			USGS I-3765-85	1	1		09/09/2	016 14:46	CJL
Temperature		24.2 deg C			CLIENT SPECIFIED				09/08/2	016 12:00	CUS
Sample: 02 8 Sampled By Customer								S	ampled	09/08/201	.6 @ 10:40
Oxygen, Dissolved		6.73 mg/L			SM 4500 O G	0.10			09/08/2	016 10:40	CUS
Specific Conductance at 25 °C		702 umhos/cm			CLIENT SPECIFIED				09/08/2	016 10:40	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			09/08/2	016 10:40	CUS
E. coli		35.0 MPN/100mL			SM9223B (Colilert-18)				09/08/2	016 15:09	LKE
CBOD, 5 Day		9.2 mg/L			SM 5210 B	2.0	2		09/09/2	016 6:17	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/2	016 10:50	EGD
Nitrogen, Nitrate		1.4 mg/L			EPA 300.0	0.11		0.02	5 09/09/2	016 15:54	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 09/09/2	016 15:54	LJC
Nitrogen, Total Kjeldahl		1.1 mg/L			SM 4500 NH3 G	0.40			09/14/2	016 13:24	EGD

6090457

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 02 8 Sampled By Customer								Sa	mpled	09/08/201	6@ 10:40
рH		6.83 SU			CLIENT SPECIFIED	1.00			09/08/2	2016 10:40	CUS
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	2016 10:45	EGD
Phosphorus, Total		0.30 mg/L			EPA 365.1	0.050		0.01	2 09/15/2	2016 10:55	EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		09/09/2	2016 14:46	CJL
Temperature		22.8 deg C			CLIENT SPECIFIED				09/08/2	2016 10:40	CUS
Sample: 03 9 Sampled By Customer								Sa	mpled	09/08/201	6@ 12:25
Flow by Calculation		0.204 CFS			EPA 600				09/08/2	2016 12:25	CUS
Oxygen, Dissolved		4.40 mg/L			SM 4500 O G	0.10			09/08/2	2016 12:25	CUS
Specific Conductance at 25 °C		340 umhos/cm			CLIENT SPECIFIED				09/08/2	2016 12:25	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			09/08/2	2016 12:25	CUS
E. coli		325.5 MPN/100mL			SM9223B (Colilert-18)				09/08/2	2016 15:09	LKE
CBOD, 5 Day		2.0 mg/L			SM 5210 B	2.0	2		09/09/2	2016 6:17	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/2	2016 10:52	EGD
Nitrogen, Nitrate	J1	0.097 mg/L			EPA 300.0	0.11		0.02	5 09/09/2	2016 16:08	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 09/09/2	2016 16:08	LJC
Nitrogen, Total Kjeldahl		0.50 mg/L			SM 4500 NH3 G	0.40			09/15/2	2016 15:13	EGD
рН		7.30 SU			CLIENT SPECIFIED	1.00			09/08/2	2016 12:25	CUS
Phosphorus, Orthophosphate		0.089 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	2016 10:46	EGD
Phosphorus, Total		0.14 mg/L			EPA 365.1	0.050		0.01	2 09/15/2	2016 10:56	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		09/09/2	2016 14:46	CJL
Temperature		24.1 deg C			CLIENT SPECIFIED				09/08/2	2016 12:25	CUS
Sample: 04 10 Sampled By Customer								Sa	mpled	09/08/201	6@ 13:00
Flow by Calculation		0.085 CFS			EPA 600				09/08/2	2016 13:00	CUS
Oxygen, Dissolved		8.56 mg/L			SM 4500 O G	0.10			09/08/2	2016 13:00	CUS
Specific Conductance at 25 °C		745 umhos/cm			CLIENT SPECIFIED				09/08/2	2016 13:00	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			09/08/2	2016 13:00	CUS

6090457

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04 10 Sampled By Custo	omer								Sa	mpled	09/08/201	16@ 13:00
E. coli			648.8 MPN/100mL			SM9223B (Colilert-18)				09/08/20	16 15:09	LKE
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		09/09/20	16 6:17	DJR
Nitrogen, Ammonia		UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	1 09/15/20	16 10:54	EGD
Nitrogen, Nitrate			2.5 mg/L			EPA 300.0	0.11		0.02	5 09/09/20	16 16:23	LJC
Nitrogen, Nitrite		UJ	<0.018 mg/L			EPA 300.0	0.15		0.018	3 09/09/20	16 16:23	LJC
Nitrogen, Total Kjeldah	ıl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/15/20	16 15:15	EGD
pH			7.67 SU			CLIENT SPECIFIED	1.00			09/08/20	16 13:00	CUS
Phosphorus, Orthopho	sphate		0.38 mg/L			EPA 365.1	0.050		0.01	1 09/09/20	16 10:48	EGD
Phosphorus, Total			0.39 mg/L			EPA 365.1	0.050		0.012	2 09/15/20	16 10:58	EGD
Solids, Total Suspende	ed		2 mg/L			USGS I-3765-85	1	1		09/09/20	16 14:46	CJL
Temperature			20.5 deg C			CLIENT SPECIFIED				09/08/20	16 13:00	CUS
Sample: 05 11 Sampled By Custo	omer								Sa	mpled	09/08/201	16@ 13:20
Flow by Calculation			0.123 CFS			EPA 600				09/08/20	16 13:20	CUS
Oxygen, Dissolved			8.03 mg/L			SM 4500 O G	0.10			09/08/20	16 13:20	CUS
Specific Conductance	at 25		715 umhos/cm			CLIENT SPECIFIED				09/08/20	16 13:20	CUS
°C Turbidity			<1 NTU			CLIENT SPECIFIED	1			09/08/20	16 13:20	CUS
E. coli			55.6 MPN/100mL			SM9223B (Colilert-18)				09/08/20	16 15:09	LKE
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		09/09/20	16 6:17	DJR
Nitrogen, Ammonia		UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	1 09/15/20	16 10:56	EGD
Nitrogen, Nitrate			0.49 mg/L			EPA 300.0	0.11		0.02	5 09/09/20	16 17:05	LJC
Nitrogen, Nitrite		UJ	<0.018 mg/L			EPA 300.0	0.15		0.018	3 09/09/20	16 17:05	LJC
Nitrogen, Total Kjeldah	ıl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/15/20	16 15:17	EGD
рН			7.64 SU			CLIENT SPECIFIED	1.00			09/08/20	16 13:20	CUS
Phosphorus, Orthopho	sphate		0.44 mg/L			EPA 365.1	0.050		0.01	1 09/09/20	16 10:51	EGD
Phosphorus, Total			0.46 mg/L			EPA 365.1	0.050		0.012	2 09/15/20	16 10:59	EGD
Solids, Total Suspende	ed		2 mg/L			USGS I-3765-85	1	1		09/09/20	16 14:46	CJL
Temperature			24.0 deg C			CLIENT SPECIFIED				09/08/20	16 13:20	CUS

6090457

Third Rock Consultants Marcia L. Wooton

Date Due
Date Received

09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt	Cus	MDL	Analysis Date	Tech
							Limit	Limit			

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- L1 Lab Control Sample (LCS) recovery below lower Control Limit.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

 Laboratory
 Analysis

 Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site
 E. coli

Method SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)		TI TIMBUTH II	10 1/2/2	Relinquished By: Date / Time	DD	11	10	9	8	7	6	5 1	4	3	2	_	Laboratory # Sample I.D.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	Collected By: Client -	Phone #: 859-977-2000		Project Name: Cane Run Watershed Based Plan	COC# Client: Third Rock Consultants, LLC
			Ž,	Time	D sw	1 SW) sw	SW				WS	ws		WS	SW	le I.D. Matrix*	OD5.							Wooton		ed Plan	
COC CopyTRC Project File			O	Received By:	•	9/8	84/1	9/8	9/8	9/8			/	/		,	Collection Date	1 - Ice (Ail)	SA - H2SO4 ST - Na2S2O3	* Preserva	EDD Required: X Yes							
Project File				By:	****** G	(1 20 G	1;00 G	2:25 6	<i>(0:40</i> G	12:00 6	G	G	G	G	G	G	Collection Grab / Time Comp	(Ail)	2SO4 2S2O3	Preservative Code	s_No		®					CHA
0.000		101	のメル		Y*/N	Υ*/N	Υ* Σ	Υ *	Y*/N	Y*∕N	Y*/N	Y*/N	N,*A	Υ*/N	Υ*/N	∀* /N	YN		DISSUS.	3				C	ースしスつ) —] _	1	CHAIN OF CUSTODY
opy - T				Date / Time			_		1	-1	3	1	1	_		1	#of	CBOD5, TSS 	Reque	32oz P 5	- Con	*Pn	RO	C	Z	֖֖֖֖֖֖֖֖֖֓֞֞֞֞֞֞֞֞֞֞֞֓֞֞֞֞֓֓֓֓֓֓֞֞֓֓֓֡֞֝֞֓֡֓֡֝)	Sus
COC Copy - TRC Laboraton		0	Ž V	îme	_	_	-	<u> </u>	1		1		د				# of Containers Analysis	NO2, NO3	Requested Lab Analysis	50 mL 32c	- SA Container Size/	* Preservation 1	3AC	A	7))	1	/ GOT
	Ш	<u></u>	<u>၂</u>	Te	<u> </u>				1 1	1	1	1	1	1	<u></u>	1		PT, TKN, NH3 P O (* Field Filtered)	ab Ana	32oz P 8oz P		ion Ty	*	U	不			
Service		ttles in	ntainer	mp. Up		_			>	- 1					_	_	Per	E-Coli	llysis	7 40Z	- st	ype						
Services Coordinator		Bottles Intact: (Yes / No)	s Prope	Temp. Upon Receipt (C): 🏂 🔏	,	% 0,3	158	4.4	6.73	4.95							Disso	ved Oxygen (mg/L)				Field I	,					
nator	,	s / No)	d Presi	pt (C):		78.7	8	533	805	61.3		-					Disso Satura	ved Oxygen (% tion)	Or	We		Field Remarks			_	<u> </u>	mwoot	PDF /
			hed://		- See	7.64	<u>ر</u> و رو	بر س	g	7.28							pH (S	S.U.)	1-Site/F	ather E		S:	Lexin		2526	Mar	on@th	nalytic
			Containers Properly Preserved (Yes) No.	Measured By: பிரி	See Field Notebook -			340									Speci (umho	fic Conductance /cm)	On-Site/Field Measurements	Weather Event: X_Dry			Lexington, KY 40503 859-977-2000	Suite 180	Iniro Rock Consultants, LLC 2526 Regency Road	Marcia L. Wooton	mwooton@thirdrockconsultants.com	PDF Analytical Report & Invoice To:
		-		3y: 1) 1/1	otebook	FY.8123.96	15:02	24.1	70232281	5 24.22							Temp	erature (° ^c)	asurem	ı			Y 4050: 2000	88	uitants, vy Road	vocton	onsulta	π& Invo
				<u> </u>		0.0	0,0	0,0	0.0	0.0							Turbio	lity (N.T.U.)	ents	Wet			ω		_ [5	ınts.cor	yice To:
						0, 123	0,088	0,204	NA	0.0							Flow	cfs) •									בו	

6090459

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 09/20/2016

 Date Due
 09/19/2016

 Date Received
 09/08/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 01 1 Sampled By Customer								Sa	mpled	09/08/201	16@ 10:20
Flow by Calculation		1.9 CFS			EPA 600				09/08/20	16 10:20	CUS
Dxygen, Dissolved		6.66 mg/L			SM 4500 O G	0.10			09/08/20	16 10:20	CUS
Specific Conductance at 25		640 umhos/cm			CLIENT SPECIFIED				09/08/20	16 10:20	CUS
Turbidity		4 NTU			CLIENT SPECIFIED	1			09/08/20	16 10:20	CUS
E. coli		193.5 MPN/100mL			SM9223B (Colilert-18)				09/08/20	16 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/20	16 11:24	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	09/15/20	16 10:58	EGD
Nitrogen, Nitrate		0.80 mg/L			EPA 300.0	0.11		0.025	09/09/20	16 17:19	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.018	09/09/20	16 17:19	LJC
Nitrogen, Total Kjeldahl		0.55 mg/L			SM 4500 NH3 G	0.40			09/15/20	16 15:23	EGD
Н		7.61 SU			CLIENT SPECIFIED	1.00			09/08/20	16 10:20	CUS
Phosphorus, Orthophosphate		0.25 mg/L			EPA 365.1	0.050		0.011	09/09/20	16 10:53	EGD
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.012	09/16/20	16 9:46	EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		09/09/20	16 15:55	CJL
Temperature		24.4 deg C			CLIENT SPECIFIED				09/08/20	16 10:20	CUS
Sample: 02 2 Sampled By Customer								Sa	mpled	09/08/201	16@ 11:05
Flow by Calculation		1.5 CFS			EPA 600				09/08/20	16 11:05	CUS
Oxygen, Dissolved		8.03 mg/L			SM 4500 O G	0.10			09/08/20	16 11:05	CUS
Specific Conductance at 25 C		671 umhos/cm			CLIENT SPECIFIED				09/08/20	16 11:05	CUS
Γurbidity		5 NTU			CLIENT SPECIFIED	1			09/08/20	16 11:05	CUS
E. coli		1553.1 MPN/100mL			SM9223B (Colilert-18)				09/08/20	16 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/20	16 11:24	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	09/15/20	16 11:00	EGD
Nitrogen, Nitrate		1.1 mg/L			EPA 300.0	0.11		0.025	09/09/20	16 17:33	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.018	09/09/20	16 17:33	LJC

6090459

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis 000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 2 Sampled By Customer								S	ampled	09/08/201	.6@ 11:05
Nitrogen, Total Kjeldahl		0.68 mg/L			SM 4500 NH3 G	0.40			09/15/2	2016 15:25	EGD
pH		7.33 SU			CLIENT SPECIFIED	1.00			09/08/2	2016 11:05	CUS
Phosphorus, Orthophosphate		0.24 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	2016 10:53	EGD
Phosphorus, Total		0.31 mg/L			EPA 365.1	0.050		0.01	2 09/16/2	2016 9:47	EGD
Solids, Total Suspended		7 mg/L			USGS I-3765-85	1	1		09/09/2	2016 15:55	CJL
Temperature		24.5 deg C			CLIENT SPECIFIED				09/08/2	2016 11:05	CUS
Sample: 03 3 Sampled By Customer								Si	ampled	09/08/201	.6@ 11:35
Flow by Calculation		<0.01 CFS			EPA 600				09/08/2	2016 11:35	CUS
Oxygen, Dissolved		7.95 mg/L			SM 4500 O G	0.10			09/08/2	2016 11:35	CUS
Specific Conductance at 25 °C		522 umhos/cm			CLIENT SPECIFIED				09/08/2	2016 11:35	CUS
Turbidity		6 NTU			CLIENT SPECIFIED	1			09/08/2	2016 11:35	CUS
E. coli		218.7 MPN/100mL			SM9223B (Colilert-18)				09/08/2	2016 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/2	2016 11:24	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/2	2016 11:02	EGD
Nitrogen, Nitrate		1.2 mg/L			EPA 300.0	0.11		0.02	5 09/09/2	2016 17:47	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 09/09/2	2016 17:47	LJC
Nitrogen, Total Kjeldahl		0.43 mg/L			SM 4500 NH3 G	0.40			09/15/2	2016 15:27	EGD
pH		7.57 SU			CLIENT SPECIFIED	1.00			09/08/2	2016 11:35	CUS
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	2016 10:54	EGD
Phosphorus, Total		0.33 mg/L			EPA 365.1	0.050		0.01	2 09/16/2	2016 9:48	EGD
Solids, Total Suspended		14 mg/L			USGS I-3765-85	1	1		09/09/2	2016 15:55	CJL
Temperature		21.0 deg C			CLIENT SPECIFIED				09/08/2	2016 11:35	CUS
Sample: 04 4 Sampled By Customer								S	ampled	09/08/201	6@ 12:00
Flow by Calculation		<0.01 CFS			EPA 600				09/08/2	2016 12:00	CUS
Oxygen, Dissolved		6.90 mg/L			SM 4500 O G	0.10			09/08/2	2016 12:00	CUS

6090459

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis 000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04 4								Sa	mpled	09/08/201	6@ 12:00
Sampled By Customer											
Specific Conductance at 25 °C		590 umhos/cm			CLIENT SPECIFIED				09/08/20)16 12:00	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			09/08/20)16 12:00	CUS
E. coli		27.9 MPN/100mL			SM9223B (Colilert-18)				09/08/20	16 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/20)16 11:24	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/20)16 11:04	EGD
Nitrogen, Nitrate		0.66 mg/L			EPA 300.0	0.11		0.02	5 09/09/20	16 18:02	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	3 09/09/20)16 18:02	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			09/15/20	16 15:29	EGD
pH		7.30 SU			CLIENT SPECIFIED	1.00			09/08/20	16 12:00	CUS
Phosphorus, Orthophosphate		0.18 mg/L			EPA 365.1	0.050		0.01	1 09/09/20	16 10:55	EGD
Phosphorus, Total		0.19 mg/L			EPA 365.1	0.050		0.01	2 09/16/20)16 9:52	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		09/09/20	16 15:55	CJL
Temperature		22.1 deg C			CLIENT SPECIFIED				09/08/20)16 12:00	CUS
Sample: 05 5 Sampled By Customer								Sa	mpled	09/08/201	6@ 12:20
Flow by Calculation		0.5 CFS			EPA 600				09/08/20	16 12:20	CUS
Oxygen, Dissolved		10.31 mg/L			SM 4500 O G	0.10			09/08/20)16 12:20	CUS
Specific Conductance at 25 °C		659 umhos/cm			CLIENT SPECIFIED				09/08/20)16 12:20	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			09/08/20)16 12:20	CUS
E. coli		231.0 MPN/100mL			SM9223B (Colilert-18)				09/08/20	16 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/20)16 11:24	DJR
Nitrogen, Ammonia	J1 L1	0.15 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/20)16 11:11	EGD
Nitrogen, Nitrate		3.2 mg/L			EPA 300.0	0.11		0.02	5 09/09/20	16 18:16	LJC
Nitrogen, Nitrite	J1	0.035 mg/L			EPA 300.0	0.15		0.01	3 09/09/20)16 18:16	LJC
Nitrogen, Total Kjeldahl		0.46 mg/L			SM 4500 NH3 G	0.40			09/15/20)16 15:31	EGD
pН		7.63 SU			CLIENT SPECIFIED	1.00			09/08/20)16 12:20	CUS
Phosphorus, Orthophosphate		0.51 mg/L			EPA 365.1	0.050		0.01	1 09/09/20)16 10:56	EGD
Phosphorus, Total		0.54 mg/L			EPA 365.1	0.050		0.01	2 09/16/20)16 9:53	EGD

6090459

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis	OOC Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 05 5 Sampled By Customer								Sa	mpled	09/08/201	16@ 12:20
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		09/09/2	016 15:55	CJL
Temperature		23.9 deg C			CLIENT SPECIFIED				09/08/2	016 12:20	CUS
Sample: 06 6 Sampled By Customer								Sa	mpled	09/08/201	16@ 13:00
Flow by Calculation		0.5 CFS			EPA 600				09/08/2	016 13:00	CUS
Oxygen, Dissolved		5.33 mg/L			SM 4500 O G	0.10			09/08/2	016 13:00	CUS
Specific Conductance at 25 °C		679 umhos/cm			CLIENT SPECIFIED				09/08/2	016 13:00	CUS
Turbidity		6 NTU			CLIENT SPECIFIED	1			09/08/2	016 13:00	CUS
E. coli		387.3 MPN/100mL			SM9223B (Colilert-18)				09/08/2	016 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/2	016 11:24	DJR
Nitrogen, Ammonia	L1	2.0 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/2	016 11:12	EGD
Nitrogen, Nitrate		2.9 mg/L			EPA 300.0	0.11		0.02	5 09/09/2	016 18:30	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 09/09/2	016 18:30	LJC
Nitrogen, Total Kjeldahl		2.3 mg/L			SM 4500 NH3 G	0.40			09/15/2	016 15:33	EGD
рН		7.39 SU			CLIENT SPECIFIED	1.00			09/08/2	016 13:00	CUS
Phosphorus, Orthophospha	te	0.71 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	016 10:57	EGD
Phosphorus, Total		0.74 mg/L			EPA 365.1	0.050		0.01	2 09/16/2	016 9:54	EGD
Solids, Total Suspended		41 mg/L			USGS I-3765-85	1	1		09/09/2	016 15:55	CJL
Temperature		22.2 deg C			CLIENT SPECIFIED				09/08/2	016 13:00	CUS
Sample: 07 DD Sampled By Customer								Sa	mpled	09/08/201	16
E. coli		186.0 MPN/100mL			SM9223B (Colilert-18)				09/08/2	016 15:09	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		09/09/2	016 11:24	DJR
Nitrogen, Ammonia	UJ L1	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 09/15/2	016 11:14	EGD
Nitrogen, Nitrate		3.2 mg/L			EPA 300.0	0.11		0.02	5 09/09/2	016 18:44	LJC
Nitrogen, Nitrite	UJ	<0.018 mg/L			EPA 300.0	0.15		0.01	8 09/09/2	016 18:44	LJC
Nitrogen, Total Kjeldahl		0.47 mg/L			SM 4500 NH3 G	0.40			09/20/2	016 13:06	DJR
Phosphorus, Orthophospha	te	0.52 mg/L			EPA 365.1	0.050		0.01	1 09/09/2	016 10:58	EGD

6090459

Third Rock Consultants Marcia L. Wooton

Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 07 DD Sampled By Custo									Sa	mpled	09/08/201	6
Phosphorus, Total			0.54 mg/L			EPA 365.1	0.050		0.01	2 09/16/2	016 9:55	EGD
Solids, Total Suspende	d		5 mg/L			USGS I-3765-85	1	1		09/09/2	016 15:55	CJL

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- L1 Lab Control Sample (LCS) recovery below lower Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

	18/2/ 9/8/2016 14	Relinquished By: Date / Time	DD	. 11	10	ę	σ	7	Ō	5	4	ω	2		Laboratory.# Sample LD.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.	NO HI	Comments:	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	Collected By: Client - , O/sa, S, o	Project Contact (for laboratory): Marcia L. Wooton	Project #: KY16-004	Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	COC#
	126 X		SW	WS	WS	WS	WS	SW	WS	WS	SW	WS	WS	WS	Matrix*	<u></u>			EDD Re			120	'n			
He	076	Received By:	7/8/14	Ť				*14.0	3/1/2/L	S/8/16	9/8/16	3//X//E	7/8/16	7/8/16	Collection Date	1-10	SA - ST - N	* Preserv	EDD Required: X Yes							
		1By:	****						8	1220	000	Ž N	200	020	Collection Time	1 - Ice (All)	SA - H2SO4 ST - Na2S2O3	Preservative Code	es _ No							100 May 100 Ma
			G	L	ଦ	6	<u>0</u>	G	G	G	G	G	ြ	ြ	Comp			W			0					CHAIN OF CUSTODY
,			Y*/N	∀ */≥	Υ*/X	Υ*/N	Y*/N	Υ*/N	Υ _* Σ	Y*/N	Y*/N	Υ*/N	∀ *⁄2	Υ* Σ	¥ Fird		(C)	3			\ \frac{3}{0}	0	H	~		N Q
	9105/8	Date / Time	1		-3						>	-1		>	# O	CBOD5, TSS	Requ	320z P	Co '	* P	MICROBAC	SUL	文	J))	S
		Time	1							-1		.1			# of Containers Analysis	NO2, NO3	Requested Lab Analysis	50 mL	- SA Container Size/I	* Preservation Type	B A	TAI	2) O
	426		_		-	-	_	_		.1	1				ontainers Analysis	PT, TKN, NH3	Lab A	320z P	SA Size/	ation	Ű	N T S	大			X
3ottles	Contair	íетр. l	1		3					3		>		3	Per	P O (* Field Filtered)	nalysi	802 P	ype '	Туре						
Intact:	ers Pro	Jpon Re	>		3				- 公 3	1 10.31	1 (0,	1 7,95		5	Disso	E-Coli lved Oxygen (mg/L)	9	402 P	झ	Fie						
Bottles Intact: (Yes / No)	Containers Properly Preserved: (Yes) No)	Temp. Upon Receipt (C): 💆		<u> </u>		_		_	├	A. 15000.	2	~0	8,03 q	80.00		lved Oxygen (mg/L)				Field Remarks:					₽ ₹ ₹	J
ō	reserve	o): <u>57</u>	,		<u> </u>	_		_	(1)	267	t	N V	0	1/2		tion)	On-S	Weath		narks:	Ľ		Third		ooton:	
(id:	Meas	See Fi						7.53	763	.₹ ₩	100	7, 33	3	pH (S	S.U.)	ite/Fie	Weather Event:			exingtong 859-	S ₁ 020 7	Rock	Marcia	a lytical @third	
·	No)	Measured By:	eld No						でい	657	570	KI.	170	640	Speci (umho	fic Conductance /cm)	ld Me;				ington, KY 40: 859-977-2000	Suite 180	Const	Marcia L. Wooton	Repor	
		y: Jite	See Field Notebook -						22.22	13.73	22,1	20.97	24.45	18	Temp	eraturę (° ^c)	On-Site/Field Measurements	Dry			Lexington, KY 40503 859-977-2000	Suite 180	Third Rock Consultants, LLC	ooton	PDF Analytical Report & Invoice To: mwooton@thirdrockconsultants.com	
		1	'						<u>~</u>	10		400	50	1 CV	Turbio	lity (N.T.U.)	Tents	Wet			ω	2	, FC		ants.co	
									0 5 1	0.5	7 <0,01	10.0/	1,5	1, 9	Flow ((cfs)					-				ă º	

6101546

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 11/03/2016

 Date Due
 11/03/2016

 Date Received
 10/25/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis [Date	Tech
Sample: 01 1 Sampled By Customer								San	npled	10/25/201	6@ 9:35
Flow by Calculation		1.53 CFS			EPA 600				10/25/201	6 9:35	CUS
Oxygen, Dissolved		9.06 mg/L			SM 4500 O G	0.10			10/25/201	6 9:35	CUS
Specific Conductance at 25 °C		634 umhos/cm			CLIENT SPECIFIED				10/25/201	6 9:35	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			10/25/201	6 9:35	CUS
E. coli		166.4 MPN/100mL			SM9223B (Colilert-18)				10/25/201	6 13:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		10/26/201	6 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	11/02/201	6 12:24	EGD
Nitrogen, Nitrate		0.17 mg/L			EPA 300.0	0.11		0.025	10/26/201	6 13:48	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L			EPA 300.0	0.15		0.075	10/26/201	6 13:48	LJC
Nitrogen, Total Kjeldahl		0.48 mg/L			SM 4500 NH3 G	0.40			11/02/201	6 16:53	EGD
рН		7.81 SU			CLIENT SPECIFIED	1.00			10/25/201	6 9:35	CUS
Phosphorus, Orthophosphate		0.27 mg/L			EPA 365.1	0.050		0.011	10/26/201	6 15:29	EGD
Phosphorus, Total		0.30 mg/L			EPA 365.1	0.050		0.012	10/28/201	6 13:00	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		10/26/201	6 17:41	CJL
Temperature		11.1 deg C			CLIENT SPECIFIED				10/25/201	6 9:35	CUS
Sample: 02 2 Sampled By Customer								San	npled	10/25/201	6@ 10:15
Flow by Calculation		1.12 CFS			EPA 600				10/25/201	6 10:15	CUS
Oxygen, Dissolved		8.45 mg/L			SM 4500 O G	0.10			10/25/201	6 10:15	CUS
Specific Conductance at 25 °C		704 umhos/cm			CLIENT SPECIFIED				10/25/201	6 10:15	CUS
Turbidity		8 NTU			CLIENT SPECIFIED	1			10/25/201	6 10:15	CUS
E. coli		613.1 MPN/100mL			SM9223B (Colilert-18)				10/25/201	6 13:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		10/26/201	6 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.14	11/02/201	6 12:26	EGD
Nitrogen, Nitrate		0.68 mg/L			EPA 300.0	0.11		0.025	10/26/201	6 14:02	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L			EPA 300.0	0.15		0.075	10/26/201	6 14:02	LJC

6101546

Third Rock Consultants Steve Evans

Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Analysis 000	C Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 02 2 Sampled By Customer								Sa	mpled	10/25/201	6@ 10:15
Nitrogen, Total Kjeldahl		0.44 mg/L			SM 4500 NH3 G	0.40			11/02/20	16 16:55	EGD
рН		7.75 SU			CLIENT SPECIFIED	1.00			10/25/20	16 10:15	CUS
Phosphorus, Orthophosphate		0.18 mg/L			EPA 365.1	0.050		0.01	1 10/26/20	16 15:30	EGD
Phosphorus, Total		0.24 mg/L			EPA 365.1	0.050		0.01	2 10/28/20)16 13:01	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		10/26/20)16 17:41	CJL
Temperature		10.3 deg C			CLIENT SPECIFIED				10/25/20	16 10:15	CUS
Sample: 03 4 Sampled By Customer								Sa	mpled	10/25/201	6@ 10:50
Flow by Calculation		Not CFS Measured			EPA 600				10/25/20	16 10:50	CUS
Oxygen, Dissolved		8.70 mg/L			SM 4500 O G	0.10			10/25/20	16 10:50	CUS
Specific Conductance at 25		560 umhos/cm			CLIENT SPECIFIED				10/25/20	16 10:50	CUS
°C Turbidity		5 NTU			CLIENT SPECIFIED	1			10/25/20	16 10:50	CUS
E. coli		435.2 MPN/100mL			SM9223B (Colilert-18)				10/25/20	16 13:20	LKE
CBOD, 5 Day		2.7 mg/L			SM 5210 B	2.0	2		10/26/20	16 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 11/02/20	16 12:28	EGD
Nitrogen, Nitrate		0.31 mg/L			EPA 300.0	0.11		0.02	5 10/26/20)16 14:16	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L			EPA 300.0	0.15		0.07	5 10/26/20)16 14:16	LJC
Nitrogen, Total Kjeldahl		0.45 mg/L			SM 4500 NH3 G	0.40			11/02/20	16 16:57	EGD
рН		7.65 SU			CLIENT SPECIFIED	1.00			10/25/20	16 10:50	CUS
Phosphorus, Orthophosphate		0.13 mg/L			EPA 365.1	0.050		0.01	1 10/26/20)16 15:31	EGD
Phosphorus, Total		0.19 mg/L			EPA 365.1	0.050		0.01	2 10/28/20	16 13:03	EGD
Solids, Total Suspended		44 mg/L			USGS I-3765-85	1	1		10/26/20)16 17:41	CJL
Temperature		9.5 deg C			CLIENT SPECIFIED				10/25/20	16 10:50	CUS
Sample: 04 5 Sampled By Customer								Sa	mpled	10/25/201	6@ 11:35
Flow by Calculation		0.13 CFS			EPA 600				10/25/20)16 11:35	CUS
Oxygen, Dissolved		6.28 mg/L			SM 4500 O G	0.10			10/25/20)16 11:35	CUS

6101546

Third Rock Consultants Steve Evans

Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 04 5								Sa	mpled	10/25/201	.6@ 11:35
Sampled By Customer		740			OLIENT ODEOLEIED				40/05/0	040 44 05	0110
Specific Conductance at 25 °C		713 umhos/cm			CLIENT SPECIFIED				10/25/2	016 11:35	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			10/25/2	016 11:35	CUS
E. coli		579.4 MPN/100mL			SM9223B (Colilert-18)				10/25/2	016 13:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		10/26/2	016 14:29	EGD
Nitrogen, Ammonia	J1	0.22 mg/L			SM 4500 NH3 G	0.25		0.1	4 11/02/2	016 12:30	EGD
Nitrogen, Nitrate		2.7 mg/L			EPA 300.0	0.11		0.02	5 10/26/2	016 14:31	LJC
Nitrogen, Nitrite	J1	0.14 mg/L			EPA 300.0	0.15		0.07	5 10/26/2	016 14:31	LJC
Nitrogen, Total Kjeldahl		0.46 mg/L			SM 4500 NH3 G	0.40			11/02/2	016 16:59	EGD
pH		6.28 SU			CLIENT SPECIFIED	1.00			10/25/2	016 11:35	CUS
Phosphorus, Orthophosphate		0.86 mg/L			EPA 365.1	0.050		0.01	1 10/26/2	016 15:32	EGD
Phosphorus, Total		0.84 mg/L			EPA 365.1	0.050		0.01	2 10/28/2	016 13:04	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		10/26/2	016 17:41	CJL
Temperature		10.7 deg C			CLIENT SPECIFIED				10/25/2	016 11:35	CUS
Sample: 05 6 Sampled By Customer								Sa	mpled	10/25/201	6@ 11:50
Flow by Calculation		0.43 CFS			EPA 600				10/25/2	016 11:50	CUS
Oxygen, Dissolved		6.23 mg/L			SM 4500 O G	0.10			10/25/2	016 11:50	CUS
Specific Conductance at 25 °C		727 umhos/cm			CLIENT SPECIFIED				10/25/2	016 11:50	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			10/25/2	016 11:50	CUS
E. coli		>>2419.6 MPN/100mL			SM9223B (Colilert-18)				10/25/2	016 13:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		10/26/2	016 14:29	EGD
Nitrogen, Ammonia		2.0 mg/L			SM 4500 NH3 G	0.25		0.1	4 11/02/2	016 12:32	EGD
Nitrogen, Nitrate		1.9 mg/L			EPA 300.0	0.11		0.02	5 10/26/2	016 14:45	LJC
Nitrogen, Nitrite		0.43 mg/L			EPA 300.0	0.15		0.07	5 10/26/2	016 14:45	LJC
Nitrogen, Total Kjeldahl		2.7 mg/L			SM 4500 NH3 G	0.40			11/02/2	016 17:05	EGD
рН		7.44 SU			CLIENT SPECIFIED	1.00			10/25/2	016 11:50	cus
Phosphorus, Orthophosphate		1.0 mg/L			EPA 365.1	0.10		0.02	2 10/26/2	016 15:56	EGD
Phosphorus, Total		1.1 mg/L			EPA 365.1	0.10		0.02	3 10/28/2	016 14:13	EGD

6101546

Third Rock Consultants Steve Evans

Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
	6								Sa	ampled 10/25/20	16@ 11:50
Sampled By C	Customer										
Solids, Total Suspe	ended		3 mg/L			USGS I-3765-85	1	1		10/26/2016 17:41	CJL
Temperature			12.4 deg C			CLIENT SPECIFIED				10/25/2016 11:50	CUS

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)		10 May 16	A Religiquished By:													Laboratory#	Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	NOTE:	Comments:	Turnaround Time Required: 7 Working Days	Methodology Required: 40CFR Part 136	Collected By: Client -	Project Contact (for laboratory): C Phone #: 859-977-2000	Project #: KY16-004	Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	©00#
ny Samples & Report	1 1	104.51/101-52-9	Date / Jime	DD	11	10	9	œ	7	6	5	4	အ	2	1	Sample I.D.	O3, CBOD5. at earliest time			:	art 136		Cory Bloyd		_C ned Based Plan	
		グラグ		SW	SW	WS	SW	WS	SW	SW	WS	SW	sw -	SW	SW	Matrix.*	·			EDD Required: X Yes _ No						
COC Copy - TRC Project File		15 EL	Received By:							<u></u>		10/35/11		5.	11/2610	Collection Date		SA - H	שר	ired: ∑Ye						
Project Fil		7	By;	*****						[(;50	11735	(0:50)		10:15	9:35	Collection Time		SA - H2SO4 ST - Na2S2O3 I - Ice (All)	reservative Code	esNo			ann ac c	4	•	
	:			ი ≺	G Y	ം ≺	ം ≺	ດ ≺	و ۲	ം ≺	G Y	G Y	G Ү	ഒ ≺	G Y	Grab / F Comp	•		,	:	₹)	こして	i)		CHAIN OF CUSTODY
COC Copy - TRC Laboraton		0	Da	Y*/N	Y*/N 1	Y*/N	Y*/N	ì	Y*/N	Y*/N 1	Y*/N	Y*/N 1	Y*/N **	Y*/N 1	Y*/N 1	X.N Elled	CBOD5, TSS	7	32oz		MICROBAC	Z	スしてつ		I_{L}	OFC
ÿ. Rol		96-10	Date / Time				1 +	1-m	1		1	1	The same of the last of the la		_	#ofC	NO2, NO3	equest	50 mL	*Pres	OB B			ر ()]	ĽST(
Labora		121	ē	-			 - -	-			-7		adapha de la constante de la c	_		# of Containers Analysis	PT, TKN, NH3	Requested Lab Analysis	1L 3202 P	*Preservation 7 - sa Sontainer Size/	٥	2	Ç)		Yac
	Bottle	Conta	Temp.	1	Ą	1	1	1	Ŀ		1	1	4			ins Per	P ° (* Field Filtered	Analys	P 802	ype Type		U		•		
Vices C	s intac	iners P	Upon	+		4	+	4		1	1 6	_ <u></u>	+	≈0 -7		(E-Coli		Ф Р 2	ST						
Services Coordinator	Bottles Intact: (Yes /No)	Containers Properly Preserved: (Yes) No)	Temp. Upon Receipt (C): 🖺							6.23	6.28	À		8 K	90,1		ved Oxygen (mg/L) ved Oxygen (%		_	Field Remarks:			_		<u>윤</u> 공	
-	٥	eserved		<u>-</u> -		-				ر,	7,	7,			7.	Satura pH (S		On-Site	Weather Event:	arks:	E ×	•	Third R 25%	 - -	F Analy oyd@tl	
		:(XeS)	. (Measured By:	ee Field						7,44 7	56 7	7.65 5		75 7/	818		fic Conductance	y/Field	·Event:		ington, 859-97	Suit	ock Co 26 Reg	Cony	tical Re	
07		<u>v</u> 0)	ed By:_	See Field Notebook -					_	727 12		200		704 10	634 11		/cm)	Measu	D _y		Lexington, KY 40503 859-977-2000	Suite 180	d Rock Consultants, 2526 Regency Road	Cory Bloyd	kconst	
S			277	ook -	_					. X.	16.73	-		10,27	11,10	Temp	erature (° ^c)	On-Site/Field Measurements	/Wet	-	0503		Third Rock Consultants, LLC 2526 Regency Road		PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com	
			*							746		× 00 √+, √+,	_	7.5	7	Turbio	lity (N.T.U.)	ರ್	et				Ö)	e To:	
8										9. 43		17 Val 4 3 V		<u>.</u> تر	1.53	Flow ((cfs)									

6101550

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 11/03/2016

 Date Due
 11/03/2016

 Date Received
 10/25/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis 000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 01 7 Sampled By Customer								Sa	mpled	10/25/201	6@ 10:30
Flow by Calculation		<0.01 CFS			EPA 600				10/25/20	016 10:30	CUS
Oxygen, Dissolved		4.30 mg/L			SM 4500 O G	0.10			10/25/20	016 10:30	CUS
Specific Conductance at 25 °C		610 umhos/cm			CLIENT SPECIFIED				10/25/20	016 10:30	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			10/25/20	016 10:30	CUS
E. coli		111.9 MPN/100mL			SM9223B (Colilert-18)				10/25/20	016 13:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		10/26/20	016 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 11/02/20)16 12:34	EGD
Nitrogen, Nitrate	J1	0.042 mg/L			EPA 300.0	0.11		0.02	5 10/26/20	016 15:00	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L			EPA 300.0	0.15		0.07	5 10/26/20	016 15:00	LJC
Nitrogen, Total Kjeldahl		0.46 mg/L			SM 4500 NH3 G	0.40			11/02/20)16 17:06	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			10/25/20	016 10:30	CUS
Phosphorus, Orthophosphate		0.075 mg/L			EPA 365.1	0.050		0.01	1 10/26/20	016 15:37	EGD
Phosphorus, Total		0.14 mg/L			EPA 365.1	0.050		0.01	2 10/28/20	016 13:06	EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		10/26/20	016 17:41	CJL
Temperature		9.4 deg C			CLIENT SPECIFIED				10/25/20	016 10:30	CUS
Sample: 02 8 Sampled By Customer								Sa	mpled	10/25/201	6@ 11:05
Flow by Calculation		N/A CFS			EPA 600				10/25/20	016 11:05	cus
Oxygen, Dissolved		7.80 mg/L			SM 4500 O G	0.10			10/25/20	016 11:05	CUS
Specific Conductance at 25 °C		705 umhos/cm			CLIENT SPECIFIED				10/25/20	016 11:05	CUS
Turbidity		4 NTU			CLIENT SPECIFIED	1			10/25/20	016 11:05	CUS
E. coli		275.5 MPN/100mL			SM9223B (Colilert-18)				10/25/20	016 13:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		10/26/20	016 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 11/02/20)16 12:40	EGD
Nitrogen, Nitrate		1.5 mg/L			EPA 300.0	0.11		0.02	5 10/26/20	016 15:14	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L			EPA 300.0	0.15		0.07	5 10/26/20	016 15:14	LJC

6101550

Third Rock Consultants Steve Evans

Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Analysis O	oc o	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 8 Sampled By Customer									Sa	impled	10/25/201	.6@ 11:05
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			11/02/2	2016 17:08	EGD
pH			7.40 SU			CLIENT SPECIFIED	1.00			10/25/2	2016 11:05	CUS
Phosphorus, Orthophosphate	е		0.27 mg/L			EPA 365.1	0.050		0.01	1 10/26/2	2016 15:37	EGD
Phosphorus, Total			0.29 mg/L			EPA 365.1	0.050		0.01	2 10/28/2	2016 13:10	EGD
Solids, Total Suspended			1 mg/L			USGS I-3765-85	1	1		10/26/2	2016 17:41	CJL
Temperature			16.1 deg C			CLIENT SPECIFIED				10/25/2	2016 11:05	CUS
Sample: 03 10 Sampled By Customer									Sa	ımpled	10/25/201	.6@ 8:35
Flow by Calculation			0.05 CFS			EPA 600				10/25/2	2016 8:35	CUS
Oxygen, Dissolved			6.90 mg/L			SM 4500 O G	0.10			10/25/2	2016 8:35	CUS
Specific Conductance at 25 °C			765 umhos/cm			CLIENT SPECIFIED				10/25/2	2016 8:35	CUS
Turbidity			3 NTU			CLIENT SPECIFIED	1			10/25/2	2016 8:35	CUS
E. coli			1373.4 MPN/100mL			SM9223B (Colilert-18)				10/25/2	2016 13:20	LKE
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		10/26/2	2016 14:29	EGD
Nitrogen, Ammonia		UJ	<0.14 mg/L			SM 4500 NH3 G	0.25		0.1	4 11/02/2	2016 12:42	EGD
Nitrogen, Nitrate			2.5 mg/L			EPA 300.0	0.11		0.02	5 10/26/2	2016 15:29	LJC
Nitrogen, Nitrite		UJ	<0.075 mg/L			EPA 300.0	0.15		0.07	5 10/26/2	2016 15:29	LJC
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			11/02/2	2016 17:10	EGD
pH			7.50 SU			CLIENT SPECIFIED	1.00			10/25/2	2016 8:35	CUS
Phosphorus, Orthophosphate	е		0.41 mg/L			EPA 365.1	0.050		0.01	1 10/26/2	2016 15:38	EGD
Phosphorus, Total			0.41 mg/L			EPA 365.1	0.050		0.01	2 10/28/2	2016 13:11	EGD
Solids, Total Suspended			<1 mg/L			USGS I-3765-85	1	1		10/26/2	2016 17:41	CJL
Temperature			12.2 deg C			CLIENT SPECIFIED				10/25/2	2016 8:35	CUS
Sample: 04 11 Sampled By Customer									Sa	impled	10/25/201	.6@ 9:15
Flow by Calculation			0.11 CFS			EPA 600				10/25/2	2016 9:15	CUS
Oxygen, Dissolved			6.90 mg/L			SM 4500 O G	0.10			10/25/2	2016 9:15	CUS

6101550

Third Rock Consultants Steve Evans

Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min M	ax Method	Rpt Limit	Cus Limit	MDL Analys	is Date	Tech
Sample: 04 11							Sampled	10/25/201	16@ 9:15
Sampled By Customer									
Specific Conductance at 25 °C		741 umhos/cm		CLIENT SPECIFIED			10/25/	2016 9:15	CUS
Turbidity		<1 NTU		CLIENT SPECIFIED	1		10/25/	2016 9:15	CUS
E. coli		248.1 MPN/100mL		SM9223B (Colilert-18)			10/25/	2016 13:20	LKE
CBOD, 5 Day		<2.0 mg/L		SM 5210 B	2.0	2	10/26/	2016 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L		SM 4500 NH3 G	0.25		0.14 11/02/	2016 12:43	EGD
Nitrogen, Nitrate		0.36 mg/L		EPA 300.0	0.11		0.025 10/26/	2016 15:43	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L		EPA 300.0	0.15		0.075 10/26/	2016 15:43	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L		SM 4500 NH3 G	0.40		11/02/	2016 17:11	EGD
рН		7.60 SU		CLIENT SPECIFIED	1.00		10/25/	2016 9:15	CUS
Phosphorus, Orthophosphate		0.39 mg/L		EPA 365.1	0.050		0.011 10/26/	2016 15:39	EGD
Phosphorus, Total		0.39 mg/L		EPA 365.1	0.050		0.012 10/28/	2016 13:12	EGD
Solids, Total Suspended		<1 mg/L		USGS I-3765-85	1	1	10/26/	2016 17:41	CJL
Temperature		11.8 deg C		CLIENT SPECIFIED			10/25/	2016 9:15	CUS
Sample: 05 DD Sampled By Customer							Sampled	10/25/201	16
E. coli		272.3 MPN/100mL		SM9223B (Colilert-18)			10/25/	2016 13:20	LKE
CBOD, 5 Day		<2.0 mg/L		SM 5210 B	2.0	2	10/26/	2016 14:29	EGD
Nitrogen, Ammonia	UJ	<0.14 mg/L		SM 4500 NH3 G	0.25		0.14 11/02/	2016 12:45	EGD
Nitrogen, Nitrate		0.36 mg/L		EPA 300.0	0.11		0.025 10/26/	2016 15:57	LJC
Nitrogen, Nitrite	UJ	<0.075 mg/L		EPA 300.0	0.15		0.075 10/26/	2016 15:57	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L		SM 4500 NH3 G	0.40		11/02/	2016 17:13	EGD
Phosphorus, Orthophosphate		0.40 mg/L		EPA 365.1	0.050		0.011 10/26/	2016 15:40	EGD
Phosphorus, Total	P1	0.40 mg/L		EPA 365.1	0.050		0.012 10/28/	2016 13:13	EGD
Solids, Total Suspended		3 mg/L		USGS I-3765-85	1	1	10/26/	2016 17:41	CJL

Qualifier Definitions

J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.

6101550

 Third Rock Consultants
 Date Due
 11/03/2016

 Steve Evans
 Date Received
 10/25/2016

KDOW Cane Run Watershed Project

- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- P1 Sample as received was improperly preserved for this analyte.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6 SW 6 SW 6 YN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G G G G G G G G G G G G G G G G G G G	Client Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Froject Name: Cane Run Watershed Based Plan Cory Bloyd Third Rock Consultants, LLC 2526 Regency Road Suite 180 Lexington, KY 40503 859-977-2000 Turnaround Time Required: 7 Working Days Froservative Code PDF Analytical Report & Invoice To: Cony Bloyd Third Rock Consultants, LLC 2526 Regency Road Suite 180 Lexington, KY 40503 859-977-2000 **Preservation Type** Field Remarks: Container Size/Type* Comments: **Preservative Code** **P
--	---------------------------------------	--

6111787

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 12/09/2016

 Date Due
 12/09/2016

 Date Received
 11/30/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL A	nalysis Date	Tech
Sample: 01 1								Samp	oled 11/30)/2016@ 9:40
Sampled By Customer Flow by Calculation		3.04 CFS			EPA 600			,	11/30/2016 9:	40 CUS
Dxygen, Dissolved		9.18 mg/L			SM 4500 O G	0.10			11/30/2016 9:	
Specific Conductance at 25		644 umhos/cm			CLIENT SPECIFIED	0.10			11/30/2016 9: 11/30/2016 9:	
Ċ										
urbidity		4 NTU			CLIENT SPECIFIED	1			11/30/2016 9:	
E. coli		260.3 MPN/100mL			SM9223B (Colilert-18)				11/30/2016 15	
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	•	12/01/2016 10	:26 DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	12/08/2016 16	:32 EGD
Nitrogen, Nitrate	J1	0.32 mg/L			EPA 300.0	0.55		0.12	12/01/2016 19	:57 LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	12/01/2016 19	:57 LJC
litrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40		1	2/08/2016 13	:09 EGD
θH		7.83 SU			CLIENT SPECIFIED	1.00		•	11/30/2016 9:	40 CUS
Phosphorus, Orthophosphate		0.17 mg/L			EPA 365.1	0.050		0.011	12/01/2016 13	:12 EGD
Phosphorus, Total		0.21 mg/L			EPA 365.1	0.050		0.012	12/01/2016 14	:57 EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1	1	2/05/2016 11	:36 CJL
emperature		11.5 deg C			CLIENT SPECIFIED			•	11/30/2016 9:	40 CUS
Sample: 02 2 Sampled By Customer								Samp	pled 11/30)/2016@ 10:0
Flow by Calculation		1.92 CFS			EPA 600			,	11/30/2016 10	:06 CUS
Oxygen, Dissolved		8.95 mg/L			SM 4500 O G	0.10			11/30/2016 10	:06 CUS
Specific Conductance at 25 C		665 umhos/cm			CLIENT SPECIFIED			,	11/30/2016 10	:06 CUS
urbidity		3 NTU			CLIENT SPECIFIED	1		•	11/30/2016 10	:06 CUS
E. coli		601.5 MPN/100mL			SM9223B (Colilert-18)			,	11/30/2016 15	:52 ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	,	12/01/2016 10	:26 DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	12/08/2016 16	:34 EGD
Nitrogen, Nitrate		0.79 mg/L			EPA 300.0	0.55		0.12	2/01/2016 20	:11 LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	12/01/2016 20	:11 LJC

6111787

Third Rock Consultants Steve Evans

Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Analysis O	OC Q	ualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 2 Sampled By Customer									Sa	mpled	11/30/201	6@ 10:06
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			12/08/2	2016 13:14	EGD
pH			7.72 SU			CLIENT SPECIFIED	1.00			11/30/2	2016 10:06	CUS
Phosphorus, Orthophosphate	е		0.16 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	2016 13:13	EGD
Phosphorus, Total			0.24 mg/L			EPA 365.1	0.050		0.01	2 12/01/2	2016 14:59	EGD
Solids, Total Suspended			2 mg/L			USGS I-3765-85	1	1		12/05/2	2016 11:36	CJL
Temperature			12.4 deg C			CLIENT SPECIFIED				11/30/2	2016 10:06	CUS
Sample: 03 5 Sampled By Customer									Sa	mpled	11/30/201	6@ 11:00
Flow by Calculation			0.55 CFS			EPA 600				11/30/2	2016 11:00	CUS
Oxygen, Dissolved			6.19 mg/L			SM 4500 O G	0.10			11/30/2	2016 11:00	CUS
Specific Conductance at 25 °C			662 umhos/cm			CLIENT SPECIFIED				11/30/2	2016 11:00	CUS
Turbidity			2 NTU			CLIENT SPECIFIED	1			11/30/2	2016 11:00	CUS
E. coli			53.7 MPN/100mL			SM9223B (Colilert-18)				11/30/2	2016 15:52	ABK
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		12/01/2	2016 10:26	DJR
Nitrogen, Ammonia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/08/2	2016 16:36	EGD
Nitrogen, Nitrate			2.7 mg/L			EPA 300.0	0.55		0.1	2 12/01/2	2016 20:25	LJC
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/01/2	2016 20:25	LJC
Nitrogen, Total Kjeldahl			0.46 mg/L			SM 4500 NH3 G	0.40			12/08/2	2016 13:16	EGD
pН			7.53 SU			CLIENT SPECIFIED	1.00			11/30/2	2016 11:00	CUS
Phosphorus, Orthophosphate	е		0.63 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	2016 13:14	EGD
Phosphorus, Total			0.67 mg/L			EPA 365.1	0.050		0.01	2 12/01/2	2016 15:11	EGD
Solids, Total Suspended			<1 mg/L			USGS I-3765-85	1	1		12/05/2	2016 11:36	CJL
Temperature			12.5 deg C			CLIENT SPECIFIED				11/30/2	2016 11:00	CUS
Sample: 04 6 Sampled By Customer									Sa	mpled	11/30/201	6@ 11:20
Flow by Calculation			1.05 CFS			EPA 600				11/30/2	2016 11:20	CUS
Oxygen, Dissolved			5.94 mg/L			SM 4500 O G	0.10			11/30/2	2016 11:20	CUS

6111787

Third Rock Consultants Steve Evans

Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 04 6									S	ampled	11/30/20	16@ 11:20
Sampled By Custome Specific Conductance at 2			657 umhos/cm			CLIENT SPECIFIED				11/30/2	016 11:20	CUS
°C	-0											
Turbidity			2 NTU			CLIENT SPECIFIED	1				016 11:20	CUS
E. coli			122.3 MPN/100mL			SM9223B (Colilert-18)				11/30/2	016 15:52	ABK
CBOD, 5 Day			2.1 mg/L			SM 5210 B	2.0	2		12/01/2	016 10:26	DJR
Nitrogen, Ammonia			1.0 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/08/2	016 16:38	EGD
Nitrogen, Nitrate			2.0 mg/L			EPA 300.0	0.55		0.1	2 12/01/2	016 20:39	LJC
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/01/2	016 20:39	LJC
Nitrogen, Total Kjeldahl			1.6 mg/L			SM 4500 NH3 G	0.40			12/08/2	016 13:18	EGD
рН			7.36 SU			CLIENT SPECIFIED	1.00			11/30/2	016 11:20	CUS
Phosphorus, Orthophosph	nate		0.66 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	016 13:16	EGD
Phosphorus, Total			0.72 mg/L			EPA 365.1	0.050		0.01	2 12/01/2	016 15:12	EGD
Solids, Total Suspended			3 mg/L			USGS I-3765-85	1	1		12/05/2	016 11:36	CJL
Temperature			13.2 deg C			CLIENT SPECIFIED				11/30/2	016 11:20	CUS
Sample: 05 8 Sampled By Custome	er								S	ampled	11/30/20	16@ 11:20
Oxygen, Dissolved			6.40 mg/L			SM 4500 O G	0.10			11/30/2	016 11:20	CUS
Specific Conductance at 2 °C	25		720 umhos/cm			CLIENT SPECIFIED				11/30/2	016 11:20	CUS
Turbidity			<1 NTU			CLIENT SPECIFIED	1			11/30/2	016 11:20	CUS
E. coli			816.4 MPN/100mL			SM9223B (Colilert-18)				11/30/2	016 15:52	ABK
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		12/01/2	016 10:26	DJR
Nitrogen, Ammonia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/08/2	016 16:39	EGD
Nitrogen, Nitrate			1.1 mg/L			EPA 300.0	0.55		0.1	2 12/01/2	016 20:53	LJC
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/01/2	016 20:53	LJC
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			12/08/2	016 13:19	EGD
рН			7.30 SU			CLIENT SPECIFIED	1.00			11/30/2	016 11:20	CUS
Phosphorus, Orthophosph	nate		0.23 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	016 13:18	EGD
Phosphorus, Total			0.26 mg/L			EPA 365.1	0.050		0.01	2 12/01/2	016 15:13	EGD
Solids, Total Suspended			2 mg/L			USGS I-3765-85	1	1		12/05/2	016 11:36	CJL

6111787

Third Rock Consultants Steve Evans

Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Analysis 00	C Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 05 8 Sampled By Customer								Sa	mpled	11/30/201	16@ 11:20
Temperature		16.1 deg C			CLIENT SPECIFIED				11/30/20	016 11:20	CUS
Sample: 06 10 Sampled By Customer								Sa	mpled	11/30/201	16@ 9:20
Flow by Calculation		1.12 CFS			EPA 600				11/30/20	016 9:20	cus
Oxygen, Dissolved		6.70 mg/L			SM 4500 O G	0.10			11/30/20	016 9:20	CUS
Specific Conductance at 25 °C		587 umhos/cm			CLIENT SPECIFIED				11/30/20	016 9:20	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			11/30/20	016 9:20	CUS
E. coli		>2419.6 MPN/100mL			SM9223B (Colilert-18)				11/30/20	016 15:52	ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		12/01/2	016 10:26	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 12/08/2	016 16:41	EGD
Nitrogen, Nitrate		1.6 mg/L			EPA 300.0	0.55		0.12	2 12/01/2	016 21:07	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	3 12/01/2	016 21:07	LJC
Nitrogen, Total Kjeldahl		0.47 mg/L			SM 4500 NH3 G	0.40			12/09/2	016 12:57	EGD
рН		7.30 SU			CLIENT SPECIFIED	1.00			11/30/20	016 9:20	CUS
Phosphorus, Orthophosphate		0.34 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	016 13:19	EGD
Phosphorus, Total		0.36 mg/L			EPA 365.1	0.050		0.012	2 12/01/2	016 15:14	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		12/05/2	016 12:05	CJL
Temperature		16.1 deg C			CLIENT SPECIFIED				11/30/20	016 9:20	CUS
Sample: 07 11 Sampled By Customer								Sa	mpled	11/30/201	16@ 10:00
Flow by Calculation		0.62 CFS			EPA 600				11/30/20	016 10:00	CUS
Oxygen, Dissolved		5.40 mg/L			SM 4500 O G	0.10			11/30/20	016 10:00	CUS
Specific Conductance at 25 °C		711 umhos/cm			CLIENT SPECIFIED				11/30/20	016 10:00	CUS
Turbidity		10 NTU			CLIENT SPECIFIED	1			11/30/20	016 10:00	CUS
E. coli		686.7 MPN/100mL			SM9223B (Colilert-18)				11/30/20	016 15:52	ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		12/01/2	016 10:26	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 12/08/2	016 16:43	EGD

6111787

Third Rock Consultants Steve Evans

Date Due
Date Received

12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 07 Sampled By	11 Customer								Sa	mpled	11/30/201	6@ 10:00
Nitrogen, Nitrate	е	J1	0.30 mg/L			EPA 300.0	0.55		0.12	2 12/01/2	016 21:22	LJC
Nitrogen, Nitrite	•	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	3 12/01/2	016 21:22	LJC
Nitrogen, Total I	Kjeldahl		0.45 mg/L			SM 4500 NH3 G	0.40			12/09/2	016 12:59	EGD
pH			7.40 SU			CLIENT SPECIFIED	1.00			11/30/2	016 10:00	CUS
Phosphorus, Or	rthophosphate		0.34 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	016 13:20	EGD
Phosphorus, To	tal		0.37 mg/L			EPA 365.1	0.050		0.012	2 12/01/2	016 15:15	EGD
Solids, Total Su	spended		3 mg/L			USGS I-3765-85	1	1		12/05/2	016 12:05	CJL
Temperature			14.0 deg C			CLIENT SPECIFIED				11/30/2	016 10:00	CUS
Sample: 08 Sampled By	DD Customer								Sa	mpled	11/30/201	6
E. coli			686.7 MPN/100mL			SM9223B (Colilert-18)				11/30/2	016 15:52	ABK
CBOD, 5 Day			2.6 mg/L			SM 5210 B	2.0	2		12/01/2	016 10:26	DJR
Nitrogen, Ammo	onia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 12/08/2	016 16:45	EGD
Nitrogen, Nitrate	e	J1	0.29 mg/L			EPA 300.0	0.55		0.12	2 12/01/2	016 21:36	LJC
Nitrogen, Nitrite	;	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	3 12/01/2	016 21:36	LJC
Nitrogen, Total I	Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			12/09/2	016 13:01	EGD
Phosphorus, Or	rthophosphate		0.34 mg/L			EPA 365.1	0.050		0.01	1 12/01/2	016 13:21	EGD
Phosphorus, To	tal		0.42 mg/L			EPA 365.1	0.050		0.012	2 12/01/2	016 15:17	EGD
Solids, Total Su	spended		3 mg/L			USGS I-3765-85	1	1		12/05/2	016 12:05	CJL

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

6111787

Third Rock Consultants Steve Evans

Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Laboratory</u>
Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

Analysis E. coli Method SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)	113	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Remayiished By:										-			Laboratory # S	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	Collected By: Client - ゴミ, co	- 1	Project # NT 10-004 Project Contact (for laboratory): Corv		Client: Third Rock Consultants, LLC	COC#
amples & Report)	0621/9105	11-30-16/1313	Date / Time	DD	1	10	မ	8	7	6	Oī	4	ω	2		Sample I.D.	, CBOD5. earliest time					136			Cory Bloyd	Based Plan		
200	DAD			SW.	WS	sw -	SW	ws	ws	sw	SW	- ws	WS	SW	SW	Matrix *				DD Requ								
COC Copy - TRC Project File	B		Received By:		Assette en en en en en en en en en en en en en	***	A CONTRACTOR CONTRACTO	A THE RESIDENCE AND A PARTY OF THE PARTY OF	1		1030-16	TANKE THE PARTY OF		1-30-14	1:-30-16	Collection Date	i - Ice (All)	SA - H2SO4 ST - Na2S2O3	* Preserva	EDD Required: X Yes								
Project File		139	Ву:	****	And the second s	William Co.	TO STATE STA			1:20	1:00	, activities and an activities and activities activities and activities activities and activities activities and activities activities activities and activities act	TO THE PERSON NAMED IN COLUMN	10:06	9.40	Collection ((All)	2SO4 2S2O3	reservative Code	s _ No								
		1		ດ ≺ູ	ଜ ≺ୁ	ଜ ≺ୁ	ი -Հ	ด ≺ู	ი -	ด ≺ู้.	ດ -≺,	ດ ≺,	ด ≺ู	ം ≺ু	ഒ ≺.	Grab / Fi						@ 3)	E Z	J D-			CHAIN OF CUSTODY
COC Copy - TRC Laboraton	130-	3016	Dat	Y*/N 2 Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Filed	CBOD5, TSS	Z	32oz			© MICROBAC	N C	t	j	1		OF C					
y-TRC	6		Date / Time	_	_				_	1				_	_	# of Containers Analysis	NO2, NO3	Requested Lab Analysis	p 50 mL	- SA Container Size/	* Preservation T	ê O		6	2	1	"	USTO
Laborato	38	3/3			_					1	_		_	_	_	ontainer Analysis	PT, TKN, NH3	id Lab	32oz P	SA ler Size	ervation	Ŭ	_		て)DY
ory Servi	Bottles	Contair	Temp. և		_	_			_	1	_	_	_	_	_	's Per	P O (* Field Filtered)	Analysi	80Z	Type	Туре		·	•	•			
ces Coo	Intact:(ers Prop	Jpon Re	1	1	- ALESCONO SER	1	virolitamen	1	1 5,94	ا الجراد	1	1 Amass	1 895	1 9:18	Disso	E-Coli ved Oxygen (mg/L)	S	40z P	ST	Field							
Services Coordinator	Yes / No	erly Pre	Temp. Upon Receipt (C):		Windows (Windows)	Andrew Wildelphia		- Constitution (Comments)	egy((E)	4 -	1	далиция в на на на на на на на на на на на на на	edichéses evisité D-15 famogr	1	1		ved Oxygen (%		. W		Field Remarks:				_	cblo	PDF	
	_	served((12 / 12 / 12 / 12 / 12 / 12 / 12 / 12 /	Sec	The state of the s	AND DESCRIPTIONS OF THE PROPERTY OF THE PROPER	THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED AND ADDRESS	manes della prisenza della managlia.		736	7,5	TOTAL STREET,		<u>اب</u> نند	£8.£	pH (S	· · · · · · · · · · · · · · · · · · ·)n-Site/	Weather Event:		ırks:	Lexir 8		2526	hird Ro	oyd@thi	Analyti	
		Containers Properly Preserved (Yes) No)	_\Measured By:	See Field Notebook	Name of the last o	White-parameter Explanata and Apple		VALUE AND THE PROPERTY OF THE		6 657	7.53 bb2	STOCKES STREET, STOCKES	Trenchischer (1980)	599) Petit	33 b44		ic Conductance	On-Site/Field Measurements	ent:			Lexington, KY 40503 859-977-2000	Suite 180	2526 Regency Road	Third Rock Consultants, LLC	cbloyd@thirdrockconsultants.com	PDF Analytical Report & Invoice To:	
			By:	etebook	400	Secretary Constitution of the Constitution of	and the second second	TOTAL CONTRACTOR OF THE PARTY.		13.19	1 12.16	HARDON MERCHANIST AND A STATE OF THE STATE O	William Control of the Control of th	+	11.52	L	erature (° °)	asuren	_Dry			Y 4050 2000	8	cy Road	iultants.	onsulta _l	ort & Inv	
	Į	W	I	Restriction of the Party of the	-		AND DESCRIPTION OF THE PERSON	Anti-parameter of the state of		111.9	4.16	Out of the last of	The second secon	12.40 2,7	3.6		lity (N.T.U.)	ents	_Wet			^ଘ	,	a '	L C	nts.com	oice To	
				- Control Control	PERSONAL PROPERTY COMMANDE	1	accompany and a second	NAME OF TAXABLE PARKET	****	1:05	0.58	A Property Comments	and the second	192	3,04	Flow (cfs)									,_		

	· Afel	Relinquished By:													Laboratory#	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 W		Methodology Required: 40CFR Part 136	By: Client - CB	Project Contact (for laboratory): Cory Bloyd Phone # : 859-977-2000	Project #: KY16-004	Client: Initid Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	Special Projects Angle
~	0021/91-02-11	Date / Time	DD	11	10	9	8	7	თ	5	4	3	2		Sample I.D.	NO3, CBOD5.			7 Working Days	-	P art 136	(A)	Cory Bloyd		shed Based Plan	
	Sol		SW	SW	WS	SW	WS	WS	SW	WS	WS	SW	SW	SW	Matrix."				EDD Required:							
	M	Received By:	11-3016	11-38-16	4)- 05-11	AND REPORT TO SERVICE AND PARTY OF THE PARTY	11-3016	TO COMPANY TO THE TAXABLE TO THE	- Andreas of the second	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- CONTRACTOR CONTRACTOR	CONTRACTOR OF THE PARTY OF THE	الدوي السياسية واستنوهم فرحمتكوي	Charles of the Spinish of the Spinis	Collection Date	1- loc	SA - H2SO4 ST - Na2S2O3	* Preserva	ıired: <u>X</u> Yes							
	<u>C</u>	By:	****	0000	370		<u> </u>		Charles and a second	Constitution of the last	**************************************		arrent blacking of the	ps/4020000/psudobbb	Collection Time	i - Ice (All)	SA - H2SO4 T - Na2S2O3	Preservative Code	es _ No		·		1			
	-		ଜ ୪ <u>,</u>	G Y*/N	ഒ ⊰ൂ	ด ≺ู	ନ ≺ୁ	ი -Հ	o ≺્ર	ດ ≺,ٍ	ด ≺ู	ତ ≺,	ი -Հ	ი -Հ	Grab/ Fil Comp Y	,				٠	@ 3	C	ラ ス]		CHAIN OF CUSTOBY
	130-	Dat		*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Y*/N 2	Fird	CBOD5, TSS	ي	32oz			D) MICROBAC	SNS		<u>ל</u>		
	30-161	Date / Time				-								_	# of Containers Per Analysis	NO2, NO3	Requested Lab.	P 50 mL	SA Sontainer Size	* Preservation	ű O	JLTA	2	ر ("	/ Si
	320		1	1	_	1		_	_		_		_	_	ontainer Analysis	PT, TKN, NH3		320z P	SA ler Size	rvation	က်	Z)		ΥŪ
Bottles	Contain	Temp. և	1 1			 			1			1	1		s Per	P ^o (* Field Filtered)	Analysis	80z 40z P P	- sт /Туре	Туре		0,	٠,			
Bottles Intact: (Yes,/ No)	ers Prop	pon Rec		5,4	6		₹ \$	- Average of the second	Albertasposis	- Company	المعقدوننديب	· Department	-	Henesseell	Disso	ved Oxygen (mg/L)	97	° ×	T	Field						
resyl No)	Containers Properly Preserved: ((த்தி No) ₎ ந	Temp. Upon Receipt (C):		54,5		-	678	CONTRACTOR OF THE PARTY OF THE	And the second	and the second	THE PERSON NAMED IN	CONTRACTOR CONTRACTOR		Manage of the state Dissol Satura	ved Oxygen (% .	0	Ņ		Field Remarks				ı	양	7	
	served: (W 87	- Sec	5 7.4			37.3	A. H. A. S.	Strawn spagaton o		NAME OF THE PERSON				pH (S		n-Site/	Weather Event:		rks:	Lexin 8		hird Ro	!.	Analytı vd@thi	
	®/ No	Measured By:	Field		587	Performance of the Spinish	720	-	ACHEROMOCOLUMNIC CONTRA		- Harris Construction of the Construction of t			AND THE PROPERTY AND THE PARTY	Specif (umho	īc Conductance	Field M	vent:			ington, KY 40: 859-977-2000	Suite 180	CK Con	Cory Bloyd	rdrocko	
	ر. ري	By:	See Field Notebook	14,0	6		(do /	econtribution (CONTRIBUTION)	and the second second	STATE OF THE PERSONS ASSESSED.	Processor Control of the Control of	Minnistration	WASHINGTON OF THE PARTY OF THE	HIPPER CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO. BERT CO.		erature (° ^C)	On-Site/Field Measurements	Dry			Lexington, KY 40503 859-977-2000	180	Third Rock Consultants, LLC 2526 Regency Road	oyd	ort & In onsulta	
		Upra	1	0 9.6		SCHOOL STATE OF THE PARTY.	0.0	Months of the Control	Since of the special state of	-	Planting of the Association of the State of	COP-2// Comment DAYS (Coping Apple)	mesona sanaansa maanaasa	Sappoper Management of the	Turbic	ity (N.T.U.)	ments	Wet			S	ì	s, Ec		cbloyd@thirdrockconsultants.com	•
				0,62	1.12	A CANADA STATE OF THE STATE OF		- Company	- Anthonopological residence	SERVICE CONTRACTOR CON	- Superinduction of the section	ececonstructor traces	ALE CALLED TO THE PARTY OF THE	Name and Publishers	Flow (cfe)									□ ;	

6121194

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 12/26/2016

 Date Due
 12/27/2016

 Date Received
 12/15/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL Ar	nalysis Date	Tech
Sample: 01 1 Sampled By Customer								Sampl	ed 12/15/2	016@ 9:30
Flow by Calculation		3.3 CFS			EPA 600			12	2/15/2016 9:30	CUS
Oxygen, Dissolved		10.69 mg/L			SM 4500 O G	0.10		12	2/15/2016 9:30	CUS
Specific Conductance at 25 °C		638 umhos/cm			CLIENT SPECIFIED			12	2/15/2016 9:30) CUS
Turbidity		15 NTU			CLIENT SPECIFIED	1		12	2/15/2016 9:30) CUS
E. coli		40.8 MPN/100mL			SM9223B (Colilert-18)			12	2/15/2016 15:5	9 ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	12	2/16/2016 12:1	9 DJR
Nitrogen, Ammonia	UJ M2	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22 12	2/20/2016 14:4	3 EGD
Nitrogen, Nitrate		1.1 mg/L			EPA 300.0	0.55		0.12 12	2/16/2016 20:5	6 JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38 12	2/16/2016 20:5	6 JGF
Nitrogen, Total Kjeldahl		0.43 mg/L			SM 4500 NH3 G	0.40		12	2/22/2016 11:1	1 EGD
рН		7.35 SU			CLIENT SPECIFIED	1.00		12	2/15/2016 9:30	cus
Phosphorus, Orthophosphate		0.19 mg/L			EPA 365.1	0.050		0.011 12	2/16/2016 11:3	4 EGD
Phosphorus, Total		0.20 mg/L			EPA 365.1	0.050		0.012 12	2/23/2016 11:3	3 EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1	12	2/16/2016 16:1	7 CJL
Temperature		0.8 deg C			CLIENT SPECIFIED			12	2/15/2016 9:30	CUS
Sample: 02 2 Sampled By Customer								Sampl	ed 12/15/2	016@ 10:20
Flow by Calculation		2.07 CFS			EPA 600			12	2/15/2016 10:2	0 CUS
Oxygen, Dissolved		10.56 mg/L			SM 4500 O G	0.10		12	2/15/2016 10:2	0 CUS
Specific Conductance at 25 °C		692 umhos/cm			CLIENT SPECIFIED			12	2/15/2016 10:2	0 CUS
Turbidity		15 NTU			CLIENT SPECIFIED	1		12	2/15/2016 10:2	0 CUS
E. coli		160.7 MPN/100mL			SM9223B (Colilert-18)			12	2/15/2016 15:5	9 ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	12	2/16/2016 12:1	9 DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22 12	2/20/2016 14:4	5 EGD
Nitrogen, Nitrate		1.5 mg/L			EPA 300.0	0.55		0.12 12	2/16/2016 21:1	0 JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38 12	2/16/2016 21:1	0 JGF

6121194

Third Rock Consultants Steve Evans

Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Analysis O	ос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 2 Sampled By Customer									Sa	mpled	12/15/201	6@ 10:20
Nitrogen, Total Kjeldahl			0.41 mg/L			SM 4500 NH3 G	0.40			12/22/2	2016 11:13	EGD
pH			7.32 SU			CLIENT SPECIFIED	1.00			12/15/2	2016 10:20	CUS
Phosphorus, Orthophosphate	е		0.25 mg/L			EPA 365.1	0.050		0.01	1 12/16/2	2016 11:35	EGD
Phosphorus, Total			0.39 mg/L			EPA 365.1	0.050		0.01	2 12/23/2	2016 11:34	EGD
Solids, Total Suspended			15 mg/L			USGS I-3765-85	1	1		12/16/2	2016 17:14	CJL
Temperature			0.9 deg C			CLIENT SPECIFIED				12/15/2	2016 10:20	CUS
Sample: 03 5 Sampled By Customer									Sa	impled	12/15/201	6@ 11:00
Flow by Calculation			0.91 CFS			EPA 600				12/15/2	2016 11:00	CUS
Oxygen, Dissolved			9.60 mg/L			SM 4500 O G	0.10			12/15/2	2016 11:00	CUS
Specific Conductance at 25 °C			687 umhos/cm			CLIENT SPECIFIED				12/15/2	2016 11:00	CUS
Turbidity			6 NTU			CLIENT SPECIFIED	1			12/15/2	2016 11:00	CUS
E. coli			613.1 MPN/100mL			SM9223B (Colilert-18)				12/15/2	2016 15:59	ABK
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		12/16/2	2016 12:19	DJR
Nitrogen, Ammonia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/20/2	2016 14:47	EGD
Nitrogen, Nitrate			2.3 mg/L			EPA 300.0	0.55		0.1	2 12/16/2	2016 21:24	JGF
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/16/2	2016 21:24	JGF
Nitrogen, Total Kjeldahl			0.87 mg/L			SM 4500 NH3 G	0.40			12/22/2	2016 11:15	EGD
pH			6.83 SU			CLIENT SPECIFIED	1.00			12/15/2	2016 11:00	CUS
Phosphorus, Orthophosphate	е	J1	0.014 mg/L			EPA 365.1	0.050		0.01	1 12/16/2	2016 11:36	EGD
Phosphorus, Total			0.47 mg/L			EPA 365.1	0.050		0.01	2 12/23/2	2016 11:35	EGD
Solids, Total Suspended			2 mg/L			USGS I-3765-85	1	1		12/16/2	2016 17:14	CJL
Temperature			1.6 deg C			CLIENT SPECIFIED				12/15/2	2016 11:00	CUS
Sample: 04 6 Sampled By Customer									Sa	mpled	12/15/201	6@ 11:30
Flow by Calculation			0.82 CFS			EPA 600				12/15/2	2016 11:30	CUS
Oxygen, Dissolved			8.67 mg/L			SM 4500 O G	0.10			12/15/2	2016 11:30	CUS

6121194

Third Rock Consultants Steve Evans

Date Due
Date Received

12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Analysis O	OC Qualif	ier Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Dat	е	Tech
Sample: 04 6								Si	ampled 12/	15/2016	@ 11:30
Sampled By Customer											
Specific Conductance at 25 °C		694 umhos/cm			CLIENT SPECIFIED				12/15/2016	11:30	CUS
Turbidity		23 NTU			CLIENT SPECIFIED	1			12/15/2016	11:30	CUS
E. coli		816.4 MPN/100mL			SM9223B (Colilert-18)				12/15/2016	15:59	ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		12/16/2016	12:19	DJR
Nitrogen, Ammonia		0.65 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/20/2016	14:49	EGD
Nitrogen, Nitrate		2.1 mg/L			EPA 300.0	0.55		0.1	2 12/16/2016 2	21:38	JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/16/2016 2	21:38	JGF
Nitrogen, Total Kjeldahl	M2, F	R1 1.1 mg/L			SM 4500 NH3 G	0.40			12/22/2016	11:45	EGD
pH		7.08 SU			CLIENT SPECIFIED	1.00			12/15/2016	11:30	CUS
Phosphorus, Orthophosphate)	0.50 mg/L			EPA 365.1	0.050		0.01	1 12/16/2016	11:38	EGD
Phosphorus, Total		0.55 mg/L			EPA 365.1	0.050		0.01	2 12/23/2016	11:36	EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1		12/16/2016	17:14	CJL
Temperature		3.1 deg C			CLIENT SPECIFIED				12/15/2016 ·	11:30	CUS

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

6121194

Third Rock Consultants Steve Evans

Date Due
Date Received

12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

15					inator	COC Copy - TRC Laboratory Services Coordinator	eWice:	ationy S	Labor	JY IR	00 CO1	ဂ္ဂ	CT File	€C Proje	COC Copy - TRC Project File	200	iny Samples & Report)	Original COC To Laboratory (Accompany Samples & Report)	Original CO
		۳	Yes / No	3:pavis	Containers Properly Preserved: (Yes) No)	's Prope	ntainer Hes Int		12:45	116(2)	2/15/		The second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a second section in the second section in the second section is a section in the section in the section is a section in the section in the section is a section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section is a section in the section in the section in the section in the section in the section in the section in the section in the se				18/6/20		
	Tall	By:	Measured By:	0.5 Me	Temp. Upon Receipt (C): ^0.5	on Rece	ոք. Սք		ne	Date / Time	, Da			ď By:	Received By:		Date / Time	Relinguished By:	Re
	Ŕ-	See Field Notebook -	Field I	- See					<u></u>	Ľ	Ž 2	3 ≺*≥	G G	*****		SW	DD		
							<u> </u>			1	2		G			SW	11		
								-1	1	1	/N 2	3 Y*/N	ด			SW	10		
			_				_		1	2 1	/N 2		9			WS	9		
			\dashv				_	_	1	1	Ž 2	3 Y*/N	G G			WS	8		
		- 1					_	_	_	2	/N 2		9			SW	7		
2	1	ادی	- 1	<u>.</u>	7.8.7	∞		1	1	2 1	/N 2		<i>⊗</i>	11:30		SW	6		
0.9	5 c		83 / 97	50	70	9.6	_	1	_	2 1	/N 2	3 Y*/N	ો	11:00	12/15	SW	σı		
			-					1	1	2 · 1	/N 2	3 Y*/N	9			WS	4		
	\dashv		-				1	1	1	1	/N 2	5 Y*/N	G		`	WS	ω		
\dashv		7 0.86	16	7.37		10.56	1	1	1	2 1	/N 2	3 Y*/N	<i>ن</i> ه	10:20	12/15	, ws	2		
%	8 15,3	,40,8	1.8895	17.35	76.1	10.69	1	1	1	2	N 2	3 Y*N	<i>t₀</i> G	9.30	12/15	WS			
Flow (Specif (umho	рН (S	Dissol Satura	Dissol	er)ers P	# of Containers Pe Analysis	#of C	Z.G	mp Y/N Blist (1 de	ion Grab / Comp	Collection Time	Collection Date	Matrix *	Sample LD.	Laboratory#	
cfs)	ity (N.T.U.	erature (° ^c	ic Conduct	.U.)	ved Oxyge tion)	ved Oxyge	E-Coli		PT, TKN,	NO2, NO3	CBOD5, T						d at earliest time	****** Assume duplicate sampled at earliest time for hold purposes.	****** Assume dupli for hold purposes
			tance		(%	n (mg/L)		ld Filtered)			ss			I - Ice (All)	<u></u>		NO3, CBOD5.	Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT Rt of 0.05	Report to MDL TSS RL of 1.5,
	ments	On-Site/Field Measurements	Field M	-Site/F	On		malysis	b Ama	ted La	Requested Lab A	æ		ω	SA - H2SO4 ST - Na2S2O3	SA-				Z O T II.
	Wet	_Dry _	vent:_	Weather Event:	We		z 4oz P	, P Boz	mL 32oz P	50 mL	32oz		Jode -	Preservative Code				s:	Comments
						· · · · · ·	Type		Container Size	Conta			2	1	i d .	FOO Nequilled. A res		Tollial out of the last of the	0 0 0 0
				S:	Field Remarks:	Field	Эе	on Type	servati	* Preservation					<u>.</u>			of Time Beautifed: 7 W	T
	,03 	Lexington, KY 40503 859-977-2000	ington, KY 40: 859-977-2000	Lexin					0	MICROBAC*	つ の 就	Z	A				⊃art 136	Methodology Required: 40CFR Part 136	Methodolc
		180	Suite 180					C	2	1	Č	(Collected By: Client -	Collected
	요.	2526 Regency Road	Reger	2526				מ 🎤	2 (z (2000 2000					1 1	Phone #:
	s, LLC	Cory Bloyd Third Rock Consultants, LLC	Cory Bloyd ck Consulta	rd Roc	뒸	·			<u> </u>	V		Ū-	L U				Cory Bloyd	Project # : KY to-004 Project Contact (for laboratory): (Project Co
ы <u>х</u>	cbloyd@thirdrockconsultants.com	ort & In	rdrocko	malytic d@thir	cbloy.	·			/	"	1		-				shed Based Plan	Run Water	Project Name:
									YGO	CHAIN OF CUSTODY	OF C	MAL	(2)						COC#

6121198

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 12/26/2016

 Date Due
 12/27/2016

 Date Received
 12/15/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 01 7 Sampled By Customer								Sa	mpled	12/15/201	16@ 11:40
Flow by Calculation		0.01 CFS			EPA 600				12/15/2	016 11:40	CUS
Oxygen, Dissolved		12.19 mg/L			SM 4500 O G	0.10			12/15/2	016 11:40	CUS
Specific Conductance at 25 °C		617 umhos/cm			CLIENT SPECIFIED					016 11:40	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1				016 11:40	CUS
E. coli		17.1 MPN/100mL			SM9223B (Colilert-18)	0.0				016 15:59	ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	0.00		016 12:19	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25				016 14:51	EGD
Nitrogen, Nitrate	J1	0.50 mg/L			EPA 300.0	0.55				016 18:34	JGF
Nitrogen, Nitrite	UJ M2	<0.38 mg/L			EPA 300.0 SM 4500 NH3 G	0.75 0.40		0.38		016 18:34	JGF EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L 7.60 SU			CLIENT SPECIFIED	1.00				016 11:47	CUS
pH Phosphorus, Orthophosphate		0.079 mg/L			EPA 365.1	0.050		0.01		016 11:41	EGD
Phosphorus, Total		0.14 mg/L			EPA 365.1	0.050				016 11:45	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	0.000	1	0.012		016 17:14	CJL
Temperature		4.6 deg C			CLIENT SPECIFIED	·	·			016 11:40	CUS
Sample: 02 8 Sampled By Customer								Sa	mpled	12/15/201	16@ 12:15
Oxygen, Dissolved		6.80 mg/L			SM 4500 O G	0.10			12/15/2	016 12:15	CUS
Specific Conductance at 25		413 umhos/cm			CLIENT SPECIFIED				12/15/2	016 12:15	CUS
°C Turbidity		26 NTU			CLIENT SPECIFIED	1			12/15/2	016 12:15	CUS
E. coli		410.6 MPN/100mL			SM9223B (Colilert-18)				12/15/2	016 15:59	ABK
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		12/16/2	016 12:19	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 12/20/2	016 14:53	EGD
Nitrogen, Nitrate		1.1 mg/L			EPA 300.0	0.55		0.12	2 12/16/2	016 19:03	JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	3 12/16/2	016 19:03	JGF
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			12/22/2	016 11:49	EGD

6121198

Third Rock Consultants Steve Evans

Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 8 Sampled By Customer								Sa	mpled	12/15/201	6@ 12:15
pH		7.60 SU			CLIENT SPECIFIED	1.00			12/15/2	2016 12:15	CUS
Phosphorus, Orthophosphate		0.24 mg/L			EPA 365.1	0.050		0.01	1 12/16/2	2016 11:42	EGD
Phosphorus, Total		0.32 mg/L			EPA 365.1	0.050		0.01	2 12/23/2	2016 11:46	EGD
Solids, Total Suspended		6 mg/L			USGS I-3765-85	1	1		12/16/2	2016 17:14	CJL
Temperature		13.7 deg C			CLIENT SPECIFIED				12/15/2	2016 12:15	CUS
Sample: 03 9 Sampled By Customer								Sa	mpled	12/15/201	6@ 10:56
Flow by Calculation		0.01 CFS			EPA 600				12/15/2	2016 10:56	CUS
Oxygen, Dissolved		18.09 mg/L			SM 4500 O G	0.10			12/15/2	2016 10:56	CUS
Specific Conductance at 25 °C		482 umhos/cm			CLIENT SPECIFIED				12/15/2	2016 10:56	CUS
Turbidity		8 NTU			CLIENT SPECIFIED	1			12/15/2	2016 10:56	CUS
E. coli		365.4 MPN/100mL			SM9223B (Colilert-18)				12/15/2	2016 15:59	ABK
CBOD, 5 Day		3.9 mg/L			SM 5210 B	2.0	2		12/16/2	2016 12:19	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/20/2	2016 14:59	EGD
Nitrogen, Nitrate	J1	0.24 mg/L			EPA 300.0	0.55		0.1	2 12/16/2	2016 19:17	JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/16/2	2016 19:17	JGF
Nitrogen, Total Kjeldahl		0.85 mg/L			SM 4500 NH3 G	0.40			12/22/2	2016 11:55	EGD
pH		8.01 SU			CLIENT SPECIFIED	1.00			12/15/2	2016 10:56	CUS
Phosphorus, Orthophosphate		0.11 mg/L			EPA 365.1	0.050		0.01	1 12/16/2	2016 11:43	EGD
Phosphorus, Total		0.54 mg/L			EPA 365.1	0.050		0.01	2 12/23/2	2016 11:47	EGD
Solids, Total Suspended		6 mg/L			USGS I-3765-85	1	1		12/16/2	2016 17:14	CJL
Temperature		2.6 deg C			CLIENT SPECIFIED				12/15/2	2016 10:56	CUS
Sample: 04 10 Sampled By Customer								Sa	mpled	12/15/201	6@ 9:30
Flow by Calculation		0.087 CFS			EPA 600				12/15/2	2016 9:30	CUS
Oxygen, Dissolved		10.80 mg/L			SM 4500 O G	0.10			12/15/2	2016 9:30	CUS
Specific Conductance at 25 °C		713 umhos/cm			CLIENT SPECIFIED				12/15/2	2016 9:30	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			12/15/2	2016 9:30	CUS

6121198

Third Rock Consultants Steve Evans

Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Analysis	OOC Qualifie	er Result Units	Min Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Da	ate	Tech
Sample: 04 10 Sampled By Customer	r						Sa	mpled 12	2/15/2010	6@ 9:30
E. coli		1732.9 MPN/100mL		SM9223B (Colilert-18)				12/15/2016	15:59	ABK
CBOD, 5 Day		<2.0 mg/L		SM 5210 B	2.0	2		12/16/2016	12:19	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L		SM 4500 NH3 G	0.25		0.22	2 12/20/2016	15:00	EGD
Nitrogen, Nitrate		1.9 mg/L		EPA 300.0	0.55		0.12	2 12/16/2016	19:31	JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L		EPA 300.0	0.75		0.38	12/16/2016	19:31	JGF
Nitrogen, Total Kjeldahl		<0.40 mg/L		SM 4500 NH3 G	0.40			12/22/2016	11:57	EGD
рН		7.90 SU		CLIENT SPECIFIED	1.00			12/15/2016	9:30	CUS
Phosphorus, Orthophospha	ate	0.31 mg/L		EPA 365.1	0.050		0.011	12/16/2016	11:44	EGD
Phosphorus, Total		0.47 mg/L		EPA 365.1	0.050		0.012	2 12/23/2016	11:48	EGD
Solids, Total Suspended		1 mg/L		USGS I-3765-85	1	1		12/16/2016	17:14	CJL
Temperature		6.2 deg C		CLIENT SPECIFIED				12/15/2016	9:30	CUS
Sample: 05 11 Sampled By Customer							Sa	mpled 12	2/15/201	6@ 10:03
Flow by Calculation		0.53 CFS		EPA 600				12/15/2016	10:03	CUS
Oxygen, Dissolved		11.50 mg/L		SM 4500 O G	0.10			12/15/2016	10:03	CUS
Specific Conductance at 25	5	669 umhos/cm		CLIENT SPECIFIED				12/15/2016	10:03	CUS
°C Turbidity		2 NTU		CLIENT SPECIFIED	1			12/15/2016	10:03	CUS
E. coli		65.0 MPN/100mL		SM9223B (Colilert-18)				12/15/2016	15:59	ABK
CBOD, 5 Day		<2.0 mg/L		SM 5210 B	2.0	2		12/16/2016	12:19	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L		SM 4500 NH3 G	0.25		0.22	12/20/2016	15:02	EGD
Nitrogen, Nitrate		0.62 mg/L		EPA 300.0	0.55		0.12	12/16/2016	19:45	JGF
Nitrogen, Nitrite	UJ	<0.38 mg/L		EPA 300.0	0.75		0.38	12/16/2016	19:45	JGF
Nitrogen, Total Kjeldahl		<0.40 mg/L		SM 4500 NH3 G	0.40			12/22/2016	11:59	EGD
рН		7.80 SU		CLIENT SPECIFIED	1.00			12/15/2016	10:03	CUS
Phosphorus, Orthophospha	ate	0.20 mg/L		EPA 365.1	0.050		0.011	12/16/2016	11:45	EGD
Phosphorus, Total		0.23 mg/L		EPA 365.1	0.050		0.012	12/23/2016	11:50	EGD
Solids, Total Suspended		<1 mg/L		USGS I-3765-85	1	1		12/16/2016	17:14	CJL
Temperature		3.5 deg C		CLIENT SPECIFIED				12/15/2016	10:03	CUS

6121198

Third Rock Consultants Steve Evans

Date Due
Date Received

12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
Sample: 06 DD Sampled By Customer	r								Sa	12/15/20	16
E. coli			217.8 MPN/100mL			SM9223B (Colilert-18)				12/15/2016 15:59	ABK
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		12/16/2016 12:19	DJR
Nitrogen, Ammonia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 12/20/2016 15:03	EGD
Nitrogen, Nitrate			1.0 mg/L			EPA 300.0	0.55		0.1	2 12/16/2016 19:59	JGF
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 12/16/2016 19:59	JGF
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			12/22/2016 12:01	EGD
Phosphorus, Orthophospha	ate		0.24 mg/L			EPA 365.1	0.050		0.01	1 12/16/2016 11:45	EGD
Phosphorus, Total			0.33 mg/L			EPA 365.1	0.050		0.01	2 12/23/2016 11:51	EGD
Solids, Total Suspended			7 mg/L			USGS I-3765-85	1	1		12/16/2016 17:14	CJL

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

6121198

Third Rock Consultants Steve Evans

Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

	dinator	/ Services Coordinator	Service	NOTE:	Labor	COC Copy - TRC Laboraton	₀ ට ටට	L	oject File	TRC Pr	COC Copy - TRC Project File		pany Samples & Report	Original COC To Laboratory (Accompany Samples & Report)
								+						
	es./ No)	bottles intact: (res / No)	il Selli	0				+					SINIONELLE	The things of the same of the
(See 140)	Containers riopeny rieserved, (153) (vo)	to Pope	i dila	1	17.5		× ~ 		Ć				766/17	
· ·	Temp: opon Receipt (o): Start	of the co	7) [322			1	·		Date: Time	Nemiquismed by:
) Mossifred By:	٠. ا	on Rec		Ţ		Data / Tima				Persived By	Pocai		Data / Time	Polinguiched By:
tebook -	- Se		_	1	_	٠.	/N 2	G Y*/N	*		9rsrc(MS	. DD	
669 3.5 2.4 10.53	7.8	11.5	>	.	1	. 1	/N 2	G Y*/N		16 1003	17-15-16	WS	<u> </u>	
7/3	7 7.9	8.0			_		/N 2	G Y*/N	2330	-	12-15-16	WS	10	
11 489 2.60 8.0 0.01	1126 3	60.81		3	_	<u>.</u>	/Z 2	G Y*/N			91-51-61	WS	9	
\$13 13.7	66.9	8,00			_		/N 2	G Y*/N	S	181	13-15-16	WS	œ	
10	٠	12.19	-	<u> </u>	<u> </u>		2	G Y*/N	्		12-15-16	WS	7	
7 77 77				╢			1	-	H			SW		
				+			/N	6		H		WS	0	
			H		 	+	H	Н	2000 Contraction		******************************	C 6 4		
	The second live of the second li	and the same of					/*/NI	· /*		annisannis annis				
			1				1	د -		1		SW		
			1		1			9	Section 1			SW		
				H			114	+					Company of the last of the las	
The second line of the second li				H	H	H		H				Clair		
Speci (umho Temp	Disso Satura pH (S	Disso	Per		# of Containers Analysis	#ofC	Z &	Grab / Fittd Comp Y/N	Collection Gr	ESSANTENDEN.	Collection Date	Matrix.*	Sample I.D.	Laboratory#
fic Conductance /cm) erature (° ^c) lity (N.T.U.)	-	ved Oxygen (m	E-Coli	P ^o (* Field Fill	PT, TKN, NH3	NO2, NO3	CBOD5, TSS						ed at earliest time	TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.
9		ng/L)		tered)			S S		II) 203	ST - Na2S2O3 1 - Ice (All)	ST _		, NO3, CBOD5.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5.
On-Site/Field Measurements	On-Site.		Wsis) Ane	edLa	Requested Lab Analysis	70		2	SA - H2SO4	ပ္			
event:DryWet	Weather Event:		7 40Z		¹ L 320z P	so mt	320z P		reservative Code	Allenie	* Pres			Comments:
-			Туре	ze/Ty	ner Si	Container Size/								
	-		ST		SA				I No	<u>X</u> Yes	uired:)	EDD Required:		Turnaround Time Required: 7 Working Days
	Field Remarks:	Field	уре	ηŢγ	ervatio	* Preservation 1								
Lexington, KY 40503 859-977-2000	Lexí			·	A	0	<u></u>	© MICROBAC	\sim				(Part 136	Methodology Required: 40CFR Part 136
Suite 180				(2	Г -) (·		の 大	Collected By: Client - 🗥
2526 Regency Road	252			מ 🗸	<u> </u>	- -(200 200					Phone #: 859-977-2000
Third Rock Consultants, LLC	Third Ro			^	7	Z)	J	J.					Cory Bloyd	Project Contact (for laboratory):
Cory Bloyd						')	1							Project # · KY16-004
cbloyd@thirdrockconsultants.com	cbloyd@th),	1						rshed Based Plan	Project Name: Cane Run Watershed Based Plan
					CE	/ <u>S</u>		CHAIN OF CUSTOUT	l					
									,					

7011915

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 02/06/2017

 Date Due
 02/08/2017

 Date Received
 01/30/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis O	OC Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 01 7 Sampled By Customer								Sa	mpled	01/30/201	7@ 11:45
Flow by Calculation		0.17 CFS			EPA 600				01/30/2	017 11:45	CUS
Oxygen, Dissolved		10.50 mg/L			SM 4500 O G	0.10			01/30/2	017 11:45	CUS
Specific Conductance at 25 °C		498 umhos/cm			CLIENT SPECIFIED				01/30/2	017 11:45	CUS
Turbidity		8 NTU			CLIENT SPECIFIED	1			01/30/2	017 11:45	CUS
E. coli		3.1 MPN/100mL			SM9223B (Colilert-18)				01/30/2	017 15:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		01/31/2	017 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/2	017 15:48	EGD
Nitrogen, Nitrate		3.0 mg/L			EPA 300.0	0.55		0.04	0 01/31/2	017 14:22	LJC
Nitrogen, Nitrite	UJ M2	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/2	017 14:22	LJC
Nitrogen, Total Kjeldahl	M1, R1	<0.40 mg/L			SM 4500 NH3 G	0.40			02/03/2	017 12:15	EGD
рН		7.70 SU			CLIENT SPECIFIED	1.00			01/30/2	017 11:45	CUS
Phosphorus, Orthophosphate)	0.22 mg/L			EPA 365.1	0.050		0.01	1 01/31/2	017 11:07	EGD
Phosphorus, Total		0.22 mg/L			EPA 365.1	0.050		0.01	2 02/03/2	017 13:08	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		01/31/2	017 17:14	CJL
Temperature		7.0 deg C			CLIENT SPECIFIED				01/30/2	017 11:45	CUS
Sample: 02 8 Sampled By Customer								Sa	mpled	01/30/201	.7@ 12:20
Oxygen, Dissolved		5.30 mg/L			SM 4500 O G	0.10			01/30/2	017 12:20	CUS
Specific Conductance at 25 °C		511 umhos/cm			CLIENT SPECIFIED				01/30/2	017 12:20	CUS
Turbidity		11 NTU			CLIENT SPECIFIED	1			01/30/2	017 12:20	CUS
E. coli		16.9 MPN/100mL			SM9223B (Colilert-18)				01/30/2	017 15:20	LKE
CBOD, 5 Day	B1, BOD3	10 mg/L			SM 5210 B	2.0	2		01/31/2	017 10:34	DJR
Nitrogen, Ammonia		0.32 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/2	017 15:54	EGD
Nitrogen, Nitrate	M1	3.6 mg/L			EPA 300.0	0.55		0.04	0 01/31/2	017 14:36	LJC
Nitrogen, Nitrite	UJ M2	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/2	017 14:36	LJC
Nitrogen, Total Kjeldahl		2.8 mg/L			SM 4500 NH3 G	0.40			02/03/2	017 12:17	EGD

7011915

Third Rock Consultants Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 02 8 Sampled By Customer								Sa	mpled	01/30/201	7@ 12:20
рН		7.50 SU			CLIENT SPECIFIED	1.00			01/30/2	2017 12:20	CUS
Phosphorus, Orthophosphate		0.30 mg/L			EPA 365.1	0.050		0.01	1 01/31/2	2017 11:08	EGD
Phosphorus, Total		0.56 mg/L			EPA 365.1	0.050		0.01	2 02/03/2	2017 13:09	EGD
Solids, Total Suspended		30 mg/L			USGS I-3765-85	1	1		01/31/2	2017 17:14	CJL
Temperature		9.6 deg C			CLIENT SPECIFIED				01/30/2	2017 12:20	CUS
Sample: 03 9 Sampled By Customer								Sa	mpled	01/30/201	7@ 10:55
Flow by Calculation		9 CFS			EPA 600				01/30/2	2017 10:55	CUS
Oxygen, Dissolved		10.00 mg/L			SM 4500 O G	0.10			01/30/2	2017 10:55	CUS
Specific Conductance at 25 °C		390 umhos/cm			CLIENT SPECIFIED				01/30/2	2017 10:55	CUS
Turbidity		12 NTU			CLIENT SPECIFIED	1			01/30/2	2017 10:55	CUS
E. coli		14.8 MPN/100mL			SM9223B (Colilert-18)				01/30/2	2017 15:20	LKE
CBOD, 5 Day	B1	2.8 mg/L			SM 5210 B	2.0	2		01/31/2	2017 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/2	2017 15:56	EGD
Nitrogen, Nitrate		4.1 mg/L			EPA 300.0	0.55		0.04	0 01/31/2	2017 14:51	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/2	2017 14:51	LJC
Nitrogen, Total Kjeldahl		0.41 mg/L			SM 4500 NH3 G	0.40			02/03/2	2017 12:19	EGD
pH		7.80 SU			CLIENT SPECIFIED	1.00			01/30/2	2017 10:55	CUS
Phosphorus, Orthophosphate		0.23 mg/L			EPA 365.1	0.050		0.01	1 01/31/2	2017 11:09	EGD
Phosphorus, Total		0.27 mg/L			EPA 365.1	0.050		0.01	2 02/03/2	2017 13:10	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		01/31/2	2017 17:14	CJL
Temperature		5.4 deg C			CLIENT SPECIFIED				01/30/2	2017 10:55	CUS
Sample: 04 10 Sampled By Customer								Sa	mpled	01/30/201	7@ 9:35
Flow by Calculation		2.41 CFS			EPA 600				01/30/2	2017 9:35	CUS
Oxygen, Dissolved		10.20 mg/L			SM 4500 O G	0.10			01/30/2	2017 9:35	CUS
Specific Conductance at 25 °C		752 umhos/cm			CLIENT SPECIFIED				01/30/2	2017 9:35	CUS
Turbidity		7 NTU			CLIENT SPECIFIED	1			01/30/2	2017 9:35	CUS

7011915

Third Rock Consultants Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04 10 Sampled By Customer								Sa	mpled	01/30/201	17@ 9:35
E. coli		1046.2 MPN/100mL			SM9223B (Colilert-18)				01/30/20	017 15:20	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		01/31/20	017 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/20	017 15:58	EGD
Nitrogen, Nitrate		2.8 mg/L			EPA 300.0	0.55		0.04	0 01/31/20	017 15:05	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/20	017 15:05	LJC
Nitrogen, Total Kjeldahl		0.44 mg/L			SM 4500 NH3 G	0.40			02/03/20	017 12:21	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			01/30/20	017 9:35	CUS
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.01	1 01/31/20	017 11:11	EGD
Phosphorus, Total		0.27 mg/L			EPA 365.1	0.050		0.01	2 02/03/20	017 13:14	EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1		01/31/20	017 17:14	CJL
Temperature		8.6 deg C			CLIENT SPECIFIED				01/30/20	017 9:35	CUS
Sample: 05 11								Sa	mpled	01/30/201	17@ 10:15
Sampled By Customer											
Flow by Calculation		1.09 CFS			EPA 600					017 10:15	CUS
Oxygen, Dissolved		9.80 mg/L			SM 4500 O G	0.10				017 10:15	CUS
Specific Conductance at 25 °C		693 umhos/cm			CLIENT SPECIFIED				01/30/20	017 10:15	CUS
Turbidity		11 NTU			CLIENT SPECIFIED	1			01/30/20	017 10:15	CUS
E. coli		23.3 MPN/100mL			SM9223B (Colilert-18)				01/30/20	017 15:20	LKE
CBOD, 5 Day	B1	2.0 mg/L			SM 5210 B	2.0	2		01/31/20	017 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/20	017 16:00	EGD
Nitrogen, Nitrate		1.8 mg/L			EPA 300.0	0.55		0.04	0 01/31/20	017 15:19	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/20	017 15:19	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/03/20	017 12:23	EGD
рН		7.50 SU			CLIENT SPECIFIED	1.00			01/30/20	017 10:15	CUS
Phosphorus, Orthophosphate		0.19 mg/L			EPA 365.1	0.050		0.01	1 01/31/20	017 11:12	EGD
Phosphorus, Total		0.20 mg/L			EPA 365.1	0.050		0.01	2 02/03/20	017 13:15	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		01/31/20	017 17:14	CJL
Temperature		6.1 deg C			CLIENT SPECIFIED				01/30/20	017 10:15	CUS

7011915

Third Rock Consultants Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date)	Tech
Sample: 06 DD									Sa	mpled 01/3	80/2017	7
Sampled By Customer												
E. coli			11.9 MPN/100mL			SM9223B (Colilert-18)				01/30/2017 1	5:20	LKE
CBOD, 5 Day		B1	2.2 mg/L			SM 5210 B	2.0	2		01/31/2017 1	0:34	DJR
Nitrogen, Ammonia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/2017 1	6:02	EGD
Nitrogen, Nitrate			4.1 mg/L			EPA 300.0	0.55		0.04	0 01/31/2017 1	5:33	LJC
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/2017 1	5:33	LJC
Nitrogen, Total Kjeldahl			0.67 mg/L			SM 4500 NH3 G	0.40			02/03/2017 1	2:25	EGD
Phosphorus, Orthophospha	ate		0.23 mg/L			EPA 365.1	0.050		0.01	1 01/31/2017 1	1:13	EGD
Phosphorus, Total			0.27 mg/L			EPA 365.1	0.050		0.01	2 02/03/2017 1	3:16	EGD
Solids, Total Suspended			4 mg/L			USGS I-3765-85	1	1		01/31/2017 1	7:14	CJL

Qualifier Definitions

- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- B1 The analyte value in the Method Blank is above the Control Limit.
- BOD3 BOD result obtained from an average of dilutions that show more than 30% difference.
- M1 Matrix Spike recovery outside Control Limits due to sample matrix interference; biased high.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

7011915

Third Rock Consultants Steve Evans

Date Due
Date Received

02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)		CS 1/30.17/1337	Relinquished By: Date / Time	DD		10	9	8	7		5	4	3	2			Laboratory# Sample I.D. w	OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.	Report to MDLs for NH3, NO2, NO3, CBOD5.	NOTE:	Comments:		Turnaround Time Required: 7 Working Days ED	Methodology Required: 40CFR Part 136	Collected By: Client - Cot、Oへ	Phone #: 859-977-2000	Project Contact (for laboratory): Cory Bloyd	Project Name: Cane Run Watershed Based Plan	COC# Client: Third Rock Consultants, LLC
COC Copy - TRC Project File COC Copy - TRC Laboratory Services Coordinator	Во	1-30-17 1337 00	$-\!$	SW 1/30-17 ****** G Y*N 2 1 1 1	SW 1-30-17 1015 G Y*/N 2 1 1 1	10935 G	SW 1-30-17 1055 G Y*/N 2 1 1 1	SW 1-30-1 1220 G Y*/N 2 1 1 1	SW 1/30-17 1145 G Y*/N 2 1 1	SW - G Y'N 2 1 1	G Y*N 2 1	Ш	SW 2 1 1	SW	G	↓	ontainers Analysis	CBOD5, TSS NO2, NO3 PT, TKN, NH3 P ° (* Field Fli	3	SA - H2SO4 ST - Na2S2O3 Requested Lab An	Sode 320z P 50 mL 320z P	Container Size/Type	EDD Required: X Yes _ No sa	⟨Ø⟩MICROBAC°			ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー		CHAIN OF CUSTODY
services Coordinator	Bottles Intact: (1/9s / No)	Containers Properly Preserved: (Kes / No)	Temp. Upon Receipt (C):4.7 Measured By: <u> </u>	- See Field Notebook -	1 9.8 81.8 7.5 693 6.1 10.8	1 80.5 7.5 752 8.6 7.3	7.8 390 5.4 11.5	7.5 511 9.6	894 7.7 498					17			Dissolv Dissolv Saturat pH (S. Specifi (umho/v	E-Coli ved Oxygen (% ion) U.) c Conductance cm) erature (° C)	ng/L)	Analysis On-Site/Field Measurements	8oz Aoz P P Weather Event:DryWet	<u>ype </u>	n Type Field Remarks:	Lexington, KY 40503 859-977-2000	Suite 180	2526 Regency Road	Cory Bloyd Third Rock Consultants LLC	cbloyd@thirdrockconsultants.com	DDE Applifical Deport 9 Invoice To

7011918

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 02/06/2017

 Date Due
 02/08/2017

 Date Received
 01/30/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis D	ate	Tech
Sample: 01 1								Sar	npled (01/30/201	7@ 9:50
Sampled By Customer		44.07.050			ED4.000				0.1.10.0.10.0.1		0110
Flow by Calculation		14.07 CFS			EPA 600				01/30/2017		CUS
Oxygen, Dissolved		23.38 mg/L			SM 4500 O G	0.10			01/30/2017		CUS
Specific Conductance at 25 °C		511 umhos/cm			CLIENT SPECIFIED				01/30/2017	7 9:50	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			01/30/2017	7 9:50	CUS
E. coli		66.3 MPN/100mL			SM9223B (Colilert-18)				01/30/2017	7 15:20	LKE
CBOD, 5 Day	B1	2.2 mg/L			SM 5210 B	2.0	2		01/31/2017	7 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	02/03/2017	7 16:34	EGD
Nitrogen, Nitrate		4.3 mg/L			EPA 300.0	0.55		0.040	01/31/2017	7 15:47	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	01/31/2017	7 15:47	LJC
Nitrogen, Total Kjeldahl		0.44 mg/L			SM 4500 NH3 G	0.40			02/03/2017	7 12:27	EGD
рН		8.32 SU			CLIENT SPECIFIED	1.00			01/30/2017	7 9:50	CUS
Phosphorus, Orthophosphate		0.24 mg/L			EPA 365.1	0.050		0.011	01/31/2017	7 11:14	EGD
Phosphorus, Total		0.26 mg/L			EPA 365.1	0.050		0.012	02/03/2017	7 13:18	EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1		01/31/2017	7 17:14	CJL
Temperature		4.4 deg C			CLIENT SPECIFIED				01/30/2017	7 9:50	CUS
Sample: 02 2 Sampled By Customer								Sar	npled (01/30/201	7@ 10:55
Flow by Calculation		12.25 CFS			EPA 600				01/30/2017	7 10:55	CUS
Oxygen, Dissolved		23.52 mg/L			SM 4500 O G	0.10			01/30/2017	7 10:55	CUS
Specific Conductance at 25 °C		544 umhos/cm			CLIENT SPECIFIED				01/30/2017	7 10:55	CUS
Turbidity		6 NTU			CLIENT SPECIFIED	1			01/30/2017	7 10:55	CUS
E. coli		16.7 MPN/100mL			SM9223B (Colilert-18)				01/30/2017	7 15:20	LKE
CBOD, 5 Day	B1	2.1 mg/L			SM 5210 B	2.0	2		01/31/2017	7 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	02/03/2017	7 16:36	EGD
Nitrogen, Nitrate		4.2 mg/L			EPA 300.0	0.55		0.040	01/31/2017	7 16:01	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	01/31/2017	7 16:01	LJC

7011918

Third Rock Consultants Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Analysis O	OC Qualifi	er Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 2 Sampled By Customer								Sa	mpled	01/30/201	7@ 10:55
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/03/2	2017 12:33	EGD
pH		7.98 SU			CLIENT SPECIFIED	1.00			01/30/2	2017 10:55	CUS
Phosphorus, Orthophosphate	е	0.26 mg/L			EPA 365.1	0.050		0.01	1 01/31/2	2017 11:16	EGD
Phosphorus, Total		0.30 mg/L			EPA 365.1	0.050		0.01	2 02/03/2	2017 13:19	EGD
Solids, Total Suspended		6 mg/L			USGS I-3765-85	1	1		01/31/2	2017 17:14	CJL
Temperature		5.6 deg C			CLIENT SPECIFIED				01/30/2	2017 10:55	CUS
Sample: 03 3 Sampled By Customer								Sa	mpled	01/30/201	7@ 10:30
Flow by Calculation		0.74 CFS			EPA 600				01/30/2	2017 10:30	CUS
Oxygen, Dissolved		11.48 mg/L			SM 4500 O G	0.10			01/30/2	2017 10:30	CUS
Specific Conductance at 25 °C		420 umhos/cm			CLIENT SPECIFIED				01/30/2	2017 10:30	CUS
Turbidity		5 NTU			CLIENT SPECIFIED	1			01/30/2	2017 10:30	CUS
E. coli		72.3 MPN/100mL			SM9223B (Colilert-18)				01/30/2	2017 15:20	LKE
CBOD, 5 Day	B1	2.3 mg/L			SM 5210 B	2.0	2		01/31/2	2017 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/2	2017 16:42	EGD
Nitrogen, Nitrate		5.7 mg/L			EPA 300.0	0.55		0.04	0 01/31/2	2017 16:16	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/2	2017 16:16	LJC
Nitrogen, Total Kjeldahl		0.53 mg/L			SM 4500 NH3 G	0.40			02/03/2	2017 12:35	EGD
pН		7.71 SU			CLIENT SPECIFIED	1.00			01/30/2	2017 10:30	CUS
Phosphorus, Orthophosphate	е	0.24 mg/L			EPA 365.1	0.050		0.01	1 01/31/2	2017 11:17	EGD
Phosphorus, Total		0.28 mg/L			EPA 365.1	0.050		0.01	2 02/03/2	2017 13:19	EGD
Solids, Total Suspended		7 mg/L			USGS I-3765-85	1	1		01/31/2	2017 17:14	CJL
Temperature		7.0 deg C			CLIENT SPECIFIED				01/30/2	2017 10:30	CUS
Sample: 04 4 Sampled By Customer								Sa	mpled	01/30/201	7@ 11:30
Flow by Calculation		0.36 CFS			EPA 600				01/30/2	2017 11:30	CUS
Oxygen, Dissolved		11.40 mg/L			SM 4500 O G	0.10			01/30/2	2017 11:30	CUS

7011918

Third Rock Consultants Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04 4								Sa	mpled	01/30/201	7@ 11:30
Sampled By Customer											
Specific Conductance at 25 °C		445 umhos/cm			CLIENT SPECIFIED				01/30/20	17 11:30	CUS
Turbidity		4 NTU			CLIENT SPECIFIED	1			01/30/20	17 11:30	CUS
E. coli		10.7 MPN/100mL			SM9223B (Colilert-18)				01/30/20	17 15:20	LKE
CBOD, 5 Day	B1	2.1 mg/L			SM 5210 B	2.0	2		01/31/20	17 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/20	17 16:44	EGD
Nitrogen, Nitrate		3.2 mg/L			EPA 300.0	0.55		0.04	0 01/31/20	17 16:30	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/20	17 16:30	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/03/20	17 12:37	EGD
pH		7.81 SU			CLIENT SPECIFIED	1.00			01/30/20	17 11:30	CUS
Phosphorus, Orthophosphate		0.23 mg/L			EPA 365.1	0.050		0.01	1 01/31/20	17 11:17	EGD
Phosphorus, Total		0.26 mg/L			EPA 365.1	0.050		0.01	2 02/03/20	17 13:20	EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1		01/31/20	17 17:14	CJL
Temperature		8.5 deg C			CLIENT SPECIFIED				01/30/20	17 11:30	CUS
Sample: 05 5 Sampled By Customer								Sa	mpled	01/30/201	7@ 12:00
Flow by Calculation		19.53 CFS			EPA 600				01/30/20	17 12:00	CUS
Oxygen, Dissolved		22.66 mg/L			SM 4500 O G	0.10			01/30/20	17 12:00	CUS
Specific Conductance at 25 °C		529 umhos/cm			CLIENT SPECIFIED				01/30/20	17 12:00	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			01/30/20	17 12:00	CUS
E. coli		61.6 MPN/100mL			SM9223B (Colilert-18)				01/30/20	17 15:20	LKE
CBOD, 5 Day	B1	2.6 mg/L			SM 5210 B	2.0	2		01/31/20	17 10:34	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/03/20	17 16:46	EGD
Nitrogen, Nitrate		3.8 mg/L			EPA 300.0	0.55		0.04	0 01/31/20	17 17:27	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 01/31/20	17 17:27	LJC
Nitrogen, Total Kjeldahl		0.72 mg/L			SM 4500 NH3 G	0.40			02/03/20	17 12:39	EGD
рН		7.95 SU			CLIENT SPECIFIED	1.00			01/30/20	17 12:00	CUS
Phosphorus, Orthophosphate		0.28 mg/L			EPA 365.1	0.050		0.01	1 01/31/20	17 11:20	EGD
Phosphorus, Total		0.31 mg/L			EPA 365.1	0.050		0.01	2 02/03/20	17 13:21	EGD

7011918

Third Rock Consultants
Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Analysis 000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 05 5 Sampled By Customer								Sa	mpled	01/30/201	7@ 12:00
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		01/31/20	017 17:14	CJL
Temperature		6.9 deg C			CLIENT SPECIFIED				01/30/20	017 12:00	CUS
Sample: 06 6 Sampled By Customer								Sa	mpled	01/30/201	7@ 12:15
Flow by Calculation		19.94 CFS			EPA 600				01/30/20	017 12:15	CUS
Oxygen, Dissolved		14.86 mg/L			SM 4500 O G	0.10			01/30/20	017 12:15	CUS
Specific Conductance at 25 °C		538 umhos/cm			CLIENT SPECIFIED				01/30/20	017 12:15	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			01/30/20	017 12:15	CUS
E. coli		55.6 MPN/100mL			SM9223B (Colilert-18)				01/30/20	017 15:20	LKE
CBOD, 5 Day	B1, BOD3	3.5 mg/L			SM 5210 B	2.0	2		01/31/20	017 10:34	DJR
Nitrogen, Ammonia	J1	0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 02/03/20	017 16:48	EGD
Nitrogen, Nitrate		3.8 mg/L			EPA 300.0	0.55		0.040	01/31/20	017 17:41	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	3 01/31/20	017 17:41	LJC
Nitrogen, Total Kjeldahl		0.77 mg/L			SM 4500 NH3 G	0.40			02/03/20	017 12:41	EGD
pH		7.85 SU			CLIENT SPECIFIED	1.00			01/30/20	017 12:15	CUS
Phosphorus, Orthophosphate		0.28 mg/L			EPA 365.1	0.050		0.011	01/31/20	017 11:21	EGD
Phosphorus, Total		0.33 mg/L			EPA 365.1	0.050		0.012	2 02/03/20	017 13:22	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		01/31/20	017 17:14	CJL
Temperature		7.5 deg C			CLIENT SPECIFIED				01/30/20	017 12:15	CUS

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- B1 The analyte value in the Method Blank is above the Control Limit.
- BOD3 BOD result obtained from an average of dilutions that show more than 30% difference.

7011918

Third Rock Consultants Steve Evans

Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Laboratory</u>
Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

Analysis E. coli Method SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

Original COC To Laboratory (Accompany Samples & Report)		1/08/11	1/2, 1/7	A Belinguished By: Dafe / Time	, DD	11	10	0	. 8		6	On .	4	முர்	2	_	Laboratory# Sample LD		Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days	Methodology Required: 40CFR Part 136	The state of the s	Collected By: Client -	Project Contact (for laboratory): Cory Bloyd	Project #: KY16-004	Client: Inird Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	COC#
	1	Company of the second			WS	SW	VAS	IMS		WS	SW	ws	WS	sw	SW	SW). Matrix *		me			EDD Required:						an	
Copy-TR				Received By:							1/20/17	1/30/17	1/30/17	1/30/17	1/30/17	1/30/17	Date	Collection	 	SA - H2SO4 ST - Na2S2O3	* Preserv	ıired: <u>X</u> Yes							
COC Copy - TRC Project File				By	*****						5/21	12:00	1:30	10:30	10.55	9:50	25102	Collection	I - Ice (Alf)	SA - H2SO4 T - Na2S2O3	Preservative Code	es _ No			i				
E		The same			ດ	G \	q	Ц.	G	11	6	G	ດ (ດ <i>ເ</i>	o	o	293100000	Grab/			v		(2)	•	C	H		_	CHAIN OF CUSTODY
2 202		(13011)	1/281		Y*/N	Y*/N	<u>⊀</u> *	<u>*</u>	Z	K	Υ*/N	Υ*/N	∀ * ≥	Y*/N	Y* N	Y*\	ž	FIEd			32oz			グミうのつのかっ	ONS		-	1	
COC Copy - TRC Laborato			j	Date / Time	2	2	Ŋ		2	2	2	2	2	2	Ν	2		# of	CBOD5, TSS	Requested Lab A	ס	Cont		υ)		ス	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓))) & S
₹C Lab		14 :0		ii e	_	1		<u> </u> -		\parallel	-	_	-				Analysis	# of Containers Per	NO2, NO3	sted L	50 mL 32	*Preservation - SA Container Size	ا ا))	Α		,)		TOD
oratory			i i			1	1			#					-	1	/sis	iners f	PT, TKN, NH3 P O (* Field Filtered)	ab An	320z P 80z P			ei	S	人	•		
Servic	ottles in		ntaina		1			1		<u> †</u>		-7	 	1	<u> </u>	1	_	er -	E-Coli	nalysis	92 402 P	Type - ST Type							
y Services Coordinator	Bottles intact: (res/rvo)	Containers rioberly rieserved. (1857 180)	re Dropper	on Receir							1.86	23,100	11.40	11.48	23.52	23.38	Di	isso	lved Oxygen (mg/L)			Field Remarks							
nator	NO)	y Flese		#(C):/							۱ ا	1	1	١	1	(lved Oxygen (% ation)	S,	Ve	emark				Τhi		cbloy:	2
		ي الم	2/ 2/ 2	14 EME	- See				\parallel		28.t	36.4	18.4	17.7	30,4	6,32	рН	٦ (٤	S.U.)	-Site/F	Weather Event:	Ś;	, i	Lexino	0707	rd Roc	_	malytic d@thir	
		(ON / RO)	SO I NO	Temp. Upon Receipt (C): 4 Measured By:	- See Field Notebook -	H		\parallel		1	538		344	1 420	1458	2 511	Sı	peci nho	fic Conductance /cm)	On-Site/Field Measurements			859-977-2000	Lexinaton, KY 40503	Suite 180	Third Rock Consultants, LLC	Cory Bloyd	cbloyd@thirdrockconsultants.com	
			1	2 fort	tebook	H			\parallel		25.4	6.94		6.96	5,62	4.4	Te	emp	erature (° ^c)	asuren	D _V		000	4050	30 30 You	litants,	ď	nsultar	10
				The second second	1	\parallel	\parallel		1		3,4	્પ	_	9.4.6	6,0	2.4	Τι	urbio	dity (N.T.U.)	nemts	_Wet			ω	C	E		nts.com	
	-						/				9.94	╁	 	14.0	12.25	14.07	FI	ow	(cfs)									<i></i>	

7020452

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 02/17/2017

 Date Due
 02/16/2017

 Date Received
 02/07/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
Sample: 01 1 Sampled By Customer								Saı	npled 02/07/20	017@ 8:40
Flow by Calculation		7.58 CFS			EPA 600				02/07/2017 8:40	cus
Oxygen, Dissolved		9.09 mg/L			SM 4500 O G	0.10			02/07/2017 8:40	cus
Specific Conductance at 25 °C		371 umhos/cm			CLIENT SPECIFIED				02/07/2017 8:40	CUS
E. coli		80.9 MPN/100mL			SM9223B (Colilert-18)				02/07/2017 13:44	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		02/08/2017 9:57	MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 02/10/2017 18:04	EGD
Nitrogen, Nitrate		3.3 mg/L			EPA 300.0	0.55		0.040	02/08/2017 14:37	' LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	02/08/2017 14:37	' LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/16/2017 11:51	EGD
pH		7.85 SU			CLIENT SPECIFIED	1.00			02/07/2017 8:40	CUS
Phosphorus, Orthophosphate		0.21 mg/L			EPA 365.1	0.050		0.017	02/08/2017 17:39) EGD
Phosphorus, Total		0.19 mg/L			EPA 365.1	0.050		0.012	2 02/15/2017 14:14	EGD
Solids, Total Suspended		7 mg/L			USGS I-3765-85	1	1		02/08/2017 19:27	JAR
Temperature		10.1 deg C			CLIENT SPECIFIED				02/07/2017 8:40	CUS
Sample: 02 2 Sampled By Customer								Sai	mpled 02/07/20	017@ 9:20
Flow by Calculation		5.49 CFS			EPA 600				02/07/2017 9:20	CUS
Oxygen, Dissolved		8.54 mg/L			SM 4500 O G	0.10			02/07/2017 9:20	CUS
Specific Conductance at 25 °C		340 umhos/cm			CLIENT SPECIFIED				02/07/2017 9:20	CUS
E. coli		325.5 MPN/100mL			SM9223B (Colilert-18)				02/07/2017 13:44	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		02/08/2017 9:57	MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	2 02/10/2017 18:06	6 EGD
Nitrogen, Nitrate		3.2 mg/L			EPA 300.0	0.55		0.040	02/08/2017 14:51	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	02/08/2017 14:51	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/16/2017 11:53	B EGD
рН		7.87 SU			CLIENT SPECIFIED	1.00			02/07/2017 9:20	CUS

7020452

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	is Date	Tech
Sample: 02 2 Sampled By Customer								Sa	mpled	02/07/201	17@ 9:20
Phosphorus, Orthophosphate		0.21 mg/L			EPA 365.1	0.050		0.01	7 02/08/2	2017 17:41	EGD
Phosphorus, Total		0.18 mg/L			EPA 365.1	0.050		0.01	2 02/15/2	2017 14:15	EGD
Solids, Total Suspended		8 mg/L			USGS I-3765-85	1	1		02/08/2	2017 19:27	JAR
Temperature		11.4 deg C			CLIENT SPECIFIED				02/07/2	2017 9:20	cus
Sample: 03 3 Sampled By Customer								Sa	mpled	02/07/201	17@ 9:00
Flow by Calculation		0.3 CFS			EPA 600				02/07/2	2017 9:00	CUS
Oxygen, Dissolved		8.67 mg/L			SM 4500 O G	0.10			02/07/2	2017 9:00	CUS
Specific Conductance at 25 °C		410 umhos/cm			CLIENT SPECIFIED				02/07/2	2017 9:00	CUS
E. coli		107.6 MPN/100mL			SM9223B (Colilert-18)				02/07/2	2017 13:44	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		02/08/2	2017 9:57	MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/2	2017 18:08	EGD
Nitrogen, Nitrate		4.9 mg/L			EPA 300.0	0.55		0.04	0 02/08/2	2017 15:05	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08/2	2017 15:05	LJC
Nitrogen, Total Kjeldahl		0.52 mg/L			SM 4500 NH3 G	0.40			02/16/2	2017 11:55	EGD
pH		7.57 SU			CLIENT SPECIFIED	1.00			02/07/2	2017 9:00	CUS
Phosphorus, Orthophosphate		0.25 mg/L			EPA 365.1	0.050		0.01	7 02/08/2	2017 17:42	EGD
Phosphorus, Total		0.23 mg/L			EPA 365.1	0.050		0.01	2 02/15/2	2017 14:24	EGD
Solids, Total Suspended		18 mg/L			USGS I-3765-85	1	1		02/08/2	2017 19:27	JAR
Temperature		11.4 deg C			CLIENT SPECIFIED				02/07/2	2017 9:00	CUS
Sample: 04 4 Sampled By Customer								Sa	mpled	02/07/201	17@ 10:20
Flow by Calculation		0.14 CFS			EPA 600				02/07/2	2017 10:20	CUS
Oxygen, Dissolved		8.37 mg/L			SM 4500 O G	0.10			02/07/2	2017 10:20	CUS
Specific Conductance at 25 °C		398 umhos/cm			CLIENT SPECIFIED				02/07/2	2017 10:20	CUS
E. coli		178.2 MPN/100mL			SM9223B (Colilert-18)				02/07/2	2017 13:44	LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		02/08/2	2017 9:57	MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/2	2017 18:10	EGD

7020452

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis 00	OC Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 04 4 Sampled By Customer								San	pled	02/07/201	7@ 10:20
Nitrogen, Nitrate		1.4 mg/L			EPA 300.0	0.55		0.040	02/08/20	017 15:19	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	02/08/20	017 15:19	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/16/20	017 12:01	EGD
pH		7.73 SU			CLIENT SPECIFIED	1.00			02/07/20	017 10:20	CUS
Phosphorus, Orthophosphate		0.21 mg/L			EPA 365.1	0.050		0.017	02/08/20	017 17:43	EGD
Phosphorus, Total		0.20 mg/L			EPA 365.1	0.050		0.012	02/15/20	017 14:25	EGD
Solids, Total Suspended		10 mg/L			USGS I-3765-85	1	1		02/08/20	017 19:27	JAR
Temperature		11.6 deg C			CLIENT SPECIFIED				02/07/20	017 10:20	CUS
Sample: 05 5 Sampled By Customer								San	pled	02/07/201	7@ 10:40
Flow by Calculation		4.35 CFS			EPA 600				02/07/20	017 10:40	CUS
Oxygen, Dissolved		8.55 mg/L			SM 4500 O G	0.10			02/07/20	017 10:40	CUS
Specific Conductance at 25 °C		506 umhos/cm			CLIENT SPECIFIED				02/07/20	017 10:40	CUS
E. coli		2419.6 MPN/100mL			SM9223B (Colilert-18)				02/07/20	017 13:44	LKE
CBOD, 5 Day		2.2 mg/L			SM 5210 B	2.0	2		02/08/20	017 9:57	MTA
Nitrogen, Ammonia		0.41 mg/L			SM 4500 NH3 G	0.25		0.22	02/10/20	017 18:26	EGD
Nitrogen, Nitrate		2.7 mg/L			EPA 300.0	0.55		0.040	02/08/20	017 15:34	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.38	02/08/20	017 15:34	LJC
Nitrogen, Total Kjeldahl		0.73 mg/L			SM 4500 NH3 G	0.40			02/16/20	017 12:03	EGD
pH		7.85 SU			CLIENT SPECIFIED	1.00			02/07/20	017 10:40	CUS
Phosphorus, Orthophosphate		0.29 mg/L			EPA 365.1	0.050		0.017	02/08/20	017 17:47	EGD
Phosphorus, Total		0.26 mg/L			EPA 365.1	0.050		0.012	02/15/20	017 14:26	EGD
Solids, Total Suspended		9 mg/L			USGS I-3765-85	1	1		02/08/20	017 19:27	JAR
Temperature		11.8 deg C			CLIENT SPECIFIED				02/07/20	017 10:40	CUS
Sample: 06 6 Sampled By Customer								San	pled	02/07/201	7@ 11:05
Flow by Calculation		4.87 CFS			EPA 600				02/07/20	017 11:05	CUS
Oxygen, Dissolved		8.30 mg/L			SM 4500 O G	0.10			02/07/20	017 11:05	CUS

7020452

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

		ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analy	sis Date		Tech
Sample: 06	6									Sa	mpled	02/07	7/2017	7@ 11:05
Sampled By														
Specific Condu °C	ctance at 2	5		487 umhos/cm			CLIENT SPECIFIED				02/07	/2017 11	:05	CUS
E. coli				416.0 MPN/100mL			SM9223B (Colilert-18)				02/07	/2017 13	:44	LKE
CBOD, 5 Day				2.4 mg/L			SM 5210 B	2.0	2		02/08	/2017 9:	57	MTA
Nitrogen, Ammo	onia			0.58 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10	/2017 18	:28	EGD
Nitrogen, Nitrat	e			2.3 mg/L			EPA 300.0	0.55		0.04	0 02/08	/2017 15	:48	LJC
Nitrogen, Nitrite	Э		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08	/2017 15	:48	LJC
Nitrogen, Total	Kjeldahl			0.85 mg/L			SM 4500 NH3 G	0.40			02/16	/2017 12	:05	EGD
рН				7.68 SU			CLIENT SPECIFIED	1.00			02/07	/2017 11	:05	CUS
Phosphorus, O	rthophosph	ate		0.30 mg/L			EPA 365.1	0.050		0.01	7 02/08	/2017 17	:48	EGD
Phosphorus, To	otal			0.28 mg/L			EPA 365.1	0.050		0.01	2 02/15	/2017 14	:27	EGD
Solids, Total Su	ıspended			10 mg/L			USGS I-3765-85	1	1		02/09	/2017 22	:27	JAR
Temperature				11.8 deg C			CLIENT SPECIFIED				02/07	/2017 11	:05	CUS
Sample: 07 Sampled By	DD Custome	r								Sa	mpled	02/03	7/2017	7
E. coli				235.9 MPN/100mL			SM9223B (Colilert-18)				02/07	/2017 13	:44	LKE
CBOD, 5 Day				<2.0 mg/L			SM 5210 B	2.0	2		02/08	/2017 9:	57	MTA
Nitrogen, Ammo	onia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10	/2017 18	:30	EGD
Nitrogen, Nitrat	e			3.2 mg/L			EPA 300.0	0.55		0.04	0 02/08	/2017 16	:02	LJC
Nitrogen, Nitrite	Э		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08	/2017 16	:02	LJC
Nitrogen, Total	Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			02/16	/2017 12	:07	EGD
Phosphorus, O	rthophosph	ate		0.21 mg/L			EPA 365.1	0.050		0.01	7 02/08	/2017 17	:49	EGD
Phosphorus, To	otal			0.19 mg/L			EPA 365.1	0.050		0.01	2 02/15	/2017 14	:28	EGD
Solids, Total Su	ıspended			8 mg/L			USGS I-3765-85	1	1		02/09	/2017 22	:27	JAR

Qualifier Definitions

UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

7020452

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Laboratory

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

Analysis E. coli Method SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

# of Containers Per P P P P P P P P P	Υ*Ν 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Collection Grab/ Time Grab/ Time Graph Gra	Collection Collection The Date The Property of the Property of	Matrix, SW SW SW SW SW SW SW SW SW SW SW SW SW	Sample I:D	Laboratory:# Rejinguished By:
A A A A A A A A A A BAIL BAIL BAIL BAIL	Υ**N N N N N N N N N N N N N N N N N N N	<u> </u>	lection Date Date 17/1/10 17/1/1	Matrix	Sample I:D. 1 2 2 3 4 5 6 7 7 7 10 11 DD Date / Linje	Laboratory# Rejinguished By:
#0f Containers Per Pr. Analysis Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr. Pr.	Y** X X X X X X X X X X X X X X X X X X	· 《公司数据中心》	Date 17/10	SW SW SW SW SW SW SW SW SW SW SW SW SW S	Sample I.D. 1 2 2 4 4 5 6 7 7 10 10	:Laboratory#
# Of Containers Per Pr. Analysis Pr. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	File CB		llection Date	Manx, SW SW SW SW SW SW SW SW SW SW SW SW SW	Sample i.D	Laboratory.#
# of Containers Per PT, Analysis PT, Analysis Per E-C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y*N Y*N XNG Y*N XNG Y*N XNG CB	Configuration (Configuration)	llection Date	SW SW SW SW SW SW SW SW SW SW SW SW SW S	Sample I:D. 2 2 3 4 5 5 6 6 8 9	Laboratory.#
# of Containers Per Analysis PT, Analysis PT, Analysis PT, P of Containers Per PT, Analysis PT, P of Containers Per PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Containers PT, P of Conta	ΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥΥ	C005000000-1	lection Date	Matrix SW SW SW SW SW SW SW SW SW SW SW SW SW	Sample I:D; 1 2 2 4 4 7 7 8	!Laboratory#
# of Containers Per Pr. NO2 Analysis PT. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y** X X X X X X X X X X X X X X X X X X	Cont. (2007) (2007)	Date	SW SW SW SW SW SW SW SW SW SW SW SW SW S	Sample I.D. 2 2 4 4 7 7	'L'aboratory#
#0f Containers Per Pr. Analysis Pr. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y*N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Cont. (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.) (Cont.)	Date	Manx:	Sample i.D. 1 1 2 3 4 4 7	Laboratory.#
# of Containers Per Pr. Analysis Pt. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7*N Y N N N N N N N N N N N N N N N N N N	\$ CONTRACTOR	Date:	Manx.	Sample::D	Laboratory.#
# of Containers Per Pr. Po E-C PT. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7* 7* N N N N N N N N N N N N N N N N N		lledion Date	Marry SW SW SW SW	Sample I:D; 2 3 5	Eaboratory#
# of Containers Per P of Containers Per P of Containers Per P of E-C PT, 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Y*N 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6-cm/0/46-0-6	illection Date	Marx* SW SW	Sample I.D	'L'aboratory#
#0f Containers Per Pr. 1 1 1 1 Pr. 1 1 1 Pr. 2 1 Pr. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y*N X X CB	Cont. 20,000 (10,000)	illection Date	Marrox, SW	Sample I:D,	Laboratory.#
# of Containers Per Profession PT, 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y*N 2	Confidence .	llection:	Matrix:**	Sample I:D. 1	'L'aboratory#
# of Containers Per E-C Analysis Per E-C Dissolved (Saturation) PT, Dissolved (Saturation) PH (S.U.) Specific Co (umho/cm)	Filed CB	6-confidence-	llection Date	Matrix *	Sample I.D.	Laboratory#
PT, Poissolved (Saturation) PH (S.U.) Specific Co (umho/cm)	Filed	Configuration.	The state of the s	Matrx."	Sample I.D.	Laboratory.#
PT, P° E-C lived (ation)	CE					
, NO3 TKN, NH3 (* Field Filtered) oli Oxygen (mg/L) Oxygen (%	BOD5, TSS	I - Ice (All)	-		NO2, NO3, CBOD5.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.
Requested Lab Analysis On-Site/Field Measurements	Rec	SA - H2SO4 ST - Na2S2O3	SA - I ST - N.			
P 50 mL 32cz P 8cz 4cz P P P P Weather Event:Dry	32oz I	Preservative Code	* Preserv			Comments:
e/⊺yp∈	C		İ			
SA - ST	-	es No	EDD Required: X Yes	EDD Rec	7 Working Days	Turnaround Time Required:
Field Remarks:						
OBAC Lexington, KY 40503	MICROBAC	∂			40CFR Part 136	Methodology Required: 40
2 2 2	C					Collected By: Client -
1	「ことに	_ 				Phone #: 859-977-2000
$\frac{2}{2}$	TLIDIR				lory): Cory Bloyd	Project Contact (for laboratory):
cbloyd@thirdrockconsultants.com					Cane Run Watershed Based Plan	Project Name: Cane Run V
PDF Analytical Report & Invoice To:	1				ants, LLC	Client: Third Rock Consultants, LLC

7020456

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 02/17/2017

 Date Due
 02/16/2017

 Date Received
 02/07/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Oxygen, Dissolved 11.3 Specific Conductance at 25 °C Turbidity E. coli 8 CBOD, 5 Day <2 Nitrogen, Ammonia UJ <0.2 Nitrogen, Nitrate 1 Nitrogen, Nitrite UJ <0.3	19 CFS 30 mg/L 81 umhos/cm	EPA 600			San	npled	02/07/2013	7@ 11:06
Oxygen, Dissolved 11.3 Specific Conductance at 25 °C Turbidity E. coli CBOD, 5 Day Nitrogen, Ammonia UJ VJ VI Nitrogen, Nitrate UJ VI VI VI VI VI VI VI VI VI V	30 mg/L	EPA 600						
Specific Conductance at 25 °C Turbidity E. coli CBOD, 5 Day Nitrogen, Ammonia UJ VJ VI Nitrogen, Nitrate 1 Nitrogen, Nitrite UJ VI VI VI VI VI VI VI VI VI V	•					02/07/201	17 11:06	CUS
°C Turbidity E. coli 8 CBOD, 5 Day Nitrogen, Ammonia UJ VO.2 Nitrogen, Nitrate 1 Nitrogen, Nitrite UJ VO.3	81 umhos/cm	SM 4500 O G	0.10			02/07/201	17 11:06	CUS
E. coli CBOD, 5 Day Nitrogen, Ammonia Nitrogen, Nitrate Nitrogen, Nitrite UJ 40.3		CLIENT SPECIFIED				02/07/201		CUS
CBOD, 5 Day <2 Nitrogen, Ammonia UJ <0.2 Nitrogen, Nitrate 1 Nitrogen, Nitrite UJ <0.3	11 NTU	CLIENT SPECIFIED	1			02/07/20		CUS
Nitrogen, Ammonia UJ <0.2 Nitrogen, Nitrate 1 Nitrogen, Nitrite UJ <0.3	3.5 MPN/100mL	SM9223B (Colilert-18)				02/07/201		LKE
Nitrogen, Nitrate 1 Nitrogen, Nitrite UJ <0.3	2.0 mg/L	SM 5210 B	2.0	2		02/08/201		MTA
Nitrogen, Nitrite UJ <0.3	22 mg/L	SM 4500 NH3 G	0.25			02/10/201		EGD
	I.9 mg/L	EPA 300.0	0.55			02/08/201		LJC
Nitrogen, Total Kjeldahi <0.4	38 mg/L	EPA 300.0	0.75		0.38	02/08/201		LJC
	40 mg/L	SM 4500 NH3 G	0.40			02/16/201		EGD
	90 SU	CLIENT SPECIFIED	1.00		0.047	02/07/201		CUS
	15 mg/L	EPA 365.1	0.050			02/08/201		EGD
•	17 mg/L	EPA 365.1	0.050	,	0.012	02/15/201		EGD
Solids, Total Suspended	5 mg/L	USGS I-3765-85	1	1		02/09/201		JAR
Temperature 11	l.8 deg C	CLIENT SPECIFIED				02/07/201	17 11:06	CUS
Sample: 02 8 Sampled By Customer					San	npled	02/07/2017	7@ 11:45
Flow by Calculation No Flo	ow CFS	EPA 600				02/07/20	17 11:45	CUS
Oxygen, Dissolved 7.2	20 mg/L	SM 4500 O G	0.10			02/07/20	17 11:45	CUS
Specific Conductance at 25	6 umhos/cm	CLIENT SPECIFIED				02/07/20	17 11:45	CUS
°C Turbidity	8 NTU	CLIENT SPECIFIED	1			02/07/20	17 11:45	CUS
E. coli 13	3.4 MPN/100mL	SM9223B (Colilert-18)				02/07/201	17 15:24	LKE
CBOD, 5 Day	7.5 mg/L	SM 5210 B	2.0	2		02/08/201	17 9:57	MTA
Nitrogen, Ammonia 1	.1 mg/L	ON 4500 NILIO O	0.25		U 55	02/10/20	17 18:34	EGD
Nitrogen, Nitrate 2	. i mg/L	SM 4500 NH3 G	0.23		0.22	02/10/20	10.07	_00
Nitrogen, Nitrite UJ <0.3	2.6 mg/L	SM 4500 NH3 G EPA 300.0	0.55			02/08/20		LJC

7020456

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis O	OC Qualifier	Result Units	Min I	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 02 8 Sampled By Customer								Sa	mpled	02/07/201	7@ 11:45
Nitrogen, Total Kjeldahl	М3	3.0 mg/L			SM 4500 NH3 G	0.40			02/16/2	2017 12:11	EGD
pH		7.60 SU			CLIENT SPECIFIED	1.00			02/07/2	2017 11:45	CUS
Phosphorus, Orthophosphate	е	0.27 mg/L			EPA 365.1	0.050		0.01	7 02/08/2	2017 17:51	EGD
Phosphorus, Total		0.70 mg/L			EPA 365.1	0.050		0.01	2 02/15/2	2017 14:31	EGD
Solids, Total Suspended		22 mg/L			USGS I-3765-85	1	1		02/09/2	2017 22:27	JAR
Temperature		11.7 deg C			CLIENT SPECIFIED				02/07/2	2017 11:45	CUS
Sample: 03 9 Sampled By Customer								Sa	mpled	02/07/201	7@ 10:33
Flow by Calculation		4.1 CFS			EPA 600				02/07/2	2017 10:33	CUS
Oxygen, Dissolved		11.20 mg/L			SM 4500 O G	0.10			02/07/2	2017 10:33	CUS
Specific Conductance at 25 °C		405 umhos/cm			CLIENT SPECIFIED				02/07/2	2017 10:33	CUS
Turbidity		5 NTU			CLIENT SPECIFIED	1			02/07/2	2017 10:33	CUS
E. coli		55.4 MPN/100mL			SM9223B (Colilert-18)				02/07/2	2017 15:24	LKE
CBOD, 5 Day		2.5 mg/L			SM 5210 B	2.0	2		02/08/2	2017 9:57	MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/2	2017 18:36	EGD
Nitrogen, Nitrate		3.0 mg/L			EPA 300.0	0.55		0.04	0 02/08/2	2017 17:13	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08/2	2017 17:13	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/16/2	2017 12:13	EGD
pH		8.10 SU			CLIENT SPECIFIED	1.00			02/07/2	2017 10:33	CUS
Phosphorus, Orthophosphate	е	0.16 mg/L			EPA 365.1	0.050		0.01	7 02/08/2	2017 17:52	EGD
Phosphorus, Total		0.22 mg/L			EPA 365.1	0.050		0.01	2 02/15/2	2017 14:32	EGD
Solids, Total Suspended		7 mg/L			USGS I-3765-85	1	1		02/09/2	2017 22:27	JAR
Temperature		9.7 deg C			CLIENT SPECIFIED				02/07/2	2017 10:33	CUS
Sample: 04 10 Sampled By Customer								Sa	mpled	02/07/201	7@ 9:20
Flow by Calculation		12.2 CFS			EPA 600				02/07/2	2017 9:20	CUS
Oxygen, Dissolved		9.30 mg/L			SM 4500 O G	0.10			02/07/2	2017 9:20	CUS

7020456

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04	10								Sa	mpled	02/07/201	17@ 9:20
Sampled By												
Specific Conductor C	ctance at 25		1480 umhos/cm			CLIENT SPECIFIED				02/07/20	17 9:20	CUS
Turbidity			150 NTU			CLIENT SPECIFIED	1			02/07/20	17 9:20	CUS
E. coli			2419.6 MPN/100mL			SM9223B (Colilert-18)				02/07/20	17 15:24	LKE
CBOD, 5 Day			5.6 mg/L			SM 5210 B	2.0	2		02/08/20	17 9:57	MTA
Nitrogen, Ammo	onia	J1	0.25 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/20	17 18:38	EGD
Nitrogen, Nitrate	е		0.62 mg/L			EPA 300.0	0.55		0.04	0 02/08/20	17 17:27	LJC
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08/20	17 17:27	LJC
Nitrogen, Total h	Kjeldahl		1.5 mg/L			SM 4500 NH3 G	0.40			02/16/20	17 12:15	EGD
pH			7.80 SU			CLIENT SPECIFIED	1.00			02/07/20	17 9:20	CUS
Phosphorus, Or	thophosphate		0.16 mg/L			EPA 365.1	0.050		0.01	7 02/08/20	17 17:52	EGD
Phosphorus, To	tal		1.4 mg/L			EPA 365.1	0.10		0.02	3 02/15/20	17 15:16	EGD
Solids, Total Sus	spended		199 mg/L			USGS I-3765-85	2	1		02/09/20	17 22:27	JAR
Temperature			11.7 deg C			CLIENT SPECIFIED				02/07/20	17 9:20	CUS
Sample: 05 Sampled By	11 Customer								Sa	mpled	02/07/201	17@ 10:02
Flow by Calcula	ition		0.73 CFS			EPA 600				02/07/20	17 10:02	CUS
Oxygen, Dissolv	ved		9.10 mg/L			SM 4500 O G	0.10			02/07/20	17 10:02	CUS
Specific Conduc	ctance at 25		721 umhos/cm			CLIENT SPECIFIED				02/07/20	17 10:02	CUS
Turbidity			7 NTU			CLIENT SPECIFIED	1			02/07/20	17 10:02	CUS
E. coli			2419.6 MPN/100mL			SM9223B (Colilert-18)				02/07/20	17 15:24	LKE
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		02/08/20	17 9:57	MTA
Nitrogen, Ammo	onia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/20	17 18:44	EGD
Nitrogen, Nitrate	е		1.3 mg/L			EPA 300.0	0.55		0.04	0 02/08/20	17 17:42	LJC
Nitrogen, Nitrite		UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08/20	17 17:42	LJC
Nitrogen, Total k	Kjeldahl		0.59 mg/L			SM 4500 NH3 G	0.40			02/16/20	17 12:17	EGD
pH			7.70 SU			CLIENT SPECIFIED	1.00			02/07/20	17 10:02	CUS
Phosphorus, Or	thophosphate		0.19 mg/L			EPA 365.1	0.050		0.01	7 02/08/20	17 17:53	EGD

7020456

Third Rock Consultants Steve Evans

Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
Sample: 05 11									Sa	ampled 02/07/20	17@ 10:02
Sampled By Cus	stomer										
Solids, Total Suspend	ded		7 mg/L			USGS I-3765-85	1	1		02/09/2017 22:27	JAR
Temperature			11.6 deg C			CLIENT SPECIFIED				02/07/2017 10:02	CUS

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- M3 Analyte in the parent sample for the Matrix Spike was >4x the concentration of the spike solution which renders the spike amount insignificant. Matrix spike recoveries do not impact the quality of the parent sample data for this analyte.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223

SM9223B (Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

Original COC To Laboratory (Accompany Samples & Report)			10 February (10 minutes)	But dush 2.	Relinquished By:													Laboratory # S	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	Collected By: Client -	Phone #: 859-977-2000		Project Name: Cane Run Watershed Based Plan	COC#
amples & Report	1-1 1-1 1-1	13	0	1-170186	Date / Time	DD	11	10	9	8	7	6	5	4	3	2	1	Sample I.D.	, CBOD5. earliest time					136		Cicya	Conv Blowd	Based Plan	
						WS	SW	MS	WS	Ļ		WS	SW	SW	SW	SW	WS	Matrix.*				EDD Required: XYes							
Copy-TR					Received By:		2-7-17	2.7-17	2-7-17	1-7-17	27-77							Collection Date	- \(\overline{\o	SA - Na	* Preserva	ired: ∑Yı							-
COC Copy - TRC Project File			(Ву:	*****	1002	0920	1033	1145	1106							Collection Time	1 - loe (All)	SA - H2SO4 ST - Na2S2O3	Preservative Code	es L No				***			/ (
Ē.				Section 1		G \	G V	G)	G)	6 \	6 ۱	G \	6 -	G	G	G	6	Grab / I			v			9		F		.	CHAIN OF CUSTODY
S 202				2-7	-	Y*∕N	Y*/N	∀ *⊠	Y*/N	Y*/N	Y*∕N	Y*/N	Υ*/N	Υ*/N	Y*/N	Y*\N	Υ* Ν	AN E			320			MICROBAC"	2	スピンして	J :	1	V OF
COC Copy - TRC Laboraton	رو			7-17	Date / Time	2	2	2	12	2	2	2	2	2	2	2	2	# 9f	CBOD5, TSS	Requested Lab An	32oz P 50	cont.		رير O	0	7	0)),	CUS
₹C Labe	વ્ય∙ાગ	3	O,	138	ine	1			_	1	1		-			_	_	# of Containers Analysis	NO2, NO3	sted La	50 mL 32c	* Preservation Lype - SA - SA - Container Size/Type		> ე	Z	7	5		YGO
3807,033			Во	8	Te⊢	1	<u> </u>	1	1	1 1	1			>	<u> </u>	1	<u> </u>		PT, TKN, NH3 P O (* Field Filtered)	ab Ang	320z P 80z	SA - Size/Ty	•	, iv	U	7	7		
Service			ttles in	ntainer	ոթ. Սք		_	د ا	_	1				_	_	_		Per	E-Coli	nalysis	7 402 P 202	ype ST							
Services Coordinator		(Bottles Intacty (Yes)/ No)	s Prope	on Rece		9.1	9.3	11.2	7.2	11.3							Disso	ived Oxygen (mg/L)			<u> </u>	Fig.						
inator		***	No)	Containers Properly Preserved: (Yes/ No)	Temp. Upon Receipt (C): 48 Measured By:		1.18	84.5	91.5		91.9							Disso Satura	lved Oxygen (% ition)	On	Wea		Domark				글	cbloye	PDE A
			ſ	rved: A	1.8°Me	- See	7.7	7,%	8-1	7.6	7.9							pH (S	S.U.)	-Site/F	Weather Event:	į	1	Lexing		2526	ROO C	nalytic d@third	
			Ĭ	(SNO)	asured E	See Field Notebook -	1721	084.1	\vdash	<u> </u>	461							Speci (umho	fic Conductance /cm)	On-Site/Field Measurements	/ent:		9-9/1-2	Lexington, KY 40503	Suite 180	2526 Regency Road	Cory Bloyd Third Rock Consultants TTC	cbloyd@thirdrockconsultants.com	
					W. YE	otebook	2.6		٥		11.8							Temp	erature (° ^c)	asuren	ργ		150	7 4050 7000	8	y Road	Jitants	nsultar insultar	
					J. P. P.	•	50	180	75,2	80	11.0							Turbio	dity (N.T.U.)	Tents	Wet			Ø		<u>, , , , , , , , , , , , , , , , , , , </u>	_ C	its con	3
					•		0.73	12.2	£.)	21/A	0.19							Flow	(cfs)									ı- X	

Original COC To Laboratory (Accompany Samples & Report) COC Copy - TRC Project File CO		- M - 1	0	Ņ	Relinquished By: Date / Time Received By:	DD SW ****** G Y*N	11 SW 2-7-17 1002 G Y*N	10 SW 2.7-17 DQ20 G Y*N	9 SW 2-7-17 [033 G Y*N	G	2-7-17 1106 G	· G	6	4 SW G Y*N	3 SW G Y*/N	G	1 SW G Y*N	Laboratory# Sample I.D. Matrix Date Collection Collection Comp Y/N	OP and PT RL of 0.05. ******* Assume duplicate sampled at earliest time for hold purposes.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5.	SA - H2SO4 ST - Na2S2O3	Comments: * Preservative Code	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	By: Client -	Phone #: 859-977-2000		Project Name: Cane Run Watershed Based Plan	COC# Chain of custody Client: Third Rock Consultants 11 C
COC Copy - TRC Laboratory Services	Q-17-19		Bottles Inta	Containers	Temp. Upo	<u></u>	_	<u> </u>	<u> </u>	1 1 1	1 1 1	1 1 1	<u> </u>	<u> </u>	<u></u>	1 1 1	<u></u>	# of Containers Per Analysis	PT, TKN, NHP (* Field FE-Coli		Requested Lab Analysis	32oz P 8oz 4oz P P	- ST	* Preservation Type	*	v	ラ	<u> </u>		
Services Coordinator			ottles Intact; (Yes)/ No)	ontainers Properly Preserved: (Yes) No)	Temp. Upon Receipt (C): 4.8 Measured By	- Se	9.1 84.1 7.	9.3 84.5 7	3.18	68.7 7	11.3 91.9 7.								<u> </u>		On-Site	Weather Event:		Field Remarks:	Lexi		252 252	4	cbloyd@th	PDF Analyt
			American Control	(Yes/No)	leasured By:	See Field Notebook -	7 721 11.6	P 1480 11.7	2 38 A	6 28	1.9 461 11.8							Speci (umho	fic Conductan	ce	On-Site/Field Measurements	Event:Dry			Lexington, KY 40503 859-977-2000	Suite 180	2526 Regency Road	Cory Bloyd	cbloyd@thirdrockconsultants.com	PDF Analytical Report & Invoice To:
					N Call	ok -	6.9	7 150	75.2	7 80	8 400						- :		dity (N.T.U.)		ements	Wet			503		ad FC	; ; ;	ants.com	nvoice To:
			···				0.73	12.7	7.	2/8	0.19							Flow ((cfs)											

REVISED CERTIFICATE OF ANALYSIS

7020456

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Original Date Reported
 02/17/2017

 Report Reissued
 02/23/2017

 Date Received
 02/07/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
Sample: 01 7 Sampled By Customer								Sa	mpled 02/07/	2017@ 11:06
Flow by Calculation		0.19 CFS			EPA 600				02/07/2017 11:0	06 CUS
Oxygen, Dissolved		11.30 mg/L			SM 4500 O G	0.10			02/07/2017 11:0	06 CUS
Specific Conductance at 25 °C		481 umhos/cm			CLIENT SPECIFIED				02/07/2017 11:0	06 CUS
Turbidity		11 NTU			CLIENT SPECIFIED	1			02/07/2017 11:0	06 CUS
E. coli		8.5 MPN/100mL			SM9223B (Colilert-18)				02/07/2017 15::	24 LKE
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		02/08/2017 9:5	7 MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/2017 18:	32 EGD
Nitrogen, Nitrate		1.9 mg/L			EPA 300.0	0.55		0.04	0 02/08/2017 16:	16 LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	3 02/08/2017 16:	16 LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			02/16/2017 12:	09 EGD
рН		7.90 SU			CLIENT SPECIFIED	1.00			02/07/2017 11:0	06 CUS
Phosphorus, Orthophosphate		0.15 mg/L			EPA 365.1	0.050		0.01	7 02/08/2017 17:	50 EGD
Phosphorus, Total		0.17 mg/L			EPA 365.1	0.050		0.01	2 02/15/2017 14:	30 EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		02/09/2017 22:	27 JAR
Temperature		11.8 deg C			CLIENT SPECIFIED				02/07/2017 11:0	06 CUS
Sample: 02 8 Sampled By Customer								Sa	mpled 02/07/	2017@ 11:45
Flow by Calculation		No Flow CFS			EPA 600				02/07/2017 11:4	45 CUS
Oxygen, Dissolved		7.20 mg/L			SM 4500 O G	0.10			02/07/2017 11:4	45 CUS
Specific Conductance at 25 °C		6 umhos/cm			CLIENT SPECIFIED				02/07/2017 11:4	45 CUS
Turbidity		8 NTU			CLIENT SPECIFIED	1			02/07/2017 11:4	45 CUS
E. coli		13.4 MPN/100mL			SM9223B (Colilert-18)				02/07/2017 15:	24 LKE
CBOD, 5 Day		7.5 mg/L			SM 5210 B	2.0	2		02/08/2017 9:5	7 MTA
Nitrogen, Ammonia		1.1 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/2017 18:	34 EGD
Nitrogen, Nitrate		2.6 mg/L			EPA 300.0	0.55		0.04	0 02/08/2017 16:	59 LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	3 02/08/2017 16:	59 LJC

${\hbox{\hbox{\it REVISED}}}$ certificate of analysis

7020456

Third Rock Consultants Steve Evans

Report Reissued Date Received 02/23/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis 00	C Qualifier	Result Units	Min Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 02 8 Sampled By Customer							Sa	mpled	02/07/201	7@ 11:45
Nitrogen, Total Kjeldahl	М3	3.0 mg/L		SM 4500 NH3 G	0.40			02/16/20	17 12:11	EGD
pH		7.60 SU		CLIENT SPECIFIED	1.00			02/07/20	17 11:45	CUS
Phosphorus, Orthophosphate		0.27 mg/L		EPA 365.1	0.050		0.01	7 02/08/20	17 17:51	EGD
Phosphorus, Total		0.70 mg/L		EPA 365.1	0.050		0.01	2 02/15/20	17 14:31	EGD
Solids, Total Suspended		22 mg/L		USGS I-3765-85	1	1		02/09/20	17 22:27	JAR
Temperature		11.7 deg C		CLIENT SPECIFIED				02/07/20	17 11:45	CUS
Sample: 03 9 Sampled By Customer							Sa	mpled	02/07/201	7@ 10:33
Flow by Calculation		4.1 CFS		EPA 600				02/07/20	17 10:33	CUS
Oxygen, Dissolved		11.20 mg/L		SM 4500 O G	0.10			02/07/20	17 10:33	CUS
Specific Conductance at 25 °C		405 umhos/cm		CLIENT SPECIFIED				02/07/20	17 10:33	CUS
Turbidity		5 NTU		CLIENT SPECIFIED	1			02/07/20	17 10:33	CUS
E. coli		55.4 MPN/100mL		SM9223B (Colilert-18)				02/07/20	17 15:24	LKE
CBOD, 5 Day		2.5 mg/L		SM 5210 B	2.0	2		02/08/20	17 9:57	MTA
Nitrogen, Ammonia	UJ	<0.22 mg/L		SM 4500 NH3 G	0.25		0.2	2 02/10/20	17 18:36	EGD
Nitrogen, Nitrate		3.0 mg/L		EPA 300.0	0.55		0.04	0 02/08/20	17 17:13	LJC
Nitrogen, Nitrite	UJ	<0.38 mg/L		EPA 300.0	0.75		0.3	3 02/08/20	17 17:13	LJC
Nitrogen, Total Kjeldahl		<0.40 mg/L		SM 4500 NH3 G	0.40			02/16/20	17 12:13	EGD
pH		8.10 SU		CLIENT SPECIFIED	1.00			02/07/20	17 10:33	CUS
Phosphorus, Orthophosphate		0.16 mg/L		EPA 365.1	0.050		0.01	7 02/08/20	17 17:52	EGD
Phosphorus, Total		0.22 mg/L		EPA 365.1	0.050		0.01	2 02/15/20	17 14:32	EGD
Solids, Total Suspended		7 mg/L		USGS I-3765-85	1	1		02/09/20	17 22:27	JAR
Temperature		9.7 deg C		CLIENT SPECIFIED				02/07/20	17 10:33	CUS
Sample: 04 10 Sampled By Customer							Sa	mpled	02/07/201	7@ 9:20
Flow by Calculation		12.2 CFS		EPA 600				02/07/20	17 9:20	CUS
Oxygen, Dissolved		9.30 mg/L		SM 4500 O G	0.10			02/07/20	17 9:20	CUS

${\hbox{\hbox{\it REVISED}}}$ certificate of analysis

7020456

Third Rock Consultants Steve Evans

Report Reissued Date Received 02/23/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04	10								Si	mpled	02/07/201	7@ 9:20
Sampled By												
Specific Conductor C	ctance at 25		1480 umhos/cm			CLIENT SPECIFIED				02/07/20	17 9:20	CUS
Turbidity			150 NTU			CLIENT SPECIFIED	1			02/07/20	17 9:20	CUS
E. coli			> 2419.6 MPN/100mL			SM9223B (Colilert-18)				02/07/20	17 15:24	LKE
CBOD, 5 Day			5.6 mg/L			SM 5210 B	2.0	2		02/08/20	17 9:57	MTA
Nitrogen, Ammo	onia	J1	0.25 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/20	17 18:38	EGD
Nitrogen, Nitrate	е		0.62 mg/L			EPA 300.0	0.55		0.04	0 02/08/20	17 17:27	LJC
Nitrogen, Nitrite	;	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08/20	17 17:27	LJC
Nitrogen, Total I	Kjeldahl		1.5 mg/L			SM 4500 NH3 G	0.40			02/16/20	17 12:15	EGD
pH			7.80 SU			CLIENT SPECIFIED	1.00			02/07/20	17 9:20	cus
Phosphorus, Or	rthophosphate		0.16 mg/L			EPA 365.1	0.050		0.01	7 02/08/20	17 17:52	EGD
Phosphorus, To	tal		1.4 mg/L			EPA 365.1	0.10		0.02	3 02/15/20	17 15:16	EGD
Solids, Total Su	spended		199 mg/L			USGS I-3765-85	2	1		02/09/20	17 22:27	JAR
Temperature			11.7 deg C			CLIENT SPECIFIED				02/07/20	17 9:20	CUS
Sample: 05 Sampled By	11 Customer								Sa	mpled	02/07/201	7@ 10:02
Flow by Calcula	ation		0.73 CFS			EPA 600				02/07/20	17 10:02	CUS
Oxygen, Dissolv	ved		9.10 mg/L			SM 4500 O G	0.10			02/07/20	17 10:02	CUS
Specific Conduc	ctance at 25		721 umhos/cm			CLIENT SPECIFIED				02/07/20	17 10:02	CUS
Turbidity			7 NTU			CLIENT SPECIFIED	1			02/07/20	17 10:02	CUS
E. coli			> 2419.6 MPN/100mL			SM9223B (Colilert-18)				02/07/20	17 15:24	LKE
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		02/08/20	17 9:57	MTA
Nitrogen, Ammo	onia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 02/10/20	17 18:44	EGD
Nitrogen, Nitrate	е		1.3 mg/L			EPA 300.0	0.55		0.04	0 02/08/20	17 17:42	LJC
Nitrogen, Nitrite	;	UJ	<0.38 mg/L			EPA 300.0	0.75		0.3	8 02/08/20	17 17:42	LJC
Nitrogen, Total I	Kjeldahl		0.59 mg/L			SM 4500 NH3 G	0.40			02/16/20	17 12:17	EGD
pH			7.70 SU			CLIENT SPECIFIED	1.00			02/07/20	17 10:02	CUS
Dhaanharus O	rthophosphate		0.19 mg/L			EPA 365.1	0.050		0.01	7 02/08/20	17 17:53	EGD
Phosphorus, Ol	inopiroopirate		J			2.7.000.1				. 02,00,20	17 17.00	LOD

REVISED CERTIFICATE OF ANALYSIS

7020456

Third Rock Consultants
Steve Evans

Report Reissued

Date Received

02/23/2017 02/07/2017

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
	11 Customer								Sa	ampled 02/07/20	17@ 10:02
Solids, Total Suspe	ended		7 mg/L			USGS I-3765-85	1	1		02/09/2017 22:27	JAR
Temperature			11.6 deg C			CLIENT SPECIFIED				02/07/2017 10:02	CUS

Revised to correct E coli result on sample -04 & -05. LLM 2-23-17

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- M3 Analyte in the parent sample for the Matrix Spike was >4x the concentration of the spike solution which renders the spike amount insignificant. Matrix spike recoveries do not impact the quality of the parent sample data for this analyte.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

Original COC To Laboratory (Accompany Samples & Report)			10 February (10 minutes)	But dush 2.	Relinquished By:													Laboratory # S	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.		Comments:	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	Collected By: Client -	Phone #: 859-977-2000		Project Name: Cane Run Watershed Based Plan	COC#
amples & Report	1-1 1-1 1-1	13	0	1-170186	Date / Time	DD	11	10	9	8	7	6	5	4	3	2	1	Sample I.D.	, CBOD5. earliest time					136		Cicya	Conv Blowd	Based Plan	
						WS	SW	MS	WS	Ļ		WS	SW	SW	SW	SW	WS	Matrix.*				EDD Required: XYes							
Copy-TR					Received By:		2-7-17	2.7-17	2-7-17	1-7-17	27-77							Collection Date	- \(\overline{\o	SA - Na	* Preserva	ired: ∑Yı							-
COC Copy - TRC Project File			(Ву:	*****	1002	0920	1033	1145	1106							Collection Time	1 - loe (All)	SA - H2SO4 ST - Na2S2O3	Preservative Code	es L No				***			/ (
Ē.				Section 1		G \	G V	G)	G)	6 \	6 ۱	G \	6 -	G	G	G	6	Grab / I			v			9		F		.	CHAIN OF CUSTODY
S 202				2-7	-	Y*∕N	Y*/N	∀ *⊠	Y*/N	Y*/N	Y*∕N	Y*/N	Υ*/N	Υ*/N	Y*/N	Y*\N	Υ* Ν	AN E			320			MICROBAC"	2	スピンして	J :	1	V OF
COC Copy - TRC Laboraton	رو			7-17	Date / Time	2	2	2	12	2	2	2	2	2	2	2	2	# 9f	CBOD5, TSS	Requested Lab An	32oz P 50	cont.		رير O	0	7	0)),	CUS
₹C Labe	વ્ય∙ાગ	3	O,	138	ine	1			_	1	1		-			_	_	# of Containers Analysis	NO2, NO3	sted La	50 mL 32c	* Preservation Lype - SA - SA - Container Size/Type		> ე	Z	7	5		YGO
3807,033			Во	8	Te⊢	1	<u> </u>	1	1	1 1	1			>	<u> </u>	1	<u> </u>		PT, TKN, NH3 P O (* Field Filtered)	ab Ang	320z P 80z	SA - Size/Ty	•	, iv	U	7	7		
Service			ttles in	ntainer	ոթ. Սք		_	د ا	_	1				_	_	_		Per	E-Coli	nalysis	7 402 P 202	ype ST							
Services Coordinator		(Bottles Intacty (Yes)/ No)	s Prope	on Rece		9.1	9.3	11.2	7.2	11.3							Disso	ived Oxygen (mg/L)			<u> </u>	Fig.						
inator		***	No)	Containers Properly Preserved: (Yes/ No)	Temp. Upon Receipt (C): 48 Measured By:		1.18	84.5	91.5		91.9							Disso Satura	lved Oxygen (% ition)	On	Wea		Domark				글	cbloye	PDE A
			ſ	rved: A	1.8°Me	- See	7.7	7,%	8-1	7.6	7.9							pH (S	S.U.)	-Site/F	Weather Event:	į	1	Lexing		2526	ROO C	nalytic d@third	
			Ĭ	(SNO)	asured E	See Field Notebook -	1721	084.1	\vdash	<u> </u>	461							Speci (umho	fic Conductance /cm)	On-Site/Field Measurements	/ent:		9-9/1-2	Lexington, KY 40503	Suite 180	2526 Regency Road	Cory Bloyd Third Rock Consultants TTC	cbloyd@thirdrockconsultants.com	
					W. YE	otebook	2.6		٥		11.8							Temp	erature (° ^c)	asuren	ργ		150	7 4050 7000	8	y Road	Jitants	nsultar insultar	
					J. P. P.	•	50	180	75,2	80	11.0							Turbio	dity (N.T.U.)	Tents	Wet			Ø		<u>, , , , , , , , , , , , , , , , , , , </u>	_ C	its con	3
					•		0.73	12.2	£.)	21/A	0.19							Flow	(cfs)									ı- X	

Original COC To Laboratory (Accompany Samples & Report) COC Copy - TRC Project File CO		- M - 1	0	Ņ	Relinquished By: Date / Time Received By:	DD SW ****** G Y*N	11 SW 2-7-17 1002 G Y*N	10 SW 2.7-17 DQ20 G Y*N	9 SW 2-7-17 [033 G Y*N	G	2-7-17 1106 G	· G	6	4 SW G Y*N	3 SW G Y*/N	G	1 SW G Y*N	Laboratory# Sample I.D. Matrix Date Collection Collection Comp Y/N	OP and PT RL of 0.05. ******* Assume duplicate sampled at earliest time for hold purposes.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5.	SA - H2SO4 ST - Na2S2O3	Comments: * Preservative Code	Turnaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	By: Client -	Phone #: 859-977-2000		Project Name: Cane Run Watershed Based Plan	COC# Chain of custody Client: Third Rock Consultants 11 C
COC Copy - TRC Laboratory Services	Q-17-19		Bottles Inta	Containers	Temp. Upo	<u></u>	_	<u> </u>	<u> </u>	1 1 1	1 1 1	1 1 1	<u> </u>	<u> </u>	<u></u>	1 1 1	<u></u>	# of Containers Per Analysis	PT, TKN, NHP (* Field FE-Coli		Requested Lab Analysis	32oz P 8oz 4oz P P	- ST	* Preservation Type	*	v	ラ	<u> </u>		
Services Coordinator			ottles Intact; (Yes)/ No)	ontainers Properly Preserved: (Yes) No)	Temp. Upon Receipt (C): 4.8 Measured By	- Se	9.1 84.1 7.	9.3 84.5 7	3.18	68.7 7	11.3 91.9 7.								<u> </u>		On-Site	Weather Event:		Field Remarks:	Lexi		252 252	4	cbloyd@th	PDF Analyt
			American Control	(Yes/No)	leasured By:	See Field Notebook -	7 721 11.6	P 1480 11.7	2 38 A	6 28	1.9 461 11.8							Speci (umho	fic Conductan	ce	On-Site/Field Measurements	Event:Dry			Lexington, KY 40503 859-977-2000	Suite 180	2526 Regency Road	Cory Bloyd	cbloyd@thirdrockconsultants.com	PDF Analytical Report & Invoice To:
					N Call	ok -	6.9	7 150	75.2	7 80	8 400						- :		dity (N.T.U.)		ements	Wet			503		ad FC	; ; ;	ants.com	nvoice To:
			···				0.73	12.7	7.	2/8	0.19							Flow ((cfs)											

7031163

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 03/29/2017

 Date Due
 03/29/2017

 Date Received
 03/17/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL Ar	nalysis Date	Tech
Sample: 01 1 Sampled By Customer								Sampl	ed 03/17/20:	17@ 14:10
Flow by Calculation		7.06 CFS			EPA 600			03	3/17/2017 14:10	cus
Oxygen, Dissolved - Client Provided		11.65 mg/L			CLIENT SPECIFIED	0.10		03	3/17/2017 14:10	CUS
Specific Conductance at 25 °C		495 umhos/cm			CLIENT SPECIFIED			03	3/17/2017 14:10	cus
E. coli		83.6 MPN/100mL			SM9223B (Colilert-18)			03	3/17/2017 19:20	BAS
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2	03	3/18/2017 9:38	DJR
Nitrogen, Ammonia	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22 03	3/21/2017 18:28	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40		03	3/23/2017 13:46	EGD
pH		7.51 SU			CLIENT SPECIFIED	1.00		03	3/17/2017 14:10	CUS
Phosphorus, Total		0.20 mg/L			EPA 365.1	0.050		0.010 03	3/28/2017 11:57	EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1	03	3/21/2017 16:47	CJL
Temperature		5.4 deg C			CLIENT SPECIFIED			03	3/17/2017 14:10	CUS
Nitrogen, Nitrate		3.2 mg/L			EPA 300.0	0.33		0.015 03	3/18/2017 11:18	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.021 03	3/18/2017 11:18	LJC
Phosphorus, Orthophosphate	J1	0.22 mg/L			EPA 300.0	0.48		0.024 03	3/18/2017 11:18	LJC
Sample: 02 3 Sampled By Customer								Sampl	ed 03/17/20:	17@ 14:30
Flow by Calculation		4.25 CFS			EPA 600			03	3/17/2017 14:30	CUS
Oxygen, Dissolved - Client Provided		11.33 mg/L			CLIENT SPECIFIED	0.10		03	3/17/2017 14:30	CUS
Specific Conductance at 25 °C		520 umhos/cm			CLIENT SPECIFIED			03	3/17/2017 14:30	CUS
E. coli		110.6 MPN/100mL			SM9223B (Colilert-18)			03	3/17/2017 19:20	BAS
CBOD, 5 Day		2.0 mg/L			SM 5210 B	2.0	2	03	3/18/2017 9:38	DJR
Nitrogen, Ammonia	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22 03	3/21/2017 18:30	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40		03	3/23/2017 13:48	EGD
pH		7.98 SU			CLIENT SPECIFIED	1.00		03	3/17/2017 14:30	CUS
Phosphorus, Total		0.23 mg/L			EPA 365.1	0.050		0.010 03	3/28/2017 11:58	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1	03	3/21/2017 16:47	CJL

7031163

Third Rock Consultants Steve Evans

Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 02 Sampled By	3 Customer								Sa	mpled	03/17/201	.7@ 14:30
Temperature			7.4 deg C			CLIENT SPECIFIED				03/17/2	017 14:30	CUS
Nitrogen, Nitrate			3.1 mg/L			EPA 300.0	0.33		0.01	5 03/18/2	017 11:38	LJC
Nitrogen, Nitrite		UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 03/18/2	017 11:38	LJC
Phosphorus, Orth	ophosphate	J1	0.22 mg/L			EPA 300.0	0.48		0.02	4 03/18/2	017 11:38	LJC
Sample: 03	4 Customer								Sa	mpled	03/17/201	.7@ 15:00
Oxygen, Dissolve	d - Client		9.42 mg/L			CLIENT SPECIFIED	0.10			03/17/2	017 15:00	CUS
Provided Specific Conducta °C	ance at 25		392 umhos/cm			CLIENT SPECIFIED				03/17/2	017 15:00	CUS
E. coli			20.3 MPN/100mL			SM9223B (Colilert-18)				03/17/2	017 19:20	BAS
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		03/18/2	017 9:38	DJR
Nitrogen, Ammoni	а	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/2	017 12:54	EGD
Nitrogen, Total Kje	eldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			03/23/2	017 13:50	EGD
pН			7.39 SU			CLIENT SPECIFIED	1.00			03/17/2	017 15:00	CUS
Phosphorus, Total	1		0.27 mg/L			EPA 365.1	0.10		0.02	1 03/28/2	017 13:09	EGD
Solids, Total Susp	ended		8 mg/L			USGS I-3765-85	1	1		03/21/2	017 16:47	CJL
Temperature			9.0 deg C			CLIENT SPECIFIED				03/17/2	017 15:00	CUS
Nitrogen, Nitrate			1.3 mg/L			EPA 300.0	0.33		0.01	5 03/18/2	017 11:52	LJC
Nitrogen, Nitrite		UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 03/18/2	017 11:52	LJC
Phosphorus, Orth	ophosphate	J1	0.22 mg/L			EPA 300.0	0.48		0.02	4 03/18/2	017 11:52	LJC
Sample: 04 Sampled By	5 Customer								Sa	mpled	03/17/201	7@ 15:20
Oxygen, Dissolve	d - Client		11.83 mg/L			CLIENT SPECIFIED	0.10			03/17/2	017 15:20	CUS
Provided Specific Conducta °C	ance at 25		508 umhos/cm			CLIENT SPECIFIED				03/17/2	017 15:20	CUS
E. coli			146.7 MPN/100mL			SM9223B (Colilert-18)				03/17/2	017 19:20	BAS
CBOD, 5 Day			2.6 mg/L			SM 5210 B	2.0	2		03/18/2	017 9:38	DJR
Nitrogen, Ammoni	a	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/2	017 12:56	EGD
Nitrogen, Total Kje	eldahl		0.56 mg/L			SM 4500 NH3 G	0.40			03/23/2	017 13:52	EGD

7031163

Third Rock Consultants Steve Evans

Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Analysis OC	OC Qualifier	Result Units	Min Ma	x Method	Rpt Limit	Cus Limit	MDL Ana	lysis Date	Tech
Sample: 04 5 Sampled By Customer							Sample	03/17/20	17@ 15:20
рН		8.06 SU		CLIENT SPECIFIED	1.00		03/	17/2017 15:20	CUS
Phosphorus, Total		0.30 mg/L		EPA 365.1	0.050		0.010 03/	28/2017 12:03	EGD
Solids, Total Suspended	R3	7 mg/L		USGS I-3765-85	1	1	03/	21/2017 16:47	CJL
Temperature		7.7 deg C		CLIENT SPECIFIED			03/	17/2017 15:20	CUS
Nitrogen, Nitrate		2.9 mg/L		EPA 300.0	0.33		0.015 03/	18/2017 12:06	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L		EPA 300.0	0.45		0.021 03/	18/2017 12:06	LJC
Phosphorus, Orthophosphate	J1	0.24 mg/L		EPA 300.0	0.48		0.024 03/	18/2017 12:06	LJC
Sample: 05 6 Sampled By Customer							Sample	I 03/17/20:	17@ 15:40
Oxygen, Dissolved - Client		11.72 mg/L		CLIENT SPECIFIED	0.10		03/	17/2017 15:40	CUS
Provided Specific Conductance at 25 °C		523 umhos/cm		CLIENT SPECIFIED			03/	17/2017 15:40	CUS
E. coli		290.9 MPN/100mL		SM9223B (Colilert-18)			03/	17/2017 19:20	BAS
CBOD, 5 Day		2.7 mg/L		SM 5210 B	2.0	2	03/	18/2017 9:38	DJR
Nitrogen, Ammonia	L1	0.30 mg/L		SM 4500 NH3 G	0.25		0.22 03/	27/2017 12:58	EGD
Nitrogen, Total Kjeldahl		0.90 mg/L		SM 4500 NH3 G	0.40		03/	23/2017 13:54	EGD
рН		7.99 SU		CLIENT SPECIFIED	1.00		03/	17/2017 15:40	CUS
Phosphorus, Total		0.33 mg/L		EPA 365.1	0.050		0.010 03/	28/2017 12:05	EGD
Solids, Total Suspended		2 mg/L		USGS I-3765-85	1	1	03/	21/2017 16:47	CJL
Temperature		7.8 deg C		CLIENT SPECIFIED			03/	17/2017 15:40	CUS
Nitrogen, Nitrate		2.8 mg/L		EPA 300.0	0.33		0.015 03/	18/2017 12:21	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L		EPA 300.0	0.45		0.021 03/	18/2017 12:21	LJC
Phosphorus, Orthophosphate	J1	0.26 mg/L		EPA 300.0	0.48		0.024 03/	18/2017 12:21	LJC
Sample: 06 7 Sampled By Customer							Sample	03/17/20	17@ 15:45
Flow by Calculation		0.43 CFS		EPA 600			03/	17/2017 15:45	CUS
Oxygen, Dissolved - Client Provided		15.10 mg/L		CLIENT SPECIFIED	0.10			17/2017 15:45	
Specific Conductance at 25 °C		436 umhos/cm		CLIENT SPECIFIED			03/	17/2017 15:45	CUS

7031163

Third Rock Consultants Steve Evans

Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 06 7 Sampled By Customer								Sa	mpled	03/17/201	17@ 15:45
Turbidity		3 NTU			CLIENT SPECIFIED	1			03/17/2	017 15:45	CUS
E. coli		4.1 MPN/100mL			SM9223B (Colilert-18)				03/17/2	017 19:20	BAS
CBOD, 5 Day		2.2 mg/L			SM 5210 B	2.0	2		03/18/2	017 9:38	DJR
Nitrogen, Ammonia	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/2	017 13:00	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			03/23/2	017 13:56	EGD
pH		8.10 SU			CLIENT SPECIFIED	1.00			03/17/2	017 15:45	CUS
Phosphorus, Total		0.16 mg/L			EPA 365.1	0.050		0.01	0 03/28/2	017 12:06	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		03/21/2	017 16:47	CJL
Temperature		7.5 deg C			CLIENT SPECIFIED				03/17/2	017 15:45	cus
Nitrogen, Nitrate		1.6 mg/L			EPA 300.0	0.33		0.01	5 03/18/2	017 12:35	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 03/18/2	017 12:35	LJC
Phosphorus, Orthophosphate	J1	0.19 mg/L			EPA 300.0	0.48		0.02	4 03/18/2	017 12:35	LJC
Sample: 07 8 Sampled By Customer								Sa	mpled	03/17/201	17@ 16:26
Oxygen, Dissolved - Client		8.28 mg/L			CLIENT SPECIFIED	0.10			03/17/2	017 16:26	CUS
Provided Specific Conductance at 25 °C		578 umhos/cm			CLIENT SPECIFIED				03/17/2	017 16:26	CUS
Turbidity		19 NTU			CLIENT SPECIFIED	1			03/17/2	017 16:26	CUS
E. coli		9.8 MPN/100mL			SM9223B (Colilert-18)				03/17/2	017 19:20	BAS
CBOD, 5 Day		3.5 mg/L			SM 5210 B	2.0	2		03/18/2	017 9:38	DJR
Nitrogen, Ammonia	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/2	017 13:02	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			03/29/2	017 9:58	EGD
pH		7.52 SU			CLIENT SPECIFIED	1.00			03/17/2	017 16:26	CUS
Phosphorus, Total		0.38 mg/L			EPA 365.1	0.050		0.01	0 03/28/2	017 12:07	EGD
Solids, Total Suspended		26 mg/L			USGS I-3765-85	1	1		03/21/2	017 16:47	CJL
Temperature		10.7 deg C			CLIENT SPECIFIED				03/17/2	017 16:26	CUS
Nitrogen, Nitrate		2.6 mg/L			EPA 300.0	0.33		0.01	5 03/18/2	017 12:49	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 03/18/2	017 12:49	LJC
Phosphorus, Orthophosphate	J1	0.20 mg/L			EPA 300.0	0.48		0.02	4 03/18/2	017 12:49	LJC

7031163

Third Rock Consultants Steve Evans

Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 07 8 Sampled By Custon	mer								Sa	mpled	03/17/201	.7@ 16:26
Sample: 08 9 Sampled By Custor	mer								Sa	mpled	03/17/201	7@ 15:12
Flow by Calculation			5.6 CFS			EPA 600				03/17/	2017 15:12	CUS
Oxygen, Dissolved - Cli Provided			14.90 mg/L			CLIENT SPECIFIED	0.10				2017 15:12	CUS
Specific Conductance a °C	t 25		332 umhos/cm			CLIENT SPECIFIED				03/17/	2017 15:12	CUS
Turbidity			6 NTU			CLIENT SPECIFIED	1			03/17/	2017 15:12	CUS
E. coli			18.5 MPN/100mL			SM9223B (Colilert-18)				03/17/	2017 19:20	BAS
CBOD, 5 Day			6.8 mg/L			SM 5210 B	2.0	2		03/18/	2017 9:38	DJR
Nitrogen, Ammonia		UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/	2017 13:04	EGD
Nitrogen, Total Kjeldahl			0.76 mg/L			SM 4500 NH3 G	0.40			03/29/	2017 10:00	EGD
pH			8.80 SU			CLIENT SPECIFIED	1.00			03/17/	2017 15:12	CUS
Phosphorus, Total			0.18 mg/L			EPA 365.1	0.050		0.01	0 03/28/	2017 12:09	EGD
Solids, Total Suspended	d		13 mg/L			USGS I-3765-85	1	1		03/21/	2017 16:47	CJL
Temperature			7.0 deg C			CLIENT SPECIFIED				03/17/	2017 15:12	CUS
Nitrogen, Nitrate			2.2 mg/L			EPA 300.0	0.33		0.01	5 03/18/	2017 13:03	LJC
Nitrogen, Nitrite		UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 03/18/	2017 13:03	LJC
Phosphorus, Orthophos	phate	UJ	<0.024 mg/L			EPA 300.0	0.48		0.02	4 03/18/	2017 13:03	LJC
Sample: 09 10 Sampled By Custor	mer								Sa	mpled	03/17/201	.7@ 13:50
Flow by Calculation			0.196 CFS			EPA 600				03/17/	2017 13:50	CUS
Oxygen, Dissolved - Cli	ent		11.30 mg/L			CLIENT SPECIFIED	0.10			03/17/	2017 13:50	CUS
Provided Specific Conductance a °C	t 25		648 umhos/cm			CLIENT SPECIFIED				03/17/	2017 13:50	CUS
Turbidity			2 NTU			CLIENT SPECIFIED	1			03/17/	2017 13:50	CUS
E. coli			686.7 MPN/100mL			SM9223B (Colilert-18)				03/17/	2017 19:20	BAS
CBOD, 5 Day			2.5 mg/L			SM 5210 B	2.0	2		03/18/	2017 9:38	DJR
Nitrogen, Ammonia		UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/	2017 13:06	EGD
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			03/29/	2017 10:02	EGD

7031163

Third Rock Consultants Steve Evans

Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Analysis OOG	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 09 10 Sampled By Customer								Sa	mpled	03/17/201	7@ 13:50
pH		8.10 SU			CLIENT SPECIFIED	1.00			03/17/2	017 13:50	CUS
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.010	03/28/2	017 12:17	EGD
Solids, Total Suspended		<1 mg/L			USGS I-3765-85	1	1		03/21/2	017 16:47	CJL
Temperature		10.4 deg C			CLIENT SPECIFIED				03/17/2	017 13:50	CUS
Nitrogen, Nitrate		3.2 mg/L			EPA 300.0	0.33		0.018	03/18/2	017 13:17	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	03/18/2	017 13:17	LJC
Phosphorus, Orthophosphate	J1	0.26 mg/L			EPA 300.0	0.48		0.024	03/18/2	017 13:17	LJC
Sample: 10 11 Sampled By Customer								Sa	mpled	03/17/201	.7@ 14:30
Flow by Calculation		0.445 CFS			EPA 600				03/17/2	017 14:30	CUS
Oxygen, Dissolved - Client		11.40 mg/L			CLIENT SPECIFIED	0.10			03/17/2	017 14:30	CUS
Provided Specific Conductance at 25 °C		683 umhos/cm			CLIENT SPECIFIED				03/17/2	017 14:30	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			03/17/2	017 14:30	CUS
E. coli		101.9 MPN/100mL			SM9223B (Colilert-18)				03/17/2	017 19:20	BAS
CBOD, 5 Day		2.4 mg/L			SM 5210 B	2.0	2		03/18/2	017 9:38	DJR
Nitrogen, Ammonia	UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	03/27/2	017 13:08	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			03/29/2	017 10:04	EGD
рН		7.89 SU			CLIENT SPECIFIED	1.00			03/17/2	017 14:30	CUS
Phosphorus, Total		0.20 mg/L			EPA 365.1	0.050		0.010	03/28/2	017 12:19	EGD
Solids, Total Suspended		1 mg/L			USGS I-3765-85	1	1		03/21/2	017 16:47	CJL
Temperature		8.2 deg C			CLIENT SPECIFIED				03/17/2	017 14:30	CUS
Nitrogen, Nitrate		0.80 mg/L			EPA 300.0	0.33		0.015	03/18/2	017 13:31	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	03/18/2	017 13:31	LJC
Phosphorus, Orthophosphate	J1	0.20 mg/L			EPA 300.0	0.48		0.024	03/18/2	017 13:31	LJC
Sample: 11 DD Sampled By Customer								Sa	mpled	03/17/201	.7
E. coli		108.1 MPN/100mL			SM9223B (Colilert-18)				03/17/2	017 19:20	BAS
CBOD, 5 Day		2.2 mg/L			SM 5210 B	2.0	2		03/18/2	017 9:38	DJR

7031163

Third Rock Consultants Steve Evans

Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Da	ate	Tech
Sample: 11 DD Sampled By Customer	r								Sa	mpled 03	3/17/201	7
Nitrogen, Ammonia		UJ L1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 03/27/2017	13:10	EGD
Nitrogen, Total Kjeldahl			<0.40 mg/L			SM 4500 NH3 G	0.40			03/29/2017	10:06	EGD
Phosphorus, Total			0.19 mg/L			EPA 365.1	0.050		0.01	0 03/28/2017	12:20	EGD
Solids, Total Suspended			2 mg/L			USGS I-3765-85	1	1		03/21/2017	16:47	CJL
Nitrogen, Nitrate			0.80 mg/L			EPA 300.0	0.33		0.01	5 03/18/2017	14:14	LJC
Nitrogen, Nitrite		UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 03/18/2017	14:14	LJC
Phosphorus, Orthophosph	ate	J1	0.20 mg/L			EPA 300.0	0.48		0.02	4 03/18/2017	14:14	LJC

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- L1 Lab Control Sample (LCS) recovery below lower Control Limit.
- R3 Relative Percent Difference (RPD) of Sample Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

7031163

Third Rock Consultants Steve Evans

Date Due
Date Received

03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

ස් දිරි දිරි NOTE: Phone #: 859-977-2000 Project Contact (for laboratory): Cory Bloyd Project # : KY16-004 Original COC To Laboratory (Accompany Samples & Report) for hold purposes. OP and PT RL of 0.05. Report to MDLs for NH3, NO2, NO3, CBOD5 Comments: Methodology Required: Collected By: Client Project Name: Cane Run Watershed Based Plan Client: Third Rock Consultants, LLC ***** Assume duplicate sampled at earliest time TSS RL of 1.5, Turnaround Time Required: 7 Working Days Relinguished By: Laboratory# 40CFR Part 136 Sample I.D. Date / Time 17/17 1910 В 7 10 ဖ α တ 5 4 ယ N EDD Required: X Yes _ No Matrix.* WS WS ΝS WS ₩S SW SW SW SW SN NS WS WS COC Copy - TRC Project File Collection Date Received By: JY YCL Preservative Code SA - H2SO4 ST - Na2S2O3 1 - lce (All) Collection t E CHAIN OF CUSTODY Grab / Comp MICROBAC G G G G 0 G 0 6 G G Y*/N **∀***/N Y*/N Y*\ Y*/N Y*/N Y*/N Y*\ **∀***/N **∀***/N Y*/N ¥ã | <u>*</u> 377-17 COC Copy - TRC Laboratory Services Coordinator 320z P Date / Time Requested Lab Analysis CBOD5, TSS N N N N N N N N * Preservation Type # of Containers Per Container Size/Type 50 mL NO2, NO3 Analysis 36 S Ş PT, TKN, NH3 Containers Properly Preserved: (Yes / No) Bottles Intact: (Yes / No) Temp. Upon Receipt (C): 4. (Measured By: უ გ P^{o} (* Field Filtered) ST ъ 4 E-Coli Field Remarks: S. Dissolved Oxygen (mg/L) نفت دي 8.00 0 Dissolved Oxygen (% cbloyd@thirdrockconsultants.com PDF Analytical Report & Invoice To: Weather Event: On-Site/Field Measurements Saturation) Third Rock Consultants, LLC Lexington, KY 40503 7.4 20.8 7. 39 2526 Regency Road See Field Notebook pH (S.U.) 12) Cory Bloyd Suite 180 522.3 507.6 312. Specific Conductance Ţ (umho/cm) βď <u>\</u> 7.4 7.67 8. <u>1</u> Temperature (° C) __Wet -Turbidity (N.T.U.) Flow (cfs)

Original COC To Laboratory (Accompany Samples & Report) COC Copy - IRC Project File COC Copy - IRC Laboratory Services Coordinator	11/1/2 3/17/17 17/0 XDAML 37/7-7 1710 Bottles Intact: (Yes/No)	Must Marley 3 17-17 43) Will 3/17/17 4:30 Containers Properly Preserved: (Yes I No)	Relinquished By: Date / Time Received By: Date / Time Temp. Upon Receipt (C): 4 1 Measured By:	DD sw ******* G Y*/N 2 1 1 1 1 -:	11 SW V 2:30 G Y*N 2 1 1 1 1 1 1 1 1 7 9,1 7	1:50 G Y*N 2 1 1 1 1 1 12.3 103.6	9 SW 3:12 G Y*N 2 1 1 1 1 14,9 125.6	6 G Y*N 2 1 1 1 1 8.28 69.2	G Y*/N 2 1 1 1 1 1 15, 126, 3	. SW /6 G Y*/N 2 1 1 1 1	G	$4 \qquad \text{SW} \qquad \qquad \begin{array}{ c c c c c c c c c c c c c c c c c c c$	´ 3 SW (δεμλ G Y*/N 2 1 1 1 1	(_V G Y*/N	1 SW G Y*/N 2 1 1 1 1	Disso Satura		H3, NO2, NO3, CBOD5.	Requested Lab Analysis	2006 32002 P 50 mL 32002 P 8002 4002	Container Size/Type	*Preservation Type Field Remarks:	Methodology Required: 40CFR Part 136		Phone #: 859-977-2000 CONSILITANTS	コラフロフラ	Name: Cane Run Watershed Based Plan	
orationy services Coordinator			Temp. Upon Receipt (C):		1 1 13 4	1 1 11,3 103.	1 1 14,9135.	1 1 2.28	1 1							Disso	P ° (* Field E-Coli ved Oxygen	Filtered (mg/L)	nalysis	80z 40z P P		Туре					cbloy	
	,		- 1	- See Field Notebook -	7.89 683 8.2	6 8.1 648	8.8 332 6.	7.5%								pH (S	S.U.) fic Conducta	nce	On-Site/Field Measurements	Weather Event:Dry		ks:	Lexington, KY 40503 859-977-2000	Suite 180	2526 Regency Road	Cory Bloyd Third Rock Consultants, LLC	cbloyd@thirdrockconsultants.com	
)	-	0	5	<u>Σ</u> .	2 2 1 44%	۰	1	7 19	3. 0.43							Turbi	lity (N.T.U.) (cfs)		ments	Wet			J3		ā. *		nts.com	

2062

7041709

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/08/2017

 Date Due
 05/08/2017

 Date Received
 04/27/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis D	ate	Tech
Sample: 01 1								San	mpled	04/27/201	7@ 10:50
Sampled By Customer		F 40 OFO			EDA 000				04/07/004	7.40.50	CLIC
Flow by Calculation		5.42 CFS			EPA 600	0.40			04/27/201		CUS
Oxygen, Dissolved - Client Provided		9.52 mg/L			CLIENT SPECIFIED	0.10			04/27/201	/ 10:50	CUS
Specific Conductance at 25 °C		465 umhos/cm			CLIENT SPECIFIED				04/27/201	7 10:50	CUS
Turbidity		4 NTU			CLIENT SPECIFIED	1			04/27/201	7 10:50	CUS
E. coli		517.2 MPN/100mL			SM9223B (Colilert-18)				04/27/201	7 15:15	BAS
CBOD, 5 Day	J1 BOD3	3.6 mg/L			SM 5210 B	5.0		2.0	04/28/201	7 9:00	DJR
Nitrogen, Ammonia	UJ M2, R1	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	05/03/201	7 18:38	EGD
Nitrogen, Total Kjeldahl	IXI	0.46 mg/L			SM 4500 NH3 G	0.40			05/03/201	7 15:40	EGD
рН		7.84 SU			CLIENT SPECIFIED	1.00			04/27/201	7 10:50	CUS
Phosphorus, Orthophosphate		0.17 mg/L			EPA 365.1	0.050		0.017	04/28/201	7 16:11	EGD
Phosphorus, Total		0.21 mg/L			EPA 365.1	0.050		0.010	05/02/201	7 9:23	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		04/28/201	7 10:19	CJL
Temperature		20.2 deg C			CLIENT SPECIFIED				04/27/201	7 10:50	CUS
Nitrogen, Nitrate		1.2 mg/L			EPA 300.0	0.33		0.015	04/28/201	7 12:40	LJC
Nitrogen, Nitrite	J1	0.099 mg/L			EPA 300.0	0.45		0.021	04/28/201	7 12:40	LJC
Sample: 02 2 Sampled By Customer								San	mpled	04/27/201	7@ 11:55
Flow by Calculation		3.04 CFS			EPA 600				04/27/201	7 11:55	CUS
Oxygen, Dissolved - Client Provided		12.85 mg/L			CLIENT SPECIFIED	0.10			04/27/201	7 11:55	CUS
Specific Conductance at 25 °C		525 umhos/cm			CLIENT SPECIFIED				04/27/201	7 11:55	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			04/27/201	7 11:55	CUS
E. coli		360.9 MPN/100mL			SM9223B (Colilert-18)				04/27/201	7 15:15	BAS
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0		2.0	04/28/201	7 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	05/03/201	7 18:40	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/03/201	7 15:42	EGD

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 02 2 Sampled By Customer								Sa	mpled	04/27/201	7@ 11:55
pH		7.75 SU			CLIENT SPECIFIED	1.00			04/27/2	017 11:55	CUS
Phosphorus, Orthophosphate		0.20 mg/L			EPA 365.1	0.050		0.01	7 04/28/2	017 16:12	EGD
Phosphorus, Total		0.24 mg/L			EPA 365.1	0.050		0.01	0 05/02/2	017 9:24	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		04/28/2	017 10:19	CJL
Temperature		20.0 deg C			CLIENT SPECIFIED				04/27/2	017 11:55	CUS
Nitrogen, Nitrate		1.6 mg/L			EPA 300.0	0.33		0.01	5 04/28/2	017 12:54	LJC
Nitrogen, Nitrite	J1	0.11 mg/L			EPA 300.0	0.45		0.02	1 04/28/2	017 12:54	LJC
Sample: 03 3 Sampled By Customer								Sa	mpled	04/27/201	7@ 11:45
Oxygen, Dissolved - Client Provided		10.40 mg/L			CLIENT SPECIFIED	0.10			04/27/2	017 11:45	CUS
Specific Conductance at 25 °C		386 umhos/cm			CLIENT SPECIFIED				04/27/2	017 11:45	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			04/27/2	017 11:45	CUS
E. coli		37.9 MPN/100mL			SM9223B (Colilert-18)				04/27/2	017 15:15	BAS
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0		2.	0 04/28/2	017 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/2	017 18:42	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/03/2	017 15:48	EGD
рН		7.35 SU			CLIENT SPECIFIED	1.00			04/27/2	017 11:45	CUS
Phosphorus, Orthophosphate		0.25 mg/L			EPA 365.1	0.050		0.01	7 04/28/2	017 16:14	EGD
Phosphorus, Total		0.27 mg/L			EPA 365.1	0.050		0.01	0 05/02/2	017 9:25	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		04/28/2	017 10:19	CJL
Temperature		17.2 deg C			CLIENT SPECIFIED				04/27/2	017 11:45	CUS
Nitrogen, Nitrate		2.6 mg/L			EPA 300.0	0.33		0.01	5 04/28/2	017 13:08	LJC
Nitrogen, Nitrite	J1	0.093 mg/L			EPA 300.0	0.45		0.02	1 04/28/2	017 13:08	LJC
Sample: 04 4 Sampled By Customer								Sa	mpled	04/27/201	7@ 12:30
Oxygen, Dissolved - Client Provided		11.91 mg/L			CLIENT SPECIFIED	0.10			04/27/2	017 12:30	CUS
Specific Conductance at 25 °C		368 umhos/cm			CLIENT SPECIFIED				04/27/2	017 12:30	CUS

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	s Date	Tech
Sample: 04 4 Sampled By Customer								Sa	mpled	04/27/201	17@ 12:30
Turbidity		3 NTU			CLIENT SPECIFIED	1			04/27/20	017 12:30	cus
E. coli		115.3 MPN/100mL			SM9223B (Colilert-18)				04/27/20	017 15:15	BAS
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0		2.	0 04/28/20	017 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/20	017 18:48	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/03/20	017 15:50	EGD
pH		7.94 SU			CLIENT SPECIFIED	1.00			04/27/20	017 12:30	CUS
Phosphorus, Orthophosphate		0.20 mg/L			EPA 365.1	0.050		0.01	7 04/28/20	017 16:15	EGD
Phosphorus, Total		0.22 mg/L			EPA 365.1	0.050		0.01	0 05/02/20	017 9:26	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		04/28/2	017 10:19	CJL
Temperature		18.4 deg C			CLIENT SPECIFIED				04/27/20	017 12:30	CUS
Nitrogen, Nitrate		0.38 mg/L			EPA 300.0	0.33		0.01	5 04/28/20	017 13:22	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 04/28/20	017 13:22	LJC
Sample: 05 5								Sa	mpled	04/27/201	17@ 12:50
Sampled By Customer Flow by Calculation		5.31 CFS			EPA 600				04/27/20	017 12:50	CUS
Oxygen, Dissolved - Client Provided		13.16 mg/L			CLIENT SPECIFIED	0.10			04/27/20	017 12:50	CUS
Specific Conductance at 25 °C		518 umhos/cm			CLIENT SPECIFIED				04/27/20	017 12:50	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			04/27/20	017 12:50	CUS
E. coli		62.4 MPN/100mL			SM9223B (Colilert-18)				04/27/20	017 15:15	BAS
CBOD, 5 Day	J1	2.1 mg/L			SM 5210 B	5.0		2.	0 04/28/20	017 9:00	DJR
Nitrogen, Ammonia		0.25 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/20	017 18:50	EGD
Nitrogen, Total Kjeldahl		0.65 mg/L			SM 4500 NH3 G	0.40			05/03/20	017 15:51	EGD
pH		8.13 SU			CLIENT SPECIFIED	1.00			04/27/20	017 12:50	CUS
Phosphorus, Orthophosphate		0.42 mg/L			EPA 365.1	0.050		0.01	7 04/28/20	017 16:19	EGD
Phosphorus, Total		0.44 mg/L			EPA 365.1	0.050		0.01	0 05/02/20	017 9:27	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		04/28/2	017 11:14	CJL
Temperature		20.3 deg C			CLIENT SPECIFIED				04/27/20	017 12:50	cus
Nitrogen, Nitrate		2.1 mg/L			EPA 300.0	0.33		0.01	5 04/28/20	017 13:36	LJC

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	is Date	Tech
Sample: 05 5 Sampled By Cust	omer								S	ampled	04/27/201	17@ 12:50
Nitrogen, Nitrite		J1	0.32 mg/L			EPA 300.0	0.45		0.02	1 04/28/	2017 13:36	LJC
Sample: 06 6 Sampled By Cust	omer								S	ampled	04/27/201	17@ 13:20
Flow by Calculation			1.68 CFS			EPA 600				04/27/	2017 13:20	CUS
Oxygen, Dissolved - O Provided	Client		12.83 mg/L			CLIENT SPECIFIED	0.10			04/27/	2017 13:20	CUS
Specific Conductance °C	at 25		548 umhos/cm			CLIENT SPECIFIED				04/27/	2017 13:20	CUS
Turbidity			2 NTU			CLIENT SPECIFIED	1			04/27/	2017 13:20	CUS
E. coli			248.9 MPN/100mL			SM9223B (Colilert-18)				04/27/	2017 15:15	BAS
CBOD, 5 Day		UJ	<2.0 mg/L			SM 5210 B	5.0		2	0 04/28/	2017 9:00	DJR
Nitrogen, Ammonia			0.87 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/	2017 18:52	EGD
Nitrogen, Total Kjelda	nl		1.5 mg/L			SM 4500 NH3 G	0.40			05/03/	2017 15:53	EGD
pH			8.10 SU			CLIENT SPECIFIED	1.00			04/27/	2017 13:20	CUS
Phosphorus, Orthoph	osphate		0.48 mg/L			EPA 365.1	0.050		0.01	7 04/28/	2017 16:20	EGD
Phosphorus, Total			0.51 mg/L			EPA 365.1	0.050		0.01	0 05/02/	2017 9:28	EGD
Solids, Total Suspend	ed		3 mg/L			USGS I-3765-85	1	1		04/28/	2017 11:14	CJL
Temperature			19.1 deg C			CLIENT SPECIFIED				04/27/	2017 13:20	CUS
Nitrogen, Nitrate			2.0 mg/L			EPA 300.0	0.33		0.01	5 04/28/	2017 13:50	LJC
Nitrogen, Nitrite		J1	0.29 mg/L			EPA 300.0	0.45		0.02	1 04/28/	2017 13:50	LJC
Sample: 07 7 Sampled By Cust	omer								S	ampled	04/27/201	17@ 13:20
Flow by Calculation			<0.01 CFS			EPA 600				04/27/	2017 13:20	CUS
Oxygen, Dissolved - O Provided	Client		15.91 mg/L			CLIENT SPECIFIED	0.10			04/27/	2017 13:20	CUS
Specific Conductance	at 25		365 umhos/cm			CLIENT SPECIFIED				04/27/	2017 13:20	CUS
Turbidity			11 NTU			CLIENT SPECIFIED	1			04/27/	2017 13:20	CUS
E. coli			18.5 MPN/100mL			SM9223B (Colilert-18)				04/27/	2017 15:15	BAS
CBOD, 5 Day		J1	2.0 mg/L			SM 5210 B	5.0		2	0 04/28/	2017 9:00	DJR
Nitrogen, Ammonia		UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/	2017 18:55	EGD

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis	OOC Qual	ifier Result Uni	its Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	is Date	Tech
Sample: 07 7 Sampled By Customer								Sa	mpled	04/27/201	7@ 13:20
Nitrogen, Total Kjeldahl		<0.40 mg/L	-		SM 4500 NH3 G	0.40			05/03/2	2017 15:55	EGD
pH		8.41 SU			CLIENT SPECIFIED	1.00			04/27/2	2017 13:20	CUS
Phosphorus, Orthophospha	te	0.063 mg/L	-		EPA 365.1	0.050		0.01	7 04/28/2	2017 16:21	EGD
Phosphorus, Total		0.16 mg/L	-		EPA 365.1	0.050		0.01	0 05/02/2	2017 9:29	EGD
Solids, Total Suspended		5 mg/L	-		USGS I-3765-85	1	1		04/28/2	2017 11:14	CJL
Temperature		22.5 deg	С		CLIENT SPECIFIED				04/27/2	2017 13:20	CUS
Nitrogen, Nitrate		0.34 mg/L	-		EPA 300.0	0.33		0.01	5 04/28/2	2017 14:05	LJC
Nitrogen, Nitrite	J	1 0.090 mg/L	-		EPA 300.0	0.45		0.02	1 04/28/2	2017 14:05	LJC
Sample: 08 8 Sampled By Customer								Sa	mpled	04/27/201	7@ 12:30
Oxygen, Dissolved - Client		6.80 mg/L	-		CLIENT SPECIFIED	0.10			04/27/2	2017 12:30	CUS
Provided Specific Conductance at 25 °C		553 umh	os/cm		CLIENT SPECIFIED				04/27/2	2017 12:30	CUS
Turbidity		1 NTU	l		CLIENT SPECIFIED	1			04/27/2	2017 12:30	CUS
E. coli		110.6 MPN	I/100mL		SM9223B (Colilert-18)				04/27/2	2017 15:15	BAS
CBOD, 5 Day		5.2 mg/L	-		SM 5210 B	5.0		2.	0 04/28/2	2017 9:00	DJR
Nitrogen, Ammonia	U	JJ <0.22 mg/L	-		SM 4500 NH3 G	0.25		0.2	2 05/03/2	2017 18:57	EGD
Nitrogen, Total Kjeldahl		0.51 mg/L	-		SM 4500 NH3 G	0.40			05/03/2	2017 15:56	EGD
рН		7.21 SU			CLIENT SPECIFIED	1.00			04/27/2	2017 12:30	CUS
Phosphorus, Orthophospha	te	0.21 mg/L	-		EPA 365.1	0.050		0.01	7 04/28/2	2017 16:22	EGD
Phosphorus, Total		0.24 mg/L	-		EPA 365.1	0.050		0.01	0 05/02/2	2017 9:30	EGD
Solids, Total Suspended		9 mg/L	-		USGS I-3765-85	1	1		04/28/2	2017 11:14	CJL
Temperature		20.1 deg	С		CLIENT SPECIFIED				04/27/2	2017 12:30	CUS
Nitrogen, Nitrate		1.9 mg/L	-		EPA 300.0	0.33		0.01	5 04/28/2	2017 14:19	LJC
Nitrogen, Nitrite	J	1 0.093 mg/L	-		EPA 300.0	0.45		0.02	1 04/28/2	2017 14:19	LJC
Sample: 09 9 Sampled By Customer								Sa	mpled	04/27/201	7@ 11:45
Flow by Calculation		1.18 CFS			EPA 600				04/27/2	2017 11:45	CUS

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 09 9								Si	mpled	04/27/201	7@ 11:45
Sampled By Customer											
Oxygen, Dissolved - Client Provided		9.66 mg/L			CLIENT SPECIFIED	0.10			04/27/2	2017 11:45	CUS
Specific Conductance at 25 °C		240 umhos/cm			CLIENT SPECIFIED				04/27/2	2017 11:45	CUS
Turbidity		4 NTU			CLIENT SPECIFIED	1			04/27/2	017 11:45	CUS
E. coli		156.5 MPN/100mL			SM9223B (Colilert-18)				04/27/2	017 15:15	BAS
CBOD, 5 Day	BOD3	14 mg/L			SM 5210 B	5.0		2.	0 04/28/2	017 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/2	017 18:59	EGD
Nitrogen, Total Kjeldahl		1.6 mg/L			SM 4500 NH3 G	0.40			05/05/2	017 11:59	EGD
рН		8.38 SU			CLIENT SPECIFIED	1.00			04/27/2	2017 11:45	CUS
Phosphorus, Orthophosphate		0.11 mg/L			EPA 365.1	0.050		0.01	7 04/28/2	017 16:23	EGD
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.01	0 05/02/2	017 9:31	EGD
Solids, Total Suspended		15 mg/L			USGS I-3765-85	1	1		04/28/2	017 11:14	CJL
Temperature		19.6 deg C			CLIENT SPECIFIED				04/27/2	017 11:45	CUS
Nitrogen, Nitrate	J1	0.16 mg/L			EPA 300.0	0.33		0.01	5 04/28/2	017 14:33	LJC
Nitrogen, Nitrite	J1	0.099 mg/L			EPA 300.0	0.45		0.02	1 04/28/2	017 14:33	LJC
Sample: 10 10 Sampled By Customer								Sa	mpled	04/27/201	7@ 10:35
Flow by Calculation		<0.01 CFS			EPA 600				04/27/2	017 10:35	CUS
Oxygen, Dissolved - Client Provided		8.01 mg/L			CLIENT SPECIFIED	0.10			04/27/2	017 10:35	CUS
Specific Conductance at 25 °C		645 umhos/cm			CLIENT SPECIFIED				04/27/2	017 10:35	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			04/27/2	017 10:35	CUS
E. coli		209.8 MPN/100mL			SM9223B (Colilert-18)				04/27/2	017 15:15	BAS
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0		2.	0 04/28/2	017 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/2	017 19:01	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/05/2	017 12:01	EGD
рН		7.57 SU			CLIENT SPECIFIED	1.00			04/27/2	017 10:35	CUS
Phosphorus, Orthophosphate		0.30 mg/L			EPA 365.1	0.050		0.01	7 04/28/2	017 16:24	EGD
Phosphorus, Total		0.31 mg/L			EPA 365.1	0.050		0.01	0 05/08/2	017 13:02	EGD

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis 000	C Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysi	s Date	Tech
Sample: 10 10 Sampled By Customer								Sa	mpled	04/27/201	7@ 10:35
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		04/28/2	017 11:14	CJL
Temperature		17.2 deg C			CLIENT SPECIFIED				04/27/2	017 10:35	CUS
Nitrogen, Nitrate		2.5 mg/L			EPA 300.0	0.33		0.01	5 04/28/2	017 14:47	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 04/28/2	017 14:47	LJC
Sample: 11 11 Sampled By Customer								Sa	mpled	04/27/201	7@ 11:00
Flow by Calculation		0.23 CFS			EPA 600				04/27/2	017 11:00	CUS
Oxygen, Dissolved - Client		8.14 mg/L			CLIENT SPECIFIED	0.10			04/27/2	017 11:00	CUS
Provided Specific Conductance at 25 °C		711 umhos/cm			CLIENT SPECIFIED				04/27/2	017 11:00	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1			04/27/2	017 11:00	CUS
E. coli		547.5 MPN/100mL			SM9223B (Colilert-18)				04/27/2	017 15:15	BAS
CBOD, 5 Day	J1	2.3 mg/L			SM 5210 B	5.0		2.	0 04/28/2	017 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/2	017 19:03	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/05/2	017 12:03	EGD
рН		7.61 SU			CLIENT SPECIFIED	1.00			04/27/2	017 11:00	CUS
Phosphorus, Orthophosphate		0.25 mg/L			EPA 365.1	0.050		0.01	7 04/28/2	017 16:25	EGD
Phosphorus, Total		0.28 mg/L			EPA 365.1	0.050		0.01	0 05/08/2	017 13:03	EGD
Solids, Total Suspended		3 mg/L			USGS I-3765-85	1	1		04/28/2	017 11:14	CJL
Temperature		17.2 deg C			CLIENT SPECIFIED				04/27/2	017 11:00	CUS
Nitrogen, Nitrate		0.48 mg/L			EPA 300.0	0.33		0.01	5 04/28/2	017 15:44	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 04/28/2	017 15:44	LJC
Sample: 12 DD Sampled By Customer								Sa	mpled	04/27/201	.7
E. coli		547.5 MPN/100mL			SM9223B (Colilert-18)				04/27/2	017 15:15	BAS
CBOD, 5 Day	UJ	<2.0 mg/L			SM 5210 B	5.0		2.	0 04/28/2	017 9:00	DJR
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/03/2	017 19:05	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/05/2	017 12:05	EGD
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.01	7 04/28/2	017 16:25	EGD

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis D	ate	Tech
Sample: 12 DD Sampled By Custome	er								s	ampled 0	04/27/201	7
Phosphorus, Total			0.27 mg/L			EPA 365.1	0.050		0.01	0 05/08/2017	7 13:05	EGD
Solids, Total Suspended			2 mg/L			USGS I-3765-85	1	1		04/28/2017	7 11:14	CJL
Nitrogen, Nitrate			0.47 mg/L			EPA 300.0	0.33		0.01	5 04/28/2017	7 15:58	LJC
Nitrogen, Nitrite		UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 04/28/2017	7 15:58	LJC

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

BOD3 BOD result obtained from an average of dilutions that show more than 30% difference.

- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

7041709

Third Rock Consultants Steve Evans

Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

NOTE OP and PT RL of 0.05. Report to MDLs for NH3, NO2, NO3, CBOD5 TSS RL of 1.5, Comments: Turnaround Time Required: 7 Working Days Methodology Required: 40CFR Part 136 Collected By: Client Phone #: 859-977-2000 Project Contact (for laboratory): Cory Bloyd Project#: KY16-004 Project Name: Cane Run Watershed Based Plan Client: Third Rock Consultants, LLC €00° for hold purposes. Original COC To Laboratory (Accompany Samples & Report) **** Assume duplicate sampled at earliest time Relinquished By: Laboratory # 84:1/11/12/19 Sample I.D. Date / Time 믕 6 ဖြ တ Cī. w 4 EDD Required: X Yes _ No Matrix.* SW WS WS WS SW SW ٧s WS SW ٧ SW SW COC Copy - TRC Project File 4-17-17 *Preservative Code 4-27-14 ナニナー Collection Date たなけ - 17-17 Received By: ST - Na2S2O3 I - Ice (AII) 10.80 11.55 Collection 1:20 12:50 34:11 12:30 Time CHAIN OF CUSTODY Comp./ MICROBAC' ດ G 0 G ဂ G **a** G 0 O G CONSULTA Y*/N Y*/N Y*∕N N*, Y*/N Y*/N Y*,N ≺*/N Y*/N **∀***× ≺ Ž 4.27.17 ≺× ≥ ž₽ COC Copy - TRC Laboratory Services Coordinator 320z P Date / Time CBOD5, TSS * Preservation Type Requested Lab Analysis Container Size/Type N N N N N #of Containers Per 1349 NO2, NO3 Analysis **G**20 Ş PT, TKN, NH3 Bottles intact: (Yes / No) Containers Properly Preserved: (Yes / No) Temp. Upon Receipt (C): 4.6 Measured By: しゅべ ъ 8 2 P O (* Field Filtered) ST υ <mark>4</mark> E-Coli Field Remarks Dissolved Oxygen (mg/L) 13357391368518,44 143.8 147.87.75 524.9 20.04 15478,13 113.0 7 353854 On-Site/Field Measurements cbloyd@thirdrockconsultants.com PDF Analytical Report & Invoice To: = 5 Dissolved Oxygen (% 30 B Weather Event: Saturation) Third Rock Consultants, LLC 78.4 Lexington, KY 40503 2526 Regency Road See Field Notebook pH (S.U.) õ Cory Bloyd Suite 180 5/8.5/20.34/2.2 H652/2015 Specific Conductance (umho/cm) ٩ ا 19. 1, 1, 1, Temperature (° °) _ Vet 7.5 Turbidity (N.T.U.) 3.04 897 į Flow (cfs) V

Original COC To Laboratory (Accompany Samples & Report). COC CopyTRC Project File		1	Relinquished By:													Laboratory#	Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	NOTE:	Comments:	Turnaround Time Required: / Working Days		Methodology Required: 40CFR Part 136		Project Contact (for laboratory): Cory Bloyd		Client: Inird Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	COC#
ıy Samples & Report)	,	127/17 1410	Date / Time	DD	1	10	9	œ	7	6	Oi	4	з	2	_	Sample I.D.	lO3, CBOD5. at earliest time					art 136	S. Evens	ory Bloyd		hed Based Plan	
coc.	/	A		SW 2	SW 4	WS	WS	SW.	, MS	SW	WS	SW	SW	SW	SW	Matrix.*				EDD Required: 🛚 Yes							
copy TRC		B	Received By:	1-17-17	427-17	42747	 ~	4-27-77	4-27-17							Collection Date		SA - H2SO4 ST - Na2S2O3 I - Ice (All)		red: XYe							
Project File			By:	****	100	1035	1145	1230	1320							Collection (C		2SO4 2S2O3 (All)	Preservative Code	is I No					1		
				ତ Ƴ	ด ≺	o ≺	G ~	ତ Ƴ	G Y	G Y	G Y	G Y	9 Y	G Y	ତ ≺	Grab / F						0	C		-		CHAIN OF CUSTODY
cocc		427-17	þ	Y*/N	Y*/N	∀ */N	Υ*/N	Y*/N	Y*/N	Y*/N	Y*/N <	,		Y*/N	Y*/N	Filed Y/N			32	- Section	i de la composition della comp	MICROBAC*	S N O	RU KOCT			lon Ion
оруП		7	Date / Time	2	2	2	Ŋ	2	2	<u> </u>	2	ļs	7	<i>\$</i>	\ <u></u>	# of	CBOD5, TSS	Requested Lab Analysis	320z P 5	Container Size/T	* Preservation Type	D O	L .	ス	(כ		cus
₹C Lab	:	14	me 📑	1	_	-	_	_	1	†	1	1	1	1	1	of Containers Analysis	NO2, NO3	sted L	50 mL 32	ainer	serva	3AC	T A Z	$\stackrel{\smile}{\sim}$			901
bratory	 ₩ B	4/0 c	91 mile	1	1		_		1	-	†	1	+	1	1		PT, TKN, NH3	ab An	320z P 8	SA Size/T		**	SL	不			
Service	ottles in	ontaine	mp. Սբ	1 1	-1	- <u>-</u>	7	1	1 1	4	† -}	1 1	†	1	1	Per	P O (* Field Fittered	alysis	Boz 4oz P P	- ST	/pe						7.55
s Coor	itact: (Y	rs Prop	on Rec		ペジ	8.0)	966	6.80	15.9			•	•	•	1	Dissol	ved Oxygen (mg/L)				Field						
Services Coordinator	ottles Intact: (Yes / No)	ontainers Properly Preserved: (Yes / No)	Temp. Upon Receipt (C): (C. L Measured By:		1 88,9	273		0789	1 192,7								ved Oxygen (%		5		Field Remarks:			_		cbl _c	
	_	served	10.6	١,	9 7.6		. 8							-		Satura)n-Site	Weather Event:		arks:	Lex	2	hird R		• Analy ovd@t	
		: (Yes /	Measu	ee Fiel		7.57 6	88.8	7.31 5	8.41 3							pH (S	ic Conductance	J/Fielo	- Event			dingtor 859-s	Sui	ick C	Con	rtical F hirdro	
		<u>o</u>	red By:	ld Note	7 11 1	525	_	_	365 2							(umho		Meas				ington, KY 40: 859-977-2000	Suite 180	onsult	Cory Bloyd	Report ckcon:	
			ZAF	See Field Notebook -	17,7,2	22.22	1962	20.13	22.52							Temp	erature (° ^c)	On-Site/Freid Measurements	D _y			Lexington, KY 40503 859-977-2000	7040	Third Rock Consultants, LLC	α.	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com	
			1		0	0	3.5	111	10.8							Turbid	lity (N.T.U.)	ents	Wet					L L		PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com	
	 				0.23	00	1.18	1	100>							Flow (cfs)										

7050152

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/03/2017

 Date Due
 05/11/2017

 Date Received
 05/02/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analys	is Date	Tech
Sample: 01 1 Sampled By Customer							Sampled	05/02/201	7@ 10:30
Flow by Calculation		19.23 CFS			EPA 600		05/02/2	2017 10:30	CUS
E. coli		1203.3 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS
Sample: 02 2 Sampled By Customer							Sampled	05/02/201	7@ 11:15
Flow by Calculation		14.09 CFS			EPA 600		05/02/2	2017 11:15	CUS
E. coli		472.1 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS
Sample: 03 3 Sampled By Customer							Sampled	05/02/201	7@ 11:00
Flow by Calculation		0.05 CFS			EPA 600		05/02/2	2017 11:00	CUS
E. coli		172.5 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS
Sample: 04 4 Sampled By Customer							Sampled	05/02/201	7@ 11:45
Flow by Calculation		70.01 CFS			EPA 600		05/02/2	2017 11:45	CUS
E. coli		139.6 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS
Sample: 05 5 Sampled By Customer							Sampled	05/02/201	7@ 12:00
Flow by Calculation		9.54 CFS			EPA 600		05/02/2	2017 12:00	CUS
E. coli		613.1 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS
Sample: 06 6 Sampled By Customer							Sampled	05/02/201	7@ 12:25
Flow by Calculation		9.78 CFS			EPA 600		05/02/2	2017 12:25	CUS
E. coli		547.5 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS
Sample: 07 7 Sampled By Customer							Sampled	05/02/201	7@ 11:45
Flow by Calculation		0.656 CFS			EPA 600		05/02/2	2017 11:45	CUS
E. coli		579.4 MPN/100mL			SM9223B (Colilert-18)		05/02/2	2017 15:03	BAS

7050152

Third Rock Consultants Steve Evans

Date Due Date Received 05/11/2017 05/02/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysi	s Date	Tech
Sample: 08 Sampled By	8 Customer							Sampled	05/02/2017	7@ 12:24
E. coli			816.4 MPN/100mL			SM9223B (Colilert-18)		05/02/2	017 15:03	BAS
Sample: 09 Sampled By	9 Customer							Sampled	05/02/2017	7@ 11:10
Flow by Calcula	tion		2.585 CFS			EPA 600		05/02/2	017 11:10	CUS
E. coli			344.8 MPN/100mL			SM9223B (Colilert-18)		05/02/2	017 15:03	BAS
Sample: 10 Sampled By	10 Customer							Sampled	05/02/2017	7@ 9:50
Flow by Calcula	tion		5.61 CFS			EPA 600		05/02/2	017 9:50	CUS
E. coli		:	>2419.6 MPN/100mL			SM9223B (Colilert-18)		05/02/2	017 15:03	BAS
Sample: 11 Sampled By	11 Customer							Sampled	05/02/2017	7@ 10:20
Flow by Calcula	tion		1.724 CFS			EPA 600		05/02/2	017 10:20	CUS
E. coli			648.8 MPN/100mL			SM9223B (Colilert-18)		05/02/2	017 15:03	BAS
Sample: 12 Sampled By	DD Customer							Sampled	05/02/2017	7
E. coli			980.4 MPN/100mL			SM9223B (Colilert-18)		05/02/2	017 15:03	BAS

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Analysis</u> **Laboratory** E. coli Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

SM9223B (Colilert-18)

<u>Method</u>

7050152

Third Rock Consultants
Steve Evans

Date Due
Date Received

05/11/2017 05/02/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

10+2

s Coordinator	COC Copy - TRC Laboratory Services Coordinator	coc	t File	RC Projec	COC Copy - TRC Project File		pany Samples & Repor	Original COC To Laboratory (Accompany Samples & Report)
W								
Bottles Intact: (Yes / No)	Bottles Int				\$ #	1		MANAGEMENT CONTRACTOR OF THE PARTY OF THE PA
Containers Properly Preserved: (Yes) No)	11761130	5/2	٧	The second second			8151/1145	イント
Temp. Upon Receipt (C): 7.3 Measured By:	Date / Time Temp. Upo			ed By:	Received By:		Date / Time	Relinquished By:
**************************************	erzyve förfanda med elle 1938/taker förfallare förfanda og mandlisen litte litte i den bliggen og gillen ken f	+ * ***	a	****	Ship MOSERVEO PRANCE Lightefolyment	- WS	The second secon	
A SEA - MINE AND AND AND AND AND AND AND AND AND AND	1	ΥN	ි ග	and in the second	No. of Street,	WS	A Committee of Com	THE PROPERTY OF THE PROPERTY O
THE PROPERTY OF THE PROPERTY O	PERSONAL PROPERTY AND THE PROPERTY AND T	₹ *≯	Φ	Braga	***************************************	SW	The second secon	
der 1904-kaptikalin pelali dajahangan jala kalan pelali kepada pelali ke	RECOVERABLE STATEMENT OF THE PROPERTY OF THE P	X*/N	6		HOLE WAS ALL THE WAS AND THE W	AAS	Annual Company of the	
AND THE PROPERTY OF THE PROPER	NATIONALISM TO THE CONTRACT OF	Y*/N	G	Philips Action Transman Agency Agriculture	The second secon	AAS	- CONTRACTOR OF THE PROPERTY AND THE PRO	
AMATERIA DE PORTO	REMANDEMENTAL PROPRESENTAL CONTRACTOR AND AND AND AND AND AND AND AND AND AND	* **	6		ALL STATEMENT OF THE ST	SW	T. 1000 1000 1000 1000 1000 1000 1000 10	The state of the s
9.798	1	√*/N	ര	See	61-2-17	SW	o	
9.59		Υ*/ <u>N</u>	ര	1900	5-2-17	SW	5	***************************************
70,01	. د	Υ*/N	G		5-7-17	SW	4	TO THE PROPERTY OF THE PROPERTY AND A PARKAGE AND A PARKAG
0,05		Υ * /Ν	ര	1100	5-2-17	SW	သ	
15,09		Υ*/N	ര		57-17	SW	2	
19,23	1	Y*/N	G	030	K-1-6-5	SW	>	
Flow	# of Containers Per Analysis	YN YN	n Grab/ Comp	Collection Time	Collection Date	Matrix *	Sample I.D.	Laboratory#
(cfs)	E-Cali	70 sa 10 + - a					led at earliest time	***** Assume duplicate sampled at earliest time for hold purposes.
	·			1 - Ice (All)				NOTE:
On-Site/Field Measurements	Requested Lab Analysis			EUCSCS/N	2			
Weather Event: کے DryWet	402 P		ode	Preservative Code	* Preser			Comments:
	Container Size/Type							
			o	Yes _ No	EDD Required: X Yes	EDD Red	Working Days	Turnaround Time Required: 7 Working Days
Field Remarks:	* Preservation Type							
Lexington, KY 40503 859-977-2000	Z OROBNO 	<u> </u>					40CFR Part 136	Methodology Required: 40CFF
Suite 180	S C F A N = S	C Z		<u> </u>			H	Collected By: Client - C. 8(0)
2526 Regency Road	7	, process	I H	provide the same of the same o			. Coly bloyd	Phone #: 859-977-2000
Cory Bloyd]- -				***************************************		Project #: KY16-004
cbloyd@thirdrockconsultants.com) _ 			<u> </u>			Cane Run Watershed Based Plan	Project Name: Cane Run Wate
DDE Applitical Deport & Invoice To-	CHAIN OF COSTOUT	N C	ĹΊ					Client: Third Back Consultants 11 C
			2					000#

Coordinator	COC Copy - TRC Laboratory Services Coordinator	200	t File	RC Projec	COC Copy - TRC Project File		pany Samples & Report	Original CCC To Laboratory (Accompany Samples & Report)
				- Internation Address				
Bottles Infact: (Yes / No)								de construire.
Containers Properly Preserved: (Yes / No)	17 1309	152		\mathcal{I}_{\leftarrow}	ma	200	5-2-17 109	The Williams 12
Temp. Upon Receipt (C): 444 Measured By:	Date / Time Temp. Upor			ed By:	Received By:)	Date / Time	Relinquished By:
- See Field Notebook -		N,*Y	و	_	5-2-10	WS	DD	
5-61 1.724	4	⊀*∑	o 0	できる	5.2-1	SW		years and any and year opposite by
~ 6	-1	≺*X	ດ ດ	0950	5.2.17	SW	10	T O THE OTHER DESIGNATION OF THE OWNER, AND THE OWN
7.585		۲× ک	ଜ	† -	5-2-1)	SW	9	
		≺ Ž	\dagger	Ü	5-2-17	SW	8	The state of the s
0,656	_	Υ * ≥	0 2	700000	5-2-12	SW	7	HAMINIAN AND AND AND AND AND AND AND AND AND A
		Y*/N	G			SW	6	
		Υ* Ν	ရ			SW	5	
	3	∀ */N	<u>و</u>			WS	4	TO THE PROPERTY OF THE PROPERT
MANAGER AND AND AND AND AND AND AND AND AND AND		イ え	ര			WS	3	
		⊀ * ≥	G			SW	2	
		Υ'N	G			SW	>	
Flow	# of Containers Per Analysis	Y/N Filit d	Grab / Comp	Collection Time	Collection Date	Matrix *	Sample I.D.	Laboratory #
cfs)	E-Coli						led at earliest time	***** Assume duplicate sampled at earliest time for hold purposes.
On-Site/Field Measurements	Requested Lab Analysis			ST - Na2S2O3 I - Ice (All)	- TS			NOTE:
			ode	Preservative Code	, Presei			
Weather Event: Dry Wet	40Z P				**************************************			Comments:
	Container Size/Type							
	ST		N _o	1	EDD Required: X Yes	EDD Red	Working Days	Turnaround Time Required: 7 Working Days
Field Remarks:	* Preservation Type							
Lexington, KY 40503 859-977-2000	N MICROBAC	Ĭ	(3)				40CFR Part 136	Methodology Required: 40CFR
Suite 180	+	((2		II				Collected By: Client -
Third Rock Consultants, LLC 2526 Regency Road		S Z J	1	no needle o hear			: Cory Bloyd	Project Contact (for laboratory): Phone #: 859-977-2000
cbloyd@thirdrockconsultants.com Cory Bloyd		and the same of th	ы				ershed Based Plan	Project Name: Cane Run Watershed Project #: KY16-004
PDF Analytical Report & Invoice To:	CHAIN OF CUSTODY		CH				LLC	COC# Client: Third Rock Consultants. LLC

7050408

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/13/2017

 Date Due
 05/16/2017

 Date Received
 05/04/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL .	Analysis Date	Tech
Sample: 01 1 Sampled By Customer								Sam	pled 05/04/20	017@ 18:45
Flow by Calculation		8.34 CFS			EPA 600				05/04/2017 18:4	5 CUS
Oxygen, Dissolved - Client		8.82 mg/L			CLIENT SPECIFIED	0.10			05/04/2017 18:4	5 CUS
Provided Specific Conductance at 25 °C		471 umhos/cm			CLIENT SPECIFIED				05/04/2017 18:4	5 CUS
Turbidity		11 NTU			CLIENT SPECIFIED	1			05/04/2017 18:4	5 CUS
E. coli		224.7 MPN/100mL			SM9223B (Colilert-18)				05/04/2017 23:02	2 BAS
CBOD, 5 Day	B1	2.2 mg/L			SM 5210 B	2.0	2		05/05/2017 13:52	2 CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	05/12/2017 9:46	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/11/2017 10:04	4 EGD
pH		8.34 SU			CLIENT SPECIFIED	1.00			05/04/2017 18:4	5 CUS
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.017	05/05/2017 14:42	2 EGD
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.010	05/08/2017 17:1	5 EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		05/06/2017 15:17	7 CJL
Temperature		16.9 deg C			CLIENT SPECIFIED				05/04/2017 18:4	5 CUS
Nitrogen, Nitrate		1.3 mg/L			EPA 300.0	0.33		0.015	05/05/2017 15:17	7 LJC
Nitrogen, Nitrite	J1	0.096 mg/L			EPA 300.0	0.45		0.021	05/05/2017 15:11	7 LJC
Sample: 02 2 Sampled By Customer								Sam	pled 05/04/20	017@ 20:15
Flow by Calculation		8.1 CFS			EPA 600				05/04/2017 20:1	5 CUS
Oxygen, Dissolved - Client Provided		7.74 mg/L			CLIENT SPECIFIED	0.10			05/04/2017 20:1	5 CUS
Specific Conductance at 25 °C		521 umhos/cm			CLIENT SPECIFIED				05/04/2017 20:1	5 CUS
Turbidity		16 NTU			CLIENT SPECIFIED	1			05/04/2017 20:1	5 CUS
E. coli		160.7 MPN/100mL			SM9223B (Colilert-18)				05/04/2017 23:02	2 BAS
CBOD, 5 Day		<2.0 mg/L			SM 5210 B	2.0	2		05/05/2017 13:52	2 CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22	05/12/2017 9:48	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/11/2017 10:06	B EGD
рН		7.88 SU			CLIENT SPECIFIED	1.00			05/04/2017 20:1	5 CUS

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min	Мах	Method	Rpt Limit	Cus Limit	MDL Analys	s Date	Tech
Sample: 02 2 Sampled By Customer								Sampled	05/04/201	7@ 20:15
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.017 05/05/2	2017 14:43	EGD
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.010 05/08/2	2017 17:16	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1	05/06/2	2017 15:17	CJL
Temperature		16.3 deg C			CLIENT SPECIFIED			05/04/2	2017 20:15	CUS
Nitrogen, Nitrate		1.9 mg/L			EPA 300.0	0.33		0.015 05/05/2	2017 15:31	LJC
Nitrogen, Nitrite	J1	0.12 mg/L			EPA 300.0	0.45		0.021 05/05/2	2017 15:31	LJC
Sample: 03 3 Sampled By Customer								Sampled	05/04/201	7@ 20:10
Flow by Calculation		No Flow CFS			EPA 600			05/04/2	2017 20:10	CUS
Specific Conductance at 25 °C		399 umhos/cm			CLIENT SPECIFIED			05/04/2	2017 20:10	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1		05/04/2	2017 20:10	CUS
E. coli		1752.9 MPN/100mL			SM9223B (Colilert-18)			05/04/2	2017 23:02	BAS
CBOD, 5 Day	B1	6.0 mg/L			SM 5210 B	2.0	2	05/05/2	2017 13:52	CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.22 05/12/2	2017 9:50	EGD
Nitrogen, Total Kjeldahl		0.56 mg/L			SM 4500 NH3 G	0.40		05/11/2	2017 10:22	EGD
pH		7.69 SU			CLIENT SPECIFIED	1.00		05/04/2	2017 20:10	CUS
Phosphorus, Orthophosphate		0.32 mg/L			EPA 365.1	0.050		0.017 05/05/2	2017 14:45	EGD
Phosphorus, Total		0.34 mg/L			EPA 365.1	0.050		0.010 05/08/2	2017 17:18	EGD
Solids, Total Suspended		8 mg/L			USGS I-3765-85	1	1	05/06/2	2017 15:17	CJL
Temperature		14.9 deg C			CLIENT SPECIFIED			05/04/2	2017 20:10	CUS
Nitrogen, Nitrate		2.3 mg/L			EPA 300.0	0.33		0.015 05/05/2	2017 16:13	LJC
Nitrogen, Nitrite	J1	0.093 mg/L			EPA 300.0	0.45		0.021 05/05/2	2017 16:13	LJC
Sample: 04 4 Sampled By Customer								Sampled	05/04/201	7@ 18:20
Flow by Calculation		No Flow CFS			EPA 600			05/04/2	2017 18:20	CUS
Specific Conductance at 25 °C		360 umhos/cm			CLIENT SPECIFIED			05/04/2	2017 18:20	CUS
Turbidity		<1 NTU			CLIENT SPECIFIED	1		05/04/2	2017 18:20	CUS

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis 000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 04 4 Sampled By Customer								Sa	mpled	05/04/203	17@ 18:20
E. coli		866.4 MPN/100mL			SM9223B (Colilert-18)				05/04/20	17 23:02	BAS
CBOD, 5 Day	B1	2.3 mg/L			SM 5210 B	2.0	2		05/05/20	17 13:52	CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/20	17 9:52	EGD
Nitrogen, Total Kjeldahl		<0.40 mg/L			SM 4500 NH3 G	0.40			05/11/20	17 10:24	EGD
pH		7.48 SU			CLIENT SPECIFIED	1.00			05/04/20	17 18:20	CUS
Phosphorus, Orthophosphate		0.19 mg/L			EPA 365.1	0.050		0.01	7 05/05/20	17 14:46	EGD
Phosphorus, Total		0.21 mg/L			EPA 365.1	0.050		0.01	0 05/08/20	17 17:19	EGD
Solids, Total Suspended		2 mg/L			USGS I-3765-85	1	1		05/06/20	17 15:17	CJL
Temperature		15.5 deg C			CLIENT SPECIFIED				05/04/20	17 18:20	CUS
Nitrogen, Nitrate		0.40 mg/L			EPA 300.0	0.33		0.01	5 05/05/20	17 16:27	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 05/05/20	17 16:27	LJC
Sample: 05 5 Sampled By Customer								Sa	mpled	05/04/203	17@ 19:40
Flow by Calculation		4.62 CFS			EPA 600				05/04/20	17 19:40	CUS
Oxygen, Dissolved - Client Provided		6.91 mg/L			CLIENT SPECIFIED	0.10			05/04/20	17 19:40	CUS
Specific Conductance at 25 °C		516 umhos/cm			CLIENT SPECIFIED				05/04/20	17 19:40	CUS
Turbidity		2 NTU			CLIENT SPECIFIED	1			05/04/20	17 19:40	CUS
E. coli		727.0 MPN/100mL			SM9223B (Colilert-18)				05/04/20	17 23:02	BAS
CBOD, 5 Day	B1	2.4 mg/L			SM 5210 B	2.0	2		05/05/20	17 13:52	CJL
Nitrogen, Ammonia		0.75 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/20	17 9:54	EGD
Nitrogen, Total Kjeldahl		1.3 mg/L			SM 4500 NH3 G	0.40			05/11/20	17 10:26	EGD
pH		7.64 SU			CLIENT SPECIFIED	1.00			05/04/20	17 19:40	CUS
Phosphorus, Orthophosphate		0.38 mg/L			EPA 365.1	0.050		0.01	7 05/05/20	17 14:50	EGD
Phosphorus, Total		0.44 mg/L			EPA 365.1	0.050		0.01	0 05/08/20	17 17:20	EGD
Solids, Total Suspended		5 mg/L			USGS I-3765-85	1	1		05/06/20	17 15:17	CJL
Temperature		15.1 deg C			CLIENT SPECIFIED				05/04/20	17 19:40	CUS
Nitrogen, Nitrate		2.1 mg/L			EPA 300.0	0.33		0.01	5 05/05/20	17 16:41	LJC
Nitrogen, Nitrite	J1	0.19 mg/L			EPA 300.0	0.45		0.02	1 05/05/20	17 16:41	LJC

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analys	sis Date	Tech
•	5 Customer								s	ampled	05/04/203	17@ 19:40
Sample: 06 Sampled By	6 Customer								s	ampled	05/04/203	17@ 19:15
Flow by Calculatio			5.65 CFS			EPA 600				05/04/	2017 19:15	CUS
Oxygen, Dissolved Provided			6.93 mg/L			CLIENT SPECIFIED	0.10			05/04/	2017 19:15	CUS
Specific Conducta °C	nce at 25		88 umhos/cm			CLIENT SPECIFIED				05/04/	2017 19:15	CUS
Turbidity			2 NTU			CLIENT SPECIFIED	1			05/04/	2017 19:15	CUS
E. coli			770.1 MPN/100mL			SM9223B (Colilert-18)				05/04/	2017 23:02	BAS
CBOD, 5 Day		B1	2.6 mg/L			SM 5210 B	2.0	2		05/05/	2017 13:52	CJL
Nitrogen, Ammoni	a		1.2 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/	2017 9:56	EGD
Nitrogen, Total Kje	eldahl		1.8 mg/L			SM 4500 NH3 G	0.40			05/11/	2017 10:28	EGD
рН			7.52 SU			CLIENT SPECIFIED	1.00			05/04/	2017 19:15	CUS
Phosphorus, Ortho	ophosphate		0.45 mg/L			EPA 365.1	0.050		0.01	7 05/05/	2017 14:51	EGD
Phosphorus, Total			0.51 mg/L			EPA 365.1	0.050		0.01	0 05/08/	2017 17:24	EGD
Solids, Total Susp	ended		5 mg/L			USGS I-3765-85	1	1		05/06/	2017 15:17	CJL
Temperature			15.1 deg C			CLIENT SPECIFIED				05/04/	2017 19:15	CUS
Nitrogen, Nitrate			1.9 mg/L			EPA 300.0	0.33		0.01	5 05/05/	2017 16:56	LJC
Nitrogen, Nitrite		J1	0.17 mg/L			EPA 300.0	0.45		0.02	1 05/05/	2017 16:56	LJC
Sample: 07 Sampled By 0	7 Customer								s	ampled	05/04/203	17@ 19:00
Flow by Calculatio	n		0.37 CFS			EPA 600				05/04/	2017 19:00	CUS
Oxygen, Dissolved Provided	d - Client		10.30 mg/L			CLIENT SPECIFIED	0.10			05/04/	2017 19:00	CUS
Specific Conducta °C	nce at 25		429 umhos/cm			CLIENT SPECIFIED				05/04/	2017 19:00	CUS
Turbidity			3 NTU			CLIENT SPECIFIED	1			05/04/	2017 19:00	cus
E. coli			96.0 MPN/100mL			SM9223B (Colilert-18)				05/04/	2017 23:02	BAS
CBOD, 5 Day			<2.0 mg/L			SM 5210 B	2.0	2		05/05/	2017 13:52	CJL
Nitrogen, Ammoni	a	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/	2017 9:58	EGD
Nitrogen, Total Kje	ldobl		0.47 mg/L			SM 4500 NH3 G	0.40			05/44/	2017 10:30	EGD

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis OC	OC Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 07 7 Sampled By Customer								Sa	mpled	05/04/201	17@ 19:00
pH		7.30 SU			CLIENT SPECIFIED	1.00			05/04/20)17 19:00	CUS
Phosphorus, Orthophosphate		0.17 mg/L			EPA 365.1	0.050		0.01	7 05/05/20	17 14:52	EGD
Phosphorus, Total		0.43 mg/L			EPA 365.1	0.050		0.01	0 05/08/20)17 17:25	EGD
Solids, Total Suspended		31 mg/L			USGS I-3765-85	1	1		05/06/20)17 15:17	CJL
Temperature		15.2 deg C			CLIENT SPECIFIED				05/04/20	17 19:00	CUS
Nitrogen, Nitrate		1.7 mg/L			EPA 300.0	0.33		0.01	5 05/05/20	17 17:10	LJC
Nitrogen, Nitrite	J1	0.093 mg/L			EPA 300.0	0.45		0.02	1 05/05/20)17 17:10	LJC
Sample: 08 8 Sampled By Customer								Sa	mpled	05/04/201	17@ 18:30
Flow by Calculation		No Flow CFS			EPA 600				05/04/20	17 18:30	CUS
Specific Conductance at 25 °C		546 umhos/cm			CLIENT SPECIFIED				05/04/20)17 18:30	CUS
Turbidity		15 NTU			CLIENT SPECIFIED	1			05/04/20	17 18:30	CUS
E. coli		107.1 MPN/100mL			SM9223B (Colilert-18)				05/04/20	17 23:02	BAS
CBOD, 5 Day	B1	2.4 mg/L			SM 5210 B	2.0	2		05/05/20	17 13:52	CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/20	17 10:00	EGD
Nitrogen, Total Kjeldahl		0.47 mg/L			SM 4500 NH3 G	0.40			05/11/20	17 10:32	EGD
рН		7.00 SU			CLIENT SPECIFIED	1.00			05/04/20)17 18:30	CUS
Phosphorus, Orthophosphate		0.23 mg/L			EPA 365.1	0.050		0.01	7 05/05/20)17 14:53	EGD
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.01	0 05/08/20)17 17:27	EGD
Solids, Total Suspended		11 mg/L			USGS I-3765-85	1	1		05/06/20)17 15:17	CJL
Temperature		16.0 deg C			CLIENT SPECIFIED				05/04/20	17 18:30	CUS
Nitrogen, Nitrate		2.1 mg/L			EPA 300.0	0.33		0.01	5 05/05/20)17 17:24	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L			EPA 300.0	0.45		0.02	1 05/05/20)17 17:24	LJC
Sample: 09 9 Sampled By Customer								Sa	mpled	05/04/201	17@ 19:40
Flow by Calculation		1.88 CFS			EPA 600				05/04/20	17 19:40	CUS
Oxygen, Dissolved - Client Provided		4.60 mg/L			CLIENT SPECIFIED	0.10			05/04/20)17 19:40	CUS

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis OOG	C Qualifier	Result Units	Min I	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis	Date	Tech
Sample: 09 9								Sa	mpled	05/04/201	17@ 19:40
Sampled By Customer											
Specific Conductance at 25 °C		294 umhos/cm			CLIENT SPECIFIED				05/04/20)17 19:40	CUS
Turbidity		3 NTU			CLIENT SPECIFIED	1			05/04/20	17 19:40	CUS
E. coli		88.2 MPN/100mL			SM9223B (Colilert-18)				05/04/20	17 23:02	BAS
CBOD, 5 Day	B1	3.0 mg/L			SM 5210 B	2.0	2		05/05/20)17 13:52	CJL
Nitrogen, Ammonia		0.45 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/20	017 10:06	EGD
Nitrogen, Total Kjeldahl		1.2 mg/L			SM 4500 NH3 G	0.40			05/11/20	17 10:34	EGD
pH		7.50 SU			CLIENT SPECIFIED	1.00			05/04/20	17 19:40	CUS
Phosphorus, Orthophosphate		0.20 mg/L			EPA 365.1	0.050		0.01	7 05/05/20)17 14:54	EGD
Phosphorus, Total		0.29 mg/L			EPA 365.1	0.050		0.01	05/08/20)17 17:28	EGD
Solids, Total Suspended		4 mg/L			USGS I-3765-85	1	1		05/06/20)17 15:17	CJL
Temperature		17.1 deg C			CLIENT SPECIFIED				05/04/20)17 19:40	CUS
Nitrogen, Nitrate		0.34 mg/L			EPA 300.0	0.33		0.01	5 05/05/20)17 17:38	LJC
Nitrogen, Nitrite	J1	0.12 mg/L			EPA 300.0	0.45		0.02	1 05/05/20	17 17:38	LJC
Sample: 10 10 Sampled By Customer								Sa	mpled	05/04/201	17@ 20:20
Flow by Calculation		3.8 CFS			EPA 600				05/04/20	17 20:20	CUS
Oxygen, Dissolved - Client Provided		8.00 mg/L			CLIENT SPECIFIED	0.10			05/04/20	017 20:20	CUS
Specific Conductance at 25 °C		467 umhos/cm			CLIENT SPECIFIED				05/04/20	17 20:20	CUS
Turbidity		37 NTU			CLIENT SPECIFIED	1			05/04/20	17 20:20	CUS
E. coli	:	>2419.6 +\- MPN/100mL [custom value]			SM9223B (Colilert-18)				05/04/20)17 23:02	BAS
CBOD, 5 Day	B1	2.8 mg/L			SM 5210 B	2.0	2		05/05/20	17 13:52	CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L			SM 4500 NH3 G	0.25		0.2	2 05/12/20	17 10:08	EGD
Nitrogen, Total Kjeldahl		0.55 mg/L			SM 4500 NH3 G	0.40			05/11/20	17 10:36	EGD
pH		7.60 SU			CLIENT SPECIFIED	1.00			05/04/20	17 20:20	CUS
Phosphorus, Orthophosphate		0.26 mg/L			EPA 365.1	0.050		0.01	7 05/05/20)17 14:55	EGD
Phosphorus, Total		0.34 mg/L			EPA 365.1	0.050		0.01	05/08/20)17 17:29	EGD
Solids, Total Suspended		8 mg/L			USGS I-3765-85	1	1		05/06/20	17 15-17	CJL

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier	Result Units	Min Ma	x Method	Rpt Limit	Cus Limit	MDL Anal	ysis Date	Tech
Sample: 10 10 Sampled By Customer							Sampled	05/04/20	17@ 20:20
Temperature		15.2 deg C		CLIENT SPECIFIED			05/0	4/2017 20:20	CUS
Nitrogen, Nitrate		1.5 mg/L		EPA 300.0	0.33		0.015 05/0	5/2017 17:52	LJC
Nitrogen, Nitrite	J1	0.093 mg/L		EPA 300.0	0.45		0.021 05/0	5/2017 17:52	LJC
Sample: 11 11 Sampled By Customer							Sampled	05/04/20	17@ 20:50
Flow by Calculation		3.8 CFS		EPA 600			05/0	4/2017 20:50	CUS
Oxygen, Dissolved - Client Provided		7.10 mg/L		CLIENT SPECIFIED	0.10		05/0	4/2017 20:50	CUS
Specific Conductance at 25 °C		571 umhos/cm		CLIENT SPECIFIED			05/0	4/2017 20:50	CUS
Turbidity		3 NTU		CLIENT SPECIFIED	1		05/0	4/2017 20:50	CUS
E. coli		218.7 MPN/100mL		SM9223B (Colilert-18)			05/0	4/2017 23:02	BAS
CBOD, 5 Day	B1	2.1 mg/L		SM 5210 B	2.0	2	05/0	5/2017 13:52	CJL
Nitrogen, Ammonia	UJ	<0.22 mg/L		SM 4500 NH3 G	0.25		0.22 05/1	2/2017 10:10	EGD
Nitrogen, Total Kjeldahl		0.44 mg/L		SM 4500 NH3 G	0.40		05/1	1/2017 10:38	EGD
pH		7.60 SU		CLIENT SPECIFIED	1.00		05/0	4/2017 20:50	CUS
Phosphorus, Orthophosphate		0.29 mg/L		EPA 365.1	0.050		0.017 05/0	5/2017 14:56	EGD
Phosphorus, Total		0.33 mg/L		EPA 365.1	0.050		0.010 05/0	8/2017 17:30	EGD
Solids, Total Suspended		3 mg/L		USGS I-3765-85	1	1	05/0	6/2017 15:17	CJL
Temperature		15.9 deg C		CLIENT SPECIFIED			05/0	4/2017 20:50	CUS
Nitrogen, Nitrate		0.54 mg/L		EPA 300.0	0.33		0.015 05/0	5/2017 18:06	LJC
Nitrogen, Nitrite	UJ	<0.021 mg/L		EPA 300.0	0.45		0.021 05/0	5/2017 18:06	LJC
Sample: 12 DD Sampled By Customer							Sampled	05/04/20	17
E. coli		1119.9 MPN/100mL		SM9223B (Colilert-18)			05/0	4/2017 23:02	BAS
CBOD, 5 Day	B1	2.7 mg/L		SM 5210 B	2.0	2	05/0	5/2017 13:52	CJL
Nitrogen, Ammonia		0.55 mg/L		SM 4500 NH3 G	0.25		0.22 05/1	2/2017 10:12	EGD
Nitrogen, Total Kjeldahl		1.1 mg/L		SM 4500 NH3 G	0.40		05/1	1/2017 10:44	EGD
Phosphorus, Orthophosphate		0.37 mg/L		EPA 365.1	0.050		0.017 05/0	5/2017 14:57	EGD
Phosphorus, Total		0.43 mg/L		EPA 365.1	0.050		0.010 05/0	8/2017 17:31	EGD

7050408

Third Rock Consultants Steve Evans

Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Analysis	000	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Cus Limit	MDL	Analysis Date	Tech
Sample: 12 D Sampled By Cus	D stomer								Sa	ompled 05/04/201	17
Solids, Total Suspen	ded		5 mg/L			USGS I-3765-85	1	1		05/06/2017 15:17	CJL
Nitrogen, Nitrate			2.0 mg/L			EPA 300.0	0.33		0.01	5 05/05/2017 18:20	LJC
Nitrogen, Nitrite		J1	0.19 mg/L			EPA 300.0	0.45		0.02	1 05/05/2017 18:20	LJC

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an estimated value.
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.
- B1 The analyte value in the Method Blank is above the Control Limit.

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

LaboratoryAnalysisMethodMicrobac Laboratories, Kentucky Testing Laboratory, Lexington SiteE. coliSM9223B
(Colilert-18)

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

l isa Martin Δ M

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Original COC To Laboratory (Accompany Samples & Report)			1-5-5 6-5V	Relinquished By: Date													Laboratory# Sam	OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,		Comments:		Tumaround Time Required: 7 Working Days		Methodology Required: 40CFR Part 136	Collected By: Client -		Project # NY 16-004 Project Contact (for laboratory): Cory Bloyd	Project Name: Cane Run Watershed Based Plan	Client: Third Rock Consultants, LLC	COC#
ples & Report)			-17/9:50	Date / Time	DD		10	9	8	7	6	5	4	3	2		Sample I.D.	rliest time	BOD5.						OJ.			OVE	sed Plan		
c0G Co		er.		Re	SW	8	SW 5-	SW 5			WS	WS	SW	WS	WS	SW	Coll				* "		EDD Required: X Yes								
py-TRO		6		Received By:		4-4-	5-4-17	-4-17	5447	デーゲー							Collection Date		[-lœ (All)	SA - H2SO4 ST - Na2S2O3	reserva		d: X X								
COC Copy - TRC Project File				By:	****	3.50m	8:26,	7:10%	OKN 12	7:00%							Collection Time		(All)	2S04 2S203	Preservative Code		S No								
e					G	6	G -	G	G		G \	ତ 	G Y	و ا	و ۱	G Y	Grab / F Comp								0	(500pm		CHAIN OF
COC Copy - TRC Laboratory			5-4-	D:	Y*/N							Y*Y	Y*/N	Y*/N	N,*	Y*/N	Pitt d	ODODE TO		т	3202				\$\MICROBAC	2		<u> </u>			
py-TR			-17 0	Date / Time	2	2	2	2 1	2 1	2	2 1	2 1	2 1	2 1	2 1	2	# of C	CBOD5, TSS NO2, NO3		dues	z P 50 mL	Conta		*Pre	Õ O	1	=	U)))		CUSTODY
ି Labor			9:50	пе			_	1	1	_	_		1	1	1		# of Containers P Analysis	PT, TKN, N	- 	Requested Lab Ana	nL 320z P	Container Size/Ty	S _A	* Preservation Tv	D	2	2 (Ž	1		35 Y
atory Sc		Bott	Con	Tem			_	1	_		_	٠ 1		->		1	ers Per is	P ^o (*Field		Analy	P 802	ze/Type	3	in Type		(מ 🎤	•			
ervices		les Inta	tainers	p. Upo	>	,ъ	_	-1	_	_		_	_			1	7	E-Coli		alysis	P 402	е	ST								
Services Coordinator	(Bottles Intact/(Yes / No)	Containers Properly Preserved: (Yes / No)	Temp. Upon Receipt (C): 4 L-Measured By			8.0		75								Dissol	ved Oxygen	(mg/L)					Field Remarks							
ator		/ No)	/ Preser	t (C):6		75.2	478	19.94	79.5	1574		√	1				Dissol Satura	ved Oxygen ion)	(%	97.	Weat			emarks				Thir	cbloyd	PDF An	
38 (89) (69)		(ved.⊘	12:Mea	- See F	7.6	7,6	7.5	7.0	7.3							ρΗ (S	.U.)		Site/Fie	Weather Event:				exingt- 859	S	2526 R	d Rock	@third	alytical	
			s/No)	sured B	ield No	57(467	294	546	424							Specif (umho/	ic Conductar cm)	ice	₃d Mea					ington, KY 40 859-977-2000	Suite 180	2526 Regency Road	ck Consulta	rockcor	Repor	
				Yester	See Field Notebook -	159	15.2	17.1	16.0	15.2							Tempe	erature (° ^c)		On-Site/Field Measurements	_Dry				Lexington, KY 40503 859-977-2000	Õ	y Road	Cory Bioya Third Rock Consultants, LLC	cbloyd@thirdrockconsultants.com	PDF Analytical Report & Invoice To:	
				7		w	37,0	15	15.0	30							Turbid	ity (N.T.U.)		ents	_Wet				w			0	ts.com	ice To:	
						0.57		1.88	٨	0.37							Flow (cfs)										٠			

Original COC To Laboratory (Accompany Samples & Report)			25/21-2-6 XO-XO	Relinquished By: Date / Time	DD	1	10	Q	8	7	o	ڻ. ن	4	ω	2	_	Laboratory # Sample I.D.	NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ****** Assume duplicate sampled at earliest time for hold purposes.	NOTE:	Comments	Turnaround Time Required: 7 Working Days	Methodology Required: 40CFR Part 136	1		Project #: KY16-004 Project Contact (for laboratory): Cory Bloyd	Project Name: Cane Run Watershed Based Plan	COC#
			San Trans	Recei	sw 5/4/	WS	WS	WS	WS	SW ,	sw 5/4/1	SW 5/4/	sw 5/9/)	SW 5/4/	SW 5/4/	Life S MS	Collection Matrix.* Cate		ST ST	* Pres	EDD Required: X Yes						
COC Copy - TRC Project File			The same	Received By:	7 *****						7115	17 7:40	7 6:20	17 8:10	2000	ST. 9	Collection Time	I - Ice (All)	SA - H2SO4 ST - Na2S2O3	reservative Code	XYes _No		<u> </u>				
c		•	8		G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	G Y*/N	Grab / Fittel					W MICROBAC) (- U-		CHAIN OF CUSTODY
COC Copy - TRC Laboratory			7-4-17	Dat	Г	2	2	2	2	2	N 2	N 2	2	2	2	2		CBOD5, TSS	70	32oz		- こ ぬ	2 0	-) T		OFC
/-TRC			15:50	Date / Time		<u> </u>		_			1				_	_	# of Containers Analysis	NO2, NO3	Requested Lab Analysis	P 50 mL	*Preservation - SA Container Size/	l û	/	Ć	5	"	USTC
aborat			8	, p	1	_	>				1	3		>		-	ontainer Analysis	PT, TKN, NH3	dLab	320z P	sA SA Ier Sizi	^	Z)		YQ
ory Sen		Bottle	Contai	Тетр.			-3			-	->	_	->	`	-	-	rs Per	P ^O (* Field Filtered)	Analys	8oz P	Type		U) F	•		
/ices C		s intact	iners P	Upon F		>	-3			_	 	<u>_</u>	<u> </u>	16	7	्र ² -		E-Coli	Š	40z P	ST						
Services Coordinator	ļ	Bottles Intact (Yes / No)	roperly	Temp. Upon Receipt (C):							717	156	5 0 F	7.7	, e.	Ω		ved Oxygen (mg/L)			Field Remarks					io T	
tor	,	<u>8</u>	Preser	(c):						_	569	(8.0	C.	5.57	7,74	19	Disso Satura	ved Oxygen (% tion)	On-	Weat	marks			į	<u></u>	bloyd	
		ı	ed:	L Mes	- See						88 25.t.	7.69	8), t	7.69	7.7%	20.2	pH (S	.U.)	Site/Fi	Weather Event:	Р.	exing 85	-	2526 I	d Root	@third	
			Containers Properly Preserved: (Les) No)	Measured By:	ield N						88,		309 €		50.	4713	Special Special	īc Conductance /cm)	eld Me	ent:		ington, KY 40: 859-977-2000	Suite 180	⊰egen.	Cory Bloyd ck Consulta	rocko	
				3y: 1	See Field Notebook						<u> </u>		_	71	16.3	31592	Temp	erature (° ^C)	On-Site/Field Measurements	Dry _		Lexington, KY 40503 859-977-2000	8,	2526 Regency Road	Cory Bloyd Third Rock Consultants 11 C	on & in	
				In	<u>`</u>						0	5,1 1		-	115,9			lity (N.T.U.)	ments	Wet		[.]		ā. }		cbloyd@thirdrockconsultants.com	
								,	P			なもろ	♂ 													3 .	

7050672

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/11/2017

 Date Due
 05/18/2017

 Date Received
 05/09/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC C	Qualifier Result Units	Min Max	Method Rpt Limit	Analysis Date	Tech
Sample: 01 1 Sampled By Customer				Sampled 05/09/2017	'@ 13:50
Flow by Calculation	9.84 CFS		EPA 600	05/09/2017 13:50	CUS
E. coli	410.6 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW
Sample: 02 2 Sampled By Customer				Sampled 05/09/2017	'@ 13:10
Flow by Calculation	8.52 CFS		EPA 600	05/09/2017 13:10	CUS
E. coli	410.6 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW
Sample: 03 3 Sampled By Customer				Sampled 05/09/2017	'@ 13:35
Flow by Calculation	70.01 CFS		EPA 600	05/09/2017 13:35	CUS
E. coli	307.6 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW
Sample: 04 4 Sampled By Customer				Sampled 05/09/2017	'@ 12:45
Flow by Calculation	0.06 CFS		EPA 600	05/09/2017 12:45	CUS
E. coli	387.3 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW
Sample: 05 5 Sampled By Customer				Sampled 05/09/2017	'@ 12:00
Flow by Calculation	5.71 CFS		EPA 600	05/09/2017 12:00	CUS
E. coli	201.4 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW
Sample: 06 6 Sampled By Customer				Sampled 05/09/2017	'@ 11:45
Flow by Calculation	4.78 CFS		EPA 600	05/09/2017 11:45	CUS
E. coli	218.7 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW
Sample: 07 7 Sampled By Customer				Sampled 05/09/2017	'@ 11:20
Flow by Calculation	0.12 CFS		EPA 600	05/09/2017 11:20	CUS
E. coli	118.7 MPN/100mL		SM9223B (Colilert-18)	05/09/2017 16:45	DZW

7050672

Third Rock Consultants Steve Evans

Date Due Date Received 05/18/2017 05/09/2017

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analys	is Date	Tech
Sample: 08 Sampled By	8 Customer							Sampled	05/09/2017	7@ 11:00
E. coli			>2419.6 MPN/100mL			SM9223B (Colilert-18)		05/09/2	2017 16:45	DZW
Sample: 09 Sampled By	9 Customer							Sampled	05/09/2017	7@ 10:25
Flow by Calculat	tion		1.25 CFS			EPA 600		05/09/2	2017 10:25	CUS
E. coli			185.0 MPN/100mL			SM9223B (Colilert-18)		05/09/2	2017 16:45	DZW
Sample: 10 Sampled By	10 Customer							Sampled	05/09/2017	7@ 9:30
Flow by Calculat	tion		0.67 CFS			EPA 600		05/09/2	2017 9:30	CUS
E. coli			>2419.6 MPN/100mL			SM9223B (Colilert-18)		05/09/2	2017 16:45	DZW
Sample: 11 Sampled By	11 Customer							Sampled	05/09/2017	7@ 9:55
Flow by Calculat	tion		0.42 CFS			EPA 600		05/09/2	2017 9:55	CUS
E. coli			261.3 MPN/100mL			SM9223B (Colilert-18)		05/09/2	2017 16:45	DZW
Sample: 12 Sampled By	DD Customer							Sampled	05/09/2017	7
E. coli			238.2 MPN/100mL			SM9223B (Colilert-18)		05/09/2	2017 16:45	DZW

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Analysis</u> **Laboratory** Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

E. coli

SM9223B (Colilert-18)

<u>Method</u>

7050672

Third Rock Consultants Steve Evans

Date Due
Date Received

05/18/2017 05/09/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Services Coordinator	COC Copy - TRC Laboratory Services	_ coc	t File	₹C Projec	COC Copy - TRC Project File		pany Samples & Repor	Original COC To Laboratory (Accompany Samples & Report)
Bottles Intact: (Yes / No)	Bottles Inta				,	^		
Containers Properly Preserved: (Yes / No)	1500	59-17			10/1	K	5-9-17/1500	Joseph James
Temp. Upon Receipt (C): <u>スム</u> Measured By: <u>vii/に</u> ムノニ	Date / Time Temp. Upo			зд.Ву:	Received By:		Date / Time	Relinquished By:
- See Field Notebook -	-3	Y*/N	6	*****	(1)	SW	DD	
ら、夕り		∀ *N	6	0955		WS	11	
0.67	1	∀ */N	ດ	0730	- Constitution	SW	10	
		≺* ≥	ດ	025	- Company	SW	9	
وسيوالي المساورين	1	Y*/N	ဝ	1/00		WS	8	
0./a		Y*/N		00 0	CHILDNING CO.	ws	7	
4.78		Y*∕	G	1195	YAMPERICAN A	ws	6	
6.7	12.34	Y*/N		1206	~	SW	5	
0.06		∀ */N	ര	交 S		MS	4	
70,01	1	Y*/N		(335	,,,,,,	SW	3	
8.52	1	N/*Y		0121	13 5	WS	2	
185	1	Y*∕N	G	1350	5-9-17	SW	_	
Flow (# of Containers Per Analysis	Y/N Y/N	Grab/	Collection Time	Collection Date	Matrix *	Sample I.D.	Laboratory#
cfs)	E-Coli						ed at earliest time	***** Assume duplicate sampled at earliest time for hold purposes.
		8		ST - Na2S2O3 - Ice (All)	_ S			NOTE:
On-Site/Field Measurements	Requested Lab Analysis			1				
Weather Event:DryWet	402 P		ode	Preservatīve Code	* Preser			Comments:
	ST Container Size/Type	(A)	lo	Yes _ No	uired: X	EDD Required: X Yes	7 Working Days	Turnaround Time Required: 7 V
Field Remarks:	* Preservation Type							,
Lexington, KY 40503 859-977-2000	MICROBAC'	3					40CFR Part 136	Methodology Required: 40CFF
Suite 180	SULTANTS	C 0 N		<u> </u>			Sad	Collected By: Client - C.S.
Third Rock Consultants, LLC	IRDROCK	フ し		Mark Market			Cory Bloyd	
cbloyd@thirdrockconsultants.com Cory Bloyd	n)) 						Cane Run Watershed Based Plan	Project Name: Cane Run Wate
PDF Analytical Report & Invoice To:	STATEMENT TO STATE	and white the least of the leas	RESIDUE PRODUCT CHIEF IN	CONTRACTOR SON OF CONTRACTOR S			, LLC	Client: Third Rock Consultants, LLC
	CHAIN OF CUSTODY	PIN OF	9					COC#

7051191

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/19/2017

 Date Due
 05/25/2017

 Date Received
 05/16/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier Result Units	Min Max	Method Rpt Limit	Analysis l	Date To	ech
Sample: 01 1 Sampled By Customer				Sampled	05/16/2017@	13:45
Flow by Calculation	14.2 CFS		EPA 600	05/16/201	7 13:45	CUS
E. coli	248.1 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06 E	BAS
Sample: 02 2 Sampled By Customer				Sampled	05/16/2017@	13:30
Flow by Calculation	10.9 CFS		EPA 600	05/16/201	7 13:30	CUS
E. coli	135.4 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06 E	BAS
Sample: 03 3 Sampled By Customer				Sampled	05/16/2017@	13:20
Flow by Calculation	<0.01 CFS		EPA 600	05/16/201	7 13:20	CUS
E. coli	25.9 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06 E	BAS
Sample: 04 4 Sampled By Customer				Sampled	05/16/2017@	13:05
Flow by Calculation	<0.01 CFS		EPA 600	05/16/201	7 13:05	CUS
E. coli	>2419.6 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06	BAS
Sample: 05 5 Sampled By Customer				Sampled	05/16/2017@	12:45
Flow by Calculation	4.9 CFS		EPA 600	05/16/201	7 12:45	CUS
E. coli	387.3 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06	BAS
Sample: 06 6 Sampled By Customer				Sampled	05/16/2017@	12:15
Flow by Calculation	3.5 CFS		EPA 600	05/16/201	7 12:15	CUS
E. coli	1986.3 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06 E	BAS
Sample: 07 7 Sampled By Customer				Sampled	05/16/2017@	11:50
Flow by Calculation	0.27 CFS		EPA 600	05/16/201	7 11:50	CUS
E. coli	56.1 MPN/100mL		SM9223B (Colilert-18)	05/16/201	7 17:06 E	BAS

7051191

Third Rock Consultants Steve Evans

Date Due
Date Received

05/25/2017 05/16/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysi	s Date	Tech
Sample: 08 Sampled By	8 Customer							Sampled	05/16/2017	7@ 11:30
E. coli			238.2 MPN/100mL			SM9223B (Colilert-18)		05/16/2	017 17:06	BAS
Sample: 09 Sampled By	9 Customer							Sampled	05/16/2017	7@ 11:00
Flow by Calcula	tion		1.83 CFS			EPA 600		05/16/2	017 11:00	CUS
E. coli			83.6 MPN/100mL			SM9223B (Colilert-18)		05/16/2	017 17:06	BAS
Sample: 10 Sampled By	10 Customer							Sampled	05/16/2017	7@ 10:00
Flow by Calcula	tion		1.49 CFS			EPA 600		05/16/2	017 10:00	CUS
E. coli			488.6 MPN/100mL			SM9223B (Colilert-18)		05/16/2	017 17:06	BAS
Sample: 11 Sampled By	11 Customer							Sampled	05/16/2017	7@ 10:25
Flow by Calcula	tion		1.25 CFS			EPA 600		05/16/2	017 10:25	CUS
E. coli			178.9 MPN/100mL			SM9223B (Colilert-18)		05/16/2	017 17:06	BAS
Sample: 12 Sampled By	DD Customer							Sampled	05/16/2017	7
E. coli			61.3 MPN/100mL			SM9223B (Colilert-18)		05/16/2	017 17:06	BAS

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

 Laboratory
 Analysis

 Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site
 E. coli

Method SM9223B

(Colilert-18)

7051191

Third Rock Consultants Steve Evans

Date Due
Date Received

05/25/2017 05/16/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

Coordinator	COC Copy - TRC Laboratory Services Coordinator	000	roject File	COC Copy - TRC Project File		any Samples & Report)	Original COC To Laboratory (Accompany Samples & Report)
(M) 124							
Bottles Intact: (Yes / No)	Bottles Inta			, , ,)		made in the second of the seco
Containers Properly Preserved: (Yes / No)	15.18	516-17		2M	Harr	5/16/17 15/10	Sample of the second
Temp. Upon Receipt (C): 🚶 ù Measured By: 🔞 🖟	Date / Time Temp. Upor		F.	Received By:	ク	Date / Time	Relinquished By:
- See Field Notebook -		MYN /	G	<u></u>	SW	DD	
1, 25	-1	≼ Ž	ිස්		SW	11	
		Ž	ေဝ	***	WS	10	
1.8%		ž	<i>11</i> හි		SW	9	
- Community		ž	<i>S</i> ⊘ G	Macaon	WS	8	
0,27		ž	150 G	kananana Apan	WS	7	
C, Sym		ž	1215 G	***	WS	ത	A. A. A. A. A. A. A. A. A. A. A. A. A. A
4.9		ž	1247 6		ws	ΟΊ	
. < 00/		ž	305 G		WS	4	
人 りの/		≾ Ž	<u>ම</u> ි		SW	ω	
6.0		کر ک	<u>ශ</u> ර	T.	WS	2	
M. Commission	,	ž	345 G	116117	SW 5	_	
Flow	# of Containers Per Analysis		Collection Grab / Time Comp	Collection Co Date	Мапх.*	Sample I.D.	Laboratory#
(cfs)	E-Coli						or non pulposes.
						ed at earliest time	***** Assume duplicate sampled at earliest time
		•	(I) (I)	SI - Na2S2O3 I - Ice (All)			NOTE:
On-Site/Field Measurements	Requested Lab Analysis						
Weather Event:DryWet	40 z P		re Code	Preservative Code			Comments:
	Container Size/Type		l ē	. 13	0		district sequiles in the second
Field Remarks:	on Type		<u>z</u>	ρή· Υ Υ Υ Ρ ο	FDD Required: Y Yes	7 Working Days	Turnaround Time Required: 7 M
859-977-2000			 @			Part 136	Methodology Required: 40CFR Part 136
Levington KV ADED3	j) j)	<u></u>	3,				Conected by Cheric -
2526 Regency Road	SULTANTS	CON					Phone #: 859-977-2000
Third Rock Consultants, LLC	フスつの	J J				Cory Bloyd	Project Contact (for laboratory): Cory Bloyd
Cory Bloyd		====					
cbloyd@thirdrockconsultants.com) _					shed Based Plan	Project Name: Cane Run Watershed Based Plan
PDF Analytical Report & Invoice To:	TO AND AND AND AND AND AND AND AND AND AND		and the state of t	O JANZAGONI WILLOWSKI SIGNAS ON THE STATE OF		LC	Client: Third Rock Consultants, LLC
	CHAIN OF CUSTODY	AIN OF	СН				#303

7051396

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/19/2017

 Date Due
 05/30/2017

 Date Received
 05/18/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	ooc	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysi	s Date	Tech
Sample: 01 Sampled By	1 Customer							Sampled	05/18/201	7@ 14:40
Flow by Calculat	tion		8.68 CFS			EPA 600		05/18/2	017 14:40	CUS
E. coli			248.1 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS
Sample: 02 Sampled By	2 Customer							Sampled	05/18/201	7@ 14:15
Flow by Calculat	tion		6.03 CFS			EPA 600		05/18/2	017 14:15	CUS
E. coli			410.6 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS
Sample: 03 Sampled By	3 Customer							Sampled	05/18/201	7@ 14:00
Flow by Calculat	tion		<0.01 CFS			EPA 600		05/18/2	017 14:00	CUS
E. coli			42.8 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS
Sample: 04 Sampled By	4 Customer							Sampled	05/18/201	7@ 13:50
Flow by Calculat	tion		<0.01 CFS			EPA 600		05/18/2	017 13:50	CUS
E. coli			231.0 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS
Sample: 05 Sampled By	5 Customer							Sampled	05/18/201	7@ 13:30
Flow by Calculat	tion		3.33 CFS			EPA 600		05/18/2	017 13:30	CUS
E. coli			1299.7 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS
Sample: 06 Sampled By	6 Customer							Sampled	05/18/201	7@ 13:05
Flow by Calculat	tion		3.34 CFS			EPA 600		05/18/2	017 13:05	CUS
E. coli			1723.0 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS
Sample: 07 Sampled By								Sampled	05/18/201	7@ 12:45
Flow by Calculat	tion		0.07 CFS			EPA 600		05/18/2	017 12:45	CUS
E. coli			156.5 MPN/100mL			SM9223B (Colilert-18)		05/18/2	017 16:47	BAS

7051396

Third Rock Consultants Steve Evans

Date Due Date Received 05/30/2017 05/18/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysi	s Date	Tech
Sample: 08 Sampled By	8 Customer							Sampled	05/18/2017	7@ 12:20
E. coli			139.6 MPN/100mL			SM9223B (Colilert-18)		05/18/2	2017 16:47	BAS
Sample: 09 Sampled By	9 Customer							Sampled	05/18/2017	7@ 11:45
Flow by Calcula	tion		0.36 CFS			EPA 600		05/18/2	2017 11:45	CUS
E. coli			52.1 MPN/100mL			SM9223B (Colilert-18)		05/18/2	2017 16:47	BAS
Sample: 10 Sampled By	10 Customer							Sampled	05/18/2017	7@ 10:30
Flow by Calcula	tion		0.13 CFS			EPA 600		05/18/2	2017 10:30	CUS
E. coli			741.0 MPN/100mL			SM9223B (Colilert-18)		05/18/2	2017 16:47	BAS
Sample: 11 Sampled By	11 Customer							Sampled	05/18/2017	7@ 11:00
Flow by Calcula	tion		0.27 CFS			EPA 600		05/18/2	2017 11:00	CUS
E. coli			275.5 MPN/100mL			SM9223B (Colilert-18)		05/18/2	2017 16:47	BAS
Sample: 12 Sampled By	DD Customer							Sampled	05/18/2017	7
E. coli			185.0 MPN/100mL			SM9223B (Colilert-18)		05/18/2	2017 16:47	BAS

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Analysis</u> **Laboratory** Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

E. coli

SM9223B (Colilert-18)

<u>Method</u>

7051396

Third Rock Consultants Steve Evans

Date Due Date Received 05/30/2017 05/18/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com Cory Bloyd Third Rock Consultants, LLC 2526 Regency Road Suite 180 Lexington, KY 40503 859-977-2000 Type Weather Event:DryWet Analysis On-Site/Field Measurements ### Cord #### Cord ####################################
--

CERTIFICATE OF ANALYSIS

7051758

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington, KY 40503

 Date Reported
 05/25/2017

 Date Due
 06/05/2017

 Date Received
 05/24/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis OOC	Qualifier Result Units	Min Max	Method Rpt Limit	Analysis Date	Tech
Sample: 01 1 Sampled By Customer				Sampled 05/24/201	7@ 10:15
Flow by Calculation	5.92 CFS		EPA 600	05/24/2017 10:15	CUS
E. coli	228.2 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW
Sample: 02 2 Sampled By Customer				Sampled 05/24/201	7@ 10:45
Flow by Calculation	5.1 CFS		EPA 600	05/24/2017 10:45	CUS
E. coli	261.3 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW
Sample: 03 3 Sampled By Customer				Sampled 05/24/201	7@ 10:40
Flow by Calculation	<0.01 CFS		EPA 600	05/24/2017 10:40	CUS
E. coli	83.9 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW
Sample: 04 4 Sampled By Customer				Sampled 05/24/201	7@ 11:20
Flow by Calculation	<0.01 CFS		EPA 600	05/24/2017 11:20	CUS
E. coli	77.1 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW
Sample: 05 5 Sampled By Customer				Sampled 05/24/201	7@ 11:30
Flow by Calculation	2.03 CFS		EPA 600	05/24/2017 11:30	CUS
E. coli	1553.1 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW
Sample: 06 6 Sampled By Customer				Sampled 05/24/201	7@ 11:50
Flow by Calculation	0.85 CFS		EPA 600	05/24/2017 11:50	CUS
E. coli	>2419.6 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW
Sample: 07 7 Sampled By Customer				Sampled 05/24/201	7@ 12:15
Flow by Calculation	<0.01 CFS		EPA 600	05/24/2017 12:15	CUS
E. coli	325.5 MPN/100mL		SM9223B (Colilert-18)	05/24/2017 16:24	DZW

CERTIFICATE OF ANALYSIS

7051758

Third Rock Consultants Steve Evans

Date Due Date Received 06/05/2017 05/24/2017

KDOW Cane Run Watershed Project

Analysis	оос	Qualifier	Result Units	Min	Max	Method	Rpt Limit	Analysi	s Date	Tech
Sample: 08 Sampled By	8 Customer							Sampled	05/24/2017	7@ 9:50
E. coli			2419.6 MPN/100mL			SM9223B (Colilert-18)		05/24/2	017 16:24	DZW
Sample: 09 Sampled By	9 Customer							Sampled	05/24/2017	7@ 12:45
Flow by Calcula	tion		4.29 CFS			EPA 600		05/24/2	017 12:45	CUS
E. coli			159.7 MPN/100mL			SM9223B (Colilert-18)		05/24/2	017 16:24	DZW
Sample: 10 Sampled By	10 Customer							Sampled	05/24/2017	7@ 13:45
Flow by Calcula	tion		USGS CFS			EPA 600		05/24/2	017 13:45	CUS
E. coli			1046.2 MPN/100mL			SM9223B (Colilert-18)		05/24/2	017 16:24	DZW
Sample: 11 Sampled By	11 Customer							Sampled	05/24/2017	7@ 13:15
Flow by Calcula	tion		5.24 CFS			EPA 600		05/24/2	017 13:15	CUS
E. coli			>2419.6 MPN/100mL			SM9223B (Colilert-18)		05/24/2	017 16:24	DZW
Sample: 12 Sampled By	DD Customer							Sampled	05/24/2017	7
E. coli			259.5 MPN/100mL			SM9223B (Colilert-18)		05/24/2	017 16:24	DZW

Qualifier Definitions

The following analyses were not run at the main Louisville lab within the Microbac Kentucky Division, but at a satellite location.

<u>Analysis</u> **Laboratory** Microbac Laboratories, Kentucky Testing Laboratory, Lexington Site

E. coli

SM9223B (Colilert-18)

<u>Method</u>

CERTIFICATE OF ANALYSIS

7051758

Third Rock Consultants Steve Evans

Date Due
Date Received

06/05/2017 05/24/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

For any feedback concerning our services, please contact David Lester, Managing Director at 502.962.6400 or Rob Crookston, President at president@microbac.com.

COC#				MHS	NOF	CHAIN OF CUSTODY	
Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan)))	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com
Project #: KY16-004 Project Contact (for Jahonatony): Conv. Blood				4	j -	25	Cory Bloyd Third Book Consultants 11 C
			phose.				2526 Regency Road
Collected By: Client -				, ,	2		Suite 180
Methodology Required: 40CFR Part 136			l	0	<u>~</u> ^	MICROBAC	Lexington, KY 40503 859-977-2000
Turnaround Time Required: 7 Working Days	EDD Require	Ä. X				* Preservation Type	Field Remarks:
Torrestodio Fille Required. / Working Days	EDO Required. A res	.>	I NO			ST Container Size/Type	
Comments:	.	veserv	Preservative Code			402 P	Weather Event:DryWet
		ST-N	ST - Na2S2O3			Requested Lab Analysis	is On-Site/Field:Measurements
NOTE:		- - -	I-loe (All)				
for hold purposes.	•					-Coli)
		Collection	Collection	Grab /	Y Fra	#of Containers Per	low (c
NAMES OF STREET	SW G	125/	1015	ด (Υ* Ν	SEDIVI NESIVEZ DANDI NEDISSI DEKRISTANJEN METER KUNANDRAMANA-SAJVIKA JAJJ	5.92
2			104965		Υ*X		5
· ·	SW		1040	ଜ	∀ *∕N		20.01
. 4	WS		1120	G	∀ * ≥	- * .	₹ 00.
51	WS		1130	ଦ	Υ*/Ν	-1	2.03
5	SW		1150	G	Υ*/N		0.85
	ws		1215		∀ *≥		<0.0/
	SW	+			* 12		230
10	cw/	1	1225	D 6	<		5.55
1	WS		13/5		∀ * ≥	<u> </u>	5,24
DD	SW	⋞	***	G	Υ*/N	-	- See Field Notebook -
Relinquished By: Date / Time	R	Received By:	By:			Date / Time Temp.	Temp. Upon Receipt (C):2-5 Measured By: 49/1/
E0h1 t1/h2/4			A STATE OF THE STA	- (-	5/241	5/24/17/2/14/03 Contai	Containers Properly Preserved: (X) LNO)
						Bottles	Bottles Intact: (Yes / No)
Original COC To Laboratory (Accompany Samples & Report))py-TR	COG Copy - TRC Project File	P	0000	COC Copy - TRC Laboratory Services Coordinator	rices Coordinator
All manufactures and the second secon				-			

6061975

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503 Original Date Reported Report Reissued Date Received Customer # 06/28/2016 07/05/2016 06/27/2016 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B103616				-		06/27/2016	CUS
Flow by Measurement & C	Calc					00/27/2010	000
now by measurement a c	No QC Reported						
		0					
		0					
QC Batch: B103616						06/27/2016	CUS
Oxygen, Dissolved							
	No QC Reported						
		0					
QC Batch: B103616						06/27/2016	CUS
Specific Conductance							
	No QC Reported						
		0					
QC Batch: B103616						06/27/2016	CUS
Turbidity						55/21/2515	
	No QC Reported						
	·	0					
		0					5711
QC Batch: B103617						06/27/2016	DZW
E. coli	N- 00 B						
	No QC Reported						
		0					
QC Batch: B103616						06/27/2016	CUS
pH							
	No QC Reported						
		0					
QC Batch: B103616						06/27/2016	CUS
Temperature							
	No QC Reported						
	-						

Qualifier Definitions

6061975

Third Rock Consultants Marcia L. Wooton Report Reissued

Date Received

07/05/2016 06/27/2016

KDOW Cane Run Watershed Project

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin. A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6061976

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503
 Original Date Reported
 06/28/2016

 Report Reissued
 07/05/2016

 Date Received
 06/27/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

D		-	h 1	\boldsymbol{n}	$\boldsymbol{\Gamma}$
О	M	Ю		w	C
_		-		_	

Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date	Time	Tech
QC Batch: B103620						06/27/2016	6	LLM
E. coli								

No QC Reported

0

Qualifier Definitions

- J1 The analyte was positively identified; analyte was detected between the Reporting Limit and Method Detection Limit and the result is an
- UJ Analyte was not detected above the Reporting Limit, however, the Reporting Limit is approximate & may or may not represent the actual Limit of Quantitation necessary to accurately & precisely measure the analyte in the sample.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

l isa Martin. A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6061982

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503
 Original Date Reported
 07/05/2016

 Report Reissued
 07/05/2016

 Date Received
 06/28/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B103631						06/28/2016	EGD
BOD, 5 Day							
Blank	mg/L	<2.0	UJ				
QC Batch: B103742						06/29/2016	DJR
Nitrogen, Ammonia							
Blank	mg/L	<0.14	UJ				
LCS	%	93.0		90-110			
QC Batch: B103810						06/30/2016	DJR
Nitrogen, Ammonia							
Blank	mg/L	<0.14	UJ				
LCS	%	95.1		90-110			
MS	%	97.5		90-110			
MSD	%	96.2		90-110			
MS RPD	%	1.34		0-10			
QC Batch: B103638						06/28/2016	JGF
litrogen, Nitrate							
Blank	mg/L	<0.027	UJ				
LCS	%	104		90-110			
MS	%	107		90-110			
MSD	%	107		90-110			
MS RPD	%	0.204		0-10			
QC Batch: B103638						06/28/2016	JGF
litrogen, Nitrite							
Blank	mg/L	<0.025	UJ				
LCS	%	102		90-110			
MS	%	98.4		90-110			
MSD	%	98.1		90-110			
MS RPD	%	0.294		0-10			
QC Batch: B103872						07/01/2016	DJR
litrogen, Total Kjeldah							
Blank	mg/L	<0.40					
LCS	%	90.4		90-110			

6061982

Third Rock Consultants Marcia L. Wooton

Report Reissued Date Received 07/05/2016 06/28/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Tin	ne Tech
QC Batch: B103704						06/28/2016	DJR
Phosphorus							
Blank	mg/L	<0.025	UJ				
LCS	%	108		90-110			
MS	%	103		90-110			
MSD	%	104		90-110			
MS RPD	%	0.694		0-10			
QC Batch: B103782						06/30/2016	DJR
Phosphorus							
Blank	mg/L	0.0124	J1				
LCS	%	108		90-110			
MS	%	93.8		90-110			
MSD	%	92.2		90-110			
MS RPD	%	0.976		0-10			
QC Batch: B103778						06/29/2016	CJL
Solids, Total Suspended							
Blank	mg/L	<1					
LCS	%	96.9		85-105			

Qualifier Definitions

6061982

Third Rock Consultants Marcia L. Wooton Report Reissued
Date Received

07/05/2016 06/28/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin. A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6071161

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 07/25/2016

 Date Due
 07/27/2016

 Date Received
 07/18/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B105208						07/18/2016	CUS
Flow by Measurement	& Calc.						
	No QC Repoi	rted					
		0					
QC Batch: B105208						07/18/2016	CUS
Oxygen, Dissolved							
	No QC Repoi	rted					
		0					
QC Batch: B105208						07/18/2016	CUS
Specific Conductance							
	No QC Repo	rted					
		0					
QC Batch: B105208						07/18/2016	CUS
Turbidity							
	No QC Repoi	rted					
		0					
QC Batch: B105240						07/18/2016	DZW
E. coli							
	No QC Repo	rted					
		0					
QC Batch: B105298						07/19/2016	DJR
BOD, 5 Day							
Blank	mg/L	<2.0	UJ				
QC Batch: B105525						07/21/2016	EGD
Nitrogen, Ammonia							
Blank	mg/L	<0.14	UJ				
LCS	%	98.4		90-110			
MS	%	89.9	M2, R1	90-110			
MSD	%	104	R1	90-110			
MS RPD	%	14.7	R1	0-10			

6071161

Third Rock Consultants Marcia L. Wooton Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B105351						07/19/2016	LJC
Nitrogen, Nitrate							
Blank	mg/L	<0.027	UJ				
LCS	%	98.9		90-110			
MS	%	96.3		90-110			
QC Batch: B105351						07/19/2016	LJC
Nitrogen, Nitrite							
Blank	mg/L	<0.025	UJ				
LCS	%	101		90-110			
MS	%	92.4		90-110			
QC Batch: B105384						07/22/2016	EGD
Nitrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	91.0		90-110			
MS	%	89.0		90-110			
MSD	%	85.7		90-110			
MS RPD	%	3.29		0-10			
QC Batch: B105208						07/18/2016	CUS
pH							
	No QC Repor	rted					
		0					
QC Batch: B105353						07/19/2016	EGD
Phosphorus							
Blank	mg/L	<0.025	UJ				
LCS	%	109		90-110			
MS	%	102		90-110			
MSD	%	104		90-110			
MS RPD	%	1.26		0-10			

6071161

Third Rock Consultants Marcia L. Wooton Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B105562						07/22/2016	EGD
Phosphorus							
Blank	mg/L	0.00550	J1				
LCS	%	104		90-110			
MS	%	92.5		90-110			
MSD	%	89.0	M2	90-110			
MS RPD	%	2.27	M2	0-10			
QC Batch: B105390						07/20/2016	CJL
Solids, Total Suspend	led						
Blank	mg/L	<1					
LCS	%	87.2		85-105			
QC Batch: B105208						07/18/2016	CUS
Temperature							

No QC Reported

0

Qualifier Definitions

M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.

R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

6071171

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 07/25/2016

 Date Due
 07/27/2016

 Date Received
 07/18/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time Te	ch
QC Batch: B105215						07/18/2016 CL	JS
Flow by Measurement &							
	No QC Reported	d					
		0					
QC Batch: B105215						07/18/2016 CL	JS
Oxygen, Dissolved							
	No QC Reported	i					
		0					
QC Batch: B105215						07/18/2016 CL	JS
Specific Conductance							
	No QC Reported	d					
		0					
QC Batch: B105215						07/18/2016 CL	JS
Turbidity							
	No QC Reported	d					
		0					
QC Batch: B105240						07/18/2016 DZ	ZW
E. coli							
	No QC Reported	d					
		0					
QC Batch: B105298						07/19/2016 DJ	IR
BOD, 5 Day							
Blank	mg/L	<2.0	UJ				
QC Batch: B105525						07/21/2016 EG	GD.
Nitrogen, Ammonia							
Blank	mg/L	<0.14	UJ				
LCS	%	98.4		90-110			
QC Batch: B105351						07/19/2016 LJ	С
Nitrogen, Nitrate							
Blank	mg/L	<0.027	UJ				
LCS	%	98.9		90-110			

6071171

Third Rock Consultants Marcia L. Wooton Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B105351						07/19/2016	LJC
Nitrogen, Nitrite							
Blank	mg/L	<0.025	UJ				
LCS	%	101		90-110			
QC Batch: B105384						07/22/2016	EGD
Nitrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	91.0		90-110			
QC Batch: B105215						07/18/2016	CUS
pH							
	No QC Repo	orted					
		0					
QC Batch: B105353						07/19/2016	EGD
Phosphorus							
Blank	mg/L	<0.025	UJ				
LCS	%	109		90-110			
QC Batch: B105562						07/22/2016	EGD
Phosphorus							
Blank	mg/L	0.00550	J1				
LCS	%	104		90-110			
QC Batch: B105390						07/20/2016	CJL
Solids, Total Suspended							
Blank	mg/L	<1					
LCS	%	87.2		85-105			
QC Batch: B105391						07/21/2016	CJL
Solids, Total Suspended							
Blank	mg/L	<1					
LCS	%	96.0		85-105			
QC Batch: B105215						07/18/2016	CUS
Temperature							
	No QC Repo	orted					

6071171

Third Rock Consultants Marcia L. Wooton Date Due Date Received 07/27/2016 07/18/2016

KDOW Cane Run Watershed Project

Qualifier Definitions

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6081841

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 09/02/2016

 Date Due
 09/02/2016

 Date Received
 08/24/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B108186						08/24/2016	CUS
Flow by Measurement &	Calc.						
	No QC Reported	1					
		0					
QC Batch: B108186						08/24/2016	CUS
Oxygen, Dissolved							
	No QC Reported	1					
		0					
QC Batch: B108186						08/24/2016	CUS
Specific Conductance							
	No QC Reported	1					
		0					
QC Batch: B108204						08/24/2016	LKE
E. coli							
	No QC Reported	1					
		0					
QC Batch: B108347						08/25/2016	DJR
BOD, 5 Day							
Blank	mg/L	<2.0	UJ				
QC Batch: B108609						09/01/2016	EGD
Nitrogen, Ammonia							
Blank	mg/L	<0.14	UJ				
LCS	%	93.6		90-110			
MS	%	94.4		90-110			
MSD	%	86.5	M2	90-110			
MS RPD	%	8.67	M2	0-10			
QC Batch: B108328						08/25/2016	LJC
Nitrogen, Nitrate							
Blank	mg/L	<0.025	UJ				
LCS	%	97.9		90-110			

6081841

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B108328						08/25/2016	LJC
Nitrogen, Nitrite							
Blank	mg/L	0.0360	J1				
LCS	%	105		90-110			
QC Batch: B108585						08/31/2016	EGD
Nitrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	90.9		90-110			
QC Batch: B108699						09/01/2016	EGD
Nitrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	95.1		90-110			
MS	%	101	R1	90-110			
MSD	%	88.4	M2, R1	90-110			
MS RPD	%	11.2	M2, R1	0-10			
QC Batch: B108186						08/24/2016	CUS
pH							
	No QC Repo	orted					
		0					
QC Batch: B108355						08/25/2016	EGD
Phosphorus							
Blank	mg/L	<0.035	UJ				
LCS	%	103		90-110			
MS	%	95.5		90-110			
MSD	%	97.7		90-110			
MS RPD	%	1.45		0-10			
QC Batch: B108528						08/29/2016	EGD
Phosphorus							
Blank	mg/L	<0.046	UJ L2				
LCS	%	112	L2	90-110			
MS	%	97.4	L2	90-110			
MSD	%	95.3	L2	90-110			
MS RPD	%	1.22	L2	0-10			

6081841

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/02/2016 08/24/2016

KDOW Cane Run Watershed Project

Batch QC								
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date	Time	Tech
QC Batch: B108295						08/25/20	16	CJL
Solids, Total Suspended								
Blank	mg/L	<1						
LCS	%	92.9		85-105				
QC Batch: B108186						08/24/20	16	CUS
Temperature								

No QC Reported

0

Qualifier Definitions

- Lab control sample (LCS) recovery above upper Control Limit.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6090457

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 09/16/2016

 Date Due
 09/19/2016

 Date Received
 09/08/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B109341						09/08/2016	CUS
Flow by Measurement &	Calc.						
	No QC Reporte	ed					
		0					
QC Batch: B109341						09/08/2016	CUS
Oxygen, Dissolved							
	No QC Reporte	ed					
		0					
QC Batch: B109341						09/08/2016	CUS
Specific Conductance							
	No QC Reporte	ed					
		0					
QC Batch: B109341						09/08/2016	CUS
Turbidity							
·	No QC Reporte	ed					
		0					
QC Batch: B109362						09/08/2016	LKE
E. coli						00/00/2010	
	No QC Reporte	ed					
		0					
QC Batch: B109406						09/09/2016	DJR
BOD, 5 Day						09/09/2010	Dork
Blank	mg/L	<2.0	UJ				
QC Batch: B109776						00/45/0040	EGD
Nitrogen, Ammonia						09/15/2016	EGD
Blank	mg/L	<0.14	UJ L1				
LCS	y	89.1	L1	90-110			
MS	%	94.0	L1, R1	90-110			
MSD	%		L1, K1 L1, M2,	90-110			
		84.5	L1, M2, R1	30-110			
MS RPD	%	10.7	L1, M2, R1	0-10			

6090457

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B109417						09/09/2016	LJC
Nitrogen, Nitrate							
Blank	mg/L	<0.025	UJ				
LCS	%	92.3		90-110			
QC Batch: B109417						09/09/2016	LJC
Nitrogen, Nitrite							
Blank	mg/L	<0.018	UJ				
LCS	%	105		90-110			
QC Batch: B109585						09/14/2016	EGD
Nitrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	93.7		90-110			
QC Batch: B109684						09/15/2016	EGD
Nitrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	98.7		90-110			
MS	%	91.7		90-110			
MSD	%	94.3		90-110			
MS RPD	%	2.53		0-10			
QC Batch: B109341						09/08/2016	CUS
pH							
	No QC Repo	rted					
		0					
QC Batch: B109411						09/09/2016	EGD
Phosphorus							
Blank	mg/L	0.0150	J1				
LCS	%	104		90-110			

6090457

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Batch QC								
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date	Time	Tech
QC Batch: B109712						09/15/201	6	EGD
Phosphorus								
Blank	mg/L	0.0123	J1					
LCS	%	108		90-110				
MS	%	104		90-110				
MSD	%	106		90-110				
MS RPD	%	1.35		0-10				
QC Batch: B109437						09/09/201	6	CJL
Solids, Total Suspended	i							
Blank	mg/L	<1						
LCS	%	92.9		85-105				
QC Batch: B109341						09/08/201	6	CUS
Temperature								

No QC Reported

0

Qualifier Definitions

- L1 Lab Control Sample (LCS) recovery below lower Control Limit.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

6090457

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6090459

Third Rock Consultants Marcia L. Wooton 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 09/20/2016

 Date Due
 09/19/2016

 Date Received
 09/08/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time Te	ch
QC Batch: B109342						09/08/2016 CU	JS
Flow by Measurement &							
	No QC Reporte	d					
		0					
QC Batch: B109342						09/08/2016 CU	JS
Oxygen, Dissolved							
	No QC Reporte	d					
		0					
QC Batch: B109342						09/08/2016 CU	JS
Specific Conductance							
	No QC Reporte	d					
		0					
QC Batch: B109342						09/08/2016 CU	JS
Turbidity							
	No QC Reporte	d					
		0					
QC Batch: B109362						09/08/2016 Lk	ΚE
E. coli							
	No QC Reporte						
		0					
QC Batch: B109426						09/09/2016 D.	JR
BOD, 5 Day							
Blank	mg/L	<2.0	UJ				
QC Batch: B109776						09/15/2016 EG	GD
Nitrogen, Ammonia	_						
Blank	mg/L	<0.14	UJ L1				
LCS	%	89.1	L1	90-110			
QC Batch: B109417						09/09/2016 LJ	IC
Nitrogen, Nitrate							
Blank	mg/L	<0.025	UJ				
LCS	%	92.3		90-110			

6090459

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Batch QC							
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date Time	Tech
QC Batch: B109417						09/09/2016	LJC
Nitrogen, Nitrite							
Blank	mg/L	<0.018	UJ				
LCS	%	105		90-110			
QC Batch: B109684						09/15/2016	EGD
litrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	98.7		90-110			
QC Batch: B110028						09/20/2016	DJR
litrogen, Total Kjeldahl							
Blank	mg/L	<0.40					
LCS	%	101		90-110			
MS	%	96.6		90-110			
MSD	%	97.1		90-110			
MS RPD	%	0.474		0-10			
QC Batch: B109342						09/08/2016	CUS
Н							
	No QC Repor	rted					
		0					
C Batch: B109411						09/09/2016	EGD
hosphorus							
Blank	mg/L	0.0150	J1				
LCS	%	104		90-110			
MS	%	102		90-110			
MSD	%	104		90-110			
MS RPD	%	1.39		0-10			
QC Batch: B109849						09/16/2016	EGD
hosphorus							
Blank	mg/L	<0.012	UJ				
LCS	%	104		90-110			
MS	%	96.3		90-110			
MSD	%	94.6		90-110			
MS RPD	%	1.11		0-10			

6090459

Third Rock Consultants Marcia L. Wooton Date Due Date Received 09/19/2016 09/08/2016

KDOW Cane Run Watershed Project

Batch QC								
Analysis	Units	Recovery	Qualifier	Min-Max	Method Reference	Date	Time	Tech
QC Batch: B109438						09/09/20	16	CJL
Solids, Total Suspended								
Blank	mg/L	<1						
LCS	%	92.0		85-105				
QC Batch: B109342						09/08/20	16	CUS
Temperature								
	No OC Popor	tod						

No QC Reported

0

Qualifier Definitions

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6101546

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 11/03/2016

 Date Due
 11/03/2016

 Date Received
 10/25/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

nalysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B112709									10/25/2016		CUS
low by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B112709									10/25/2016		CUS
xygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B112709									10/25/2016		CUS
pecific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B112709									10/25/2016		CUS
urbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B112729									10/25/2016		LKE
. coli				SM9223B (Colilert-18)							
	No QC Reported										
		0									
QC Batch: B112836									10/26/2016		EGD
OD, 5 Day				SM 5210 B							
lank	mg/L	<2.0	UJ								

6101546

Third Rock Consultants Steve Evans Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max C	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B113297										11/02/2016	3	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.14		UJ								
LCS	%	94.2	90-110									
MS	%	97.8	90-110			6101546-02	NI	D 2.50	2.45			
MSD	%	104	90-110			6101546-02	N	D 2.50	2.60			
MS RPD	%	6.09	0-10									
QC Batch: B112811										10/26/2016	6	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	<0.025		UJ								
LCS	%	95.6	90-110									
QC Batch: B112811										10/26/2016	6	LJC
Nitrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
LCS	%	103	90-110									
QC Batch: B113291										11/02/2016	6	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	99.1	90-110									
MS	%	96.9	90-110			6101546-01	0.47	8 2.50	2.90			
MSD	%	97.0	90-110			6101546-01	0.47	8 2.50	2.91			
MS RPD	%	0.0929	0-10									
QC Batch: B112709										10/25/2016	6	CUS
рН					CLIENT SPECIFIED							

No QC Reported

0

6101546

Third Rock Consultants Steve Evans Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B112840									10/26/201	6	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.011	UJ								
LCS	%	102	90-110								
MS	%	102	90-110		6101546-01	0.269	0.50	0.780			
MSD	%	100	90-110		6101546-01	0.269	0.50	0.770			
MS RPD	%	1.32	0-10								
QC Batch: B113020									10/28/201	6	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	0.0213	J1								
LCS	%	101	90-110								
MS	%	96.1	90-110		6101546-01	0.304	0.50	0.784			
MSD	%	90.1	90-110		6101546-01	0.304	0.50	0.755			
MS RPD	%	3.87	0-10								
QC Batch: B112808									10/26/201	6	CJL
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	91.7	85-105								
QC Batch: B112709									10/25/201	6	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

6101546

Third Rock Consultants Steve Evans Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin. A.M

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

6101550

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 11/03/2016

 Date Due
 11/03/2016

 Date Received
 10/25/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B112715									10/25/2016	3	CUS
low by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B112715									10/25/2016	;	CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B112715									10/25/2016	5	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B112715									10/25/2016	3	CUS
urbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B112729									10/25/2016	3	LKE
i. coli				SM9223B (Colilert-18)							
	No QC Reported										
		0									
QC Batch: B112836									10/26/2016	;	EGD
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								

6101550

Third Rock Consultants Steve Evans Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B113297										11/02/2016	;	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.14		UJ								
LCS	%	94.2	90-110									
QC Batch: B112811										10/26/2016	3	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	<0.025		UJ								
LCS	%	95.6	90-110									
QC Batch: B112811										10/26/2016	3	LJC
Nitrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
LCS	%	103	90-110									
QC Batch: B113291										11/02/2016	3	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	99.1	90-110									
QC Batch: B112715					OLIENT SPECIFIED					10/25/2016	5	CUS
pH					CLIENT SPECIFIED							
	No QC Reported	•										
		0										
QC Batch: B112840										10/26/2016	6	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.011		UJ								
LCS	%	102	90-110									

6101550

Third Rock Consultants Steve Evans Date Due Date Received 11/03/2016 10/25/2016

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max Qu	ıalifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B113020										10/28/201	6	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0213	,	J1								
LCS	%	101	90-110									
QC Batch: B112809										10/26/201	6	CJL
Solids, Total Suspended					USGS I-3765-85							
Blank	mg/L	<1										
LCS	%	91.9	85-105									
QC Batch: B112715										10/25/201	6	CUS
Temperature					CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

isa Martin, A.M.

David Lester, Managing Directo

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

6111787

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 12/09/2016

 Date Due
 12/09/2016

 Date Received
 11/30/2016

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B115221									11/30/2016		CUS
low by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B115221									11/30/2016		CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B115221									11/30/2016		CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B115221									11/30/2016		CUS
urbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B115252									11/30/2016		ABK
. coli				SM9223B (Colilert-18)							
	No QC Reported										
		0									
D. D. C. D.									1015		DID
QC Batch: B115346				014 5040 B					12/01/2016	5	DJR
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								

6111787

Third Rock Consultants Steve Evans Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifi	er Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B116001									12/08/2016		EGD
Nitrogen, Ammonia				SM 4500 NH3 G							
Blank	mg/L	<0.22	UJ								
LCS	%	96.0	90-110								
MS	%	106	90-110		6111787-02	ND	2.50	2.65			
MSD	%	98.3	90-110		6111787-02	ND	2.50	2.46			
MS RPD	%	7.53	0-10								
QC Batch: B115400									12/01/2016		LJC
Nitrogen, Nitrate				EPA 300.0							
Blank	mg/L	0.0350	J1								
LCS	%	91.5	90-110								
QC Batch: B115400									12/01/2016		LJC
Nitrogen, Nitrite				EPA 300.0							
Blank	mg/L	<0.075	UJ								
LCS	%	98.4	90-110								
QC Batch: B115832				014 4500 1110 0					12/08/2016		EGD
Nitrogen, Total Kjeldahl				SM 4500 NH3 G							
Blank	mg/L	<0.40									
LCS	%	95.8	90-110								
MS	%	97.9	90-110		6111787-01	0.281	2.50	2.73			
MSD	%	93.2	90-110		6111787-01	0.281	2.50	2.61			
MS RPD	%	4.37	0-10								FOR
QC Batch: B115993				OM 4500 NILIO C					12/09/2016		EGD
Nitrogen, Total Kjeldahl	_			SM 4500 NH3 G							
Blank	mg/L	<0.40									
LCS	%	97.5	90-110								
MS	%	91.2	90-110		6111787-06	0.468	2.50	2.75			
MSD	%	92.4	90-110		6111787-06	0.468	2.50	2.78			
MS RPD	%	1.16	0-10								

6111787

Third Rock Consultants Steve Evans Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B115221										11/30/2016	3	CUS
рН					CLIENT SPECIFIED							
	No QC Reported											
		0										
QC Batch: B115371										12/01/2016	6	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0165		J1								
LCS	%	100	90-110									
MS	%	101	90-110			6111787-07	0.33	6 0.50	0.840			
MSD	%	97.7	90-110			6111787-07	0.33	6 0.50	0.824			
MS RPD	%	1.97	0-10									
QC Batch: B115326										12/01/2016	3	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0458		J1								
LCS	%	106	90-110									
QC Batch: B115327										12/01/2016	3	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0180		J1								
LCS	%	99.9	90-110									
00.0 / 1 0/45574										1010=15		0.11
QC Batch: B115571					11000 1 2765 05					12/05/2016	0	CJL
Solids, Total Suspended	0				USGS I-3765-85							
Blank	mg/L	<1	05.465									
LCS	%	85.0	85-105									
QC Batch: B115572										12/05/2016	3	CJL
Solids, Total Suspended					USGS I-3765-85							
Blank	mg/L	<1										
LCS	g.2 %	90.7	85-105									
	,,	00.1	55 100									

6111787

Third Rock Consultants Steve Evans Date Due Date Received 12/09/2016 11/30/2016

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B115221									11/30/2010	6	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

6121194

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 12/26/2016

 Date Due
 12/27/2016

 Date Received
 12/15/2016

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B116642									12/15/2016	3	CUS
Flow by Measurement & 0	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B116642									12/15/2016	6	CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
	-	0									
QC Batch: B116642									12/15/2016	3	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B116642									12/15/2016	3	CUS
Turbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B116655									12/15/2016	3	ABK
E. coli				SM9223B (Colilert-18)							
	No QC Reported										
	-	0									
QC Batch: B116726									12/16/2016	6	DJR
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								
DIAIIK	mg/L	~ 2.0	OJ								

6121194

Third Rock Consultants Steve Evans Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Batch QC	Units	Page 1	Min Max	Qualifier	Method Reference	Sample	Raw	Ra		Dow.	Data	Time	Tech
Analysis	Units	Recovery/ RPD	win-wax	Qualifier	Method Reference	Sample ID	Sample	Sp		Raw	Date	Time	recn
QC Batch: B116905											12/20/2016		EGD
Nitrogen, Ammonia					SM 4500 NH3 G								
Blank	mg/L	<0.22		UJ									
LCS	%	98.2	90-110										
MS	%	95.8	90-110			6121194-01	N	D	2.50	2.40			
MSD	mg/L	0	90-110	UJ M2		6121194-01	N	D	2.50	ND			
QC Batch: B116766											40/40/0040		IOF
Nitrogen, Nitrate					EPA 300.0						12/16/2016		JGF
Blank	ma/l	<0.025			LI A 300.0								
LCS	mg/L		00 110	UJ									
LCS	%	91.5	90-110										
QC Batch: B116766											12/16/2016		JGF
Nitrogen, Nitrite					EPA 300.0								
Blank	mg/L	<0.075		UJ									
LCS	%	91.7	90-110										
00 P-4-In: D440054											10/00/00/0		FOD
QC Batch: B116951 Nitrogen, Total Kjeldahl					SM 4500 NH3 G						12/22/2016		EGD
		10.40			SIM 4500 INFIS G								
Blank	mg/L	<0.40	00 110										
LCS	%	104	90-110										
QC Batch: B117059											12/22/2016		EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G								
Blank	mg/L	<0.40											
LCS	%	97.0	90-110										
MS	%	87.7	90-110	M2, R1		6121194-04	1.0)7	2.50	3.26			
MSD	%	102	90-110	R1		6121194-04	1.0)7	2.50	3.63			
MS RPD	%	10.7	0-10	R1									

6121194

Third Rock Consultants Steve Evans Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifie	r Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B116642									12/15/201	6	CUS
pH				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B116715									12/16/201	3	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	0.0111	J1								
LCS	%	99.7	90-110								
MS	%	100	90-110		6121194-01	0.19	0 0.50	0.692			
MSD	%	98.2	90-110		6121194-01	0.19	0 0.50	0.681			
MS RPD	%	1.53	0-10								
QC Batch: B117196									12/23/201	3	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.012	UJ								
LCS	%	102	90-110								
MS	%	93.9	90-110		6121194-01	0.20	5 0.50	0.675			
MSD	%	95.7	90-110		6121194-01	0.20	5 0.50	0.684			
MS RPD	%	1.33	0-10								
QC Batch: B116740									12/16/201	3	CJL
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	98.0	85-105								
QC Batch: B116741									12/16/201	6	CJL
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	90.8	85-105								

6121194

Third Rock Consultants Steve Evans Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B116642									12/15/2016	6	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

6121198

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 12/26/2016

 Date Due
 12/27/2016

 Date Received
 12/15/2016

 Customer #
 E4530

QC Batch: B116643 Oxygen, Dissolved QC Batch: B116643 Specific Conductance QC Batch: B116643	. No QC Reported No QC Reported	0	EPA 600 SM 4500 O G CLIENT SPECIFIED			12/15/2016 12/15/2016 12/15/2016	CUS
QC Batch: B116643 Oxygen, Dissolved QC Batch: B116643 Specific Conductance QC Batch: B116643 Turbidity	No QC Reported No QC Reported	0	SM 4500 O G				
QC Batch: B116643 Oxygen, Dissolved QC Batch: B116643 Specific Conductance QC Batch: B116643 Turbidity	No QC Reported	0					
Oxygen, Dissolved QC Batch: B116643 Specific Conductance QC Batch: B116643 Turbidity		0					
Oxygen, Dissolved QC Batch: B116643 Specific Conductance QC Batch: B116643 Turbidity							
Oxygen, Dissolved QC Batch: B116643 Specific Conductance QC Batch: B116643 Turbidity							
QC Batch: B116643 Specific Conductance QC Batch: B116643 Furbidity						12/15/2016	cus
QC Batch: B116643 Specific Conductance A QC Batch: B116643 Furbidity			CLIENT SPECIFIED			12/15/2016	CUS
Specific Conductance QC Batch: B116643 Furbidity	No QC Reported		CLIENT SPECIFIED			12/15/2016	cus
Specific Conductance O QC Batch: B116643 Turbidity	No QC Reported		CLIENT SPECIFIED			12/15/2016	cus
Specific Conductance QC Batch: B116643 Furbidity	No QC Reported	0	CLIENT SPECIFIED			12/15/2016	CUS
QC Batch: B116643 Furbidity	No QC Reported	0	CLIENT SPECIFIED				
QC Batch: B116643 Furbidity	No QC Reported	0					
QC Batch: B116643 Furbidity	•	0					
Furbidity /							
Furbidity /							
,						12/15/2016	CUS
			CLIENT SPECIFIED				
QC Batch: B116655	No QC Reported						
QC Batch: B116655	-	0					
QC Batch: B116655							
						12/15/2016	ABK
E. coli			SM9223B (Colilert-18)				
	No QC Reported						
	-	0					
QC Batch: B116726						12/16/2016	DJR
BOD, 5 Day			SM 5210 B				
Blank			31VI 32 IU D				

6121198

Third Rock Consultants Steve Evans Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B116905										12/20/2016	;	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
LCS	%	98.2	90-110									
QC Batch: B116766										12/16/2016	6	JGF
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	<0.025		UJ								
LCS	%	91.5	90-110									
MS	%	90.1	90-110			6121198-01	0.50	5 5.65	5.59			
QC Batch: B116766										12/16/2016	5	JGF
Nitrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
LCS	%	91.7	90-110									
MS	%	89.3	90-110	M2		6121198-01	NI	7.61	6.79			
QC Batch: B117059										12/22/2016	5	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	97.0	90-110									
QC Batch: B116643										12/15/2016	3	CUS
pH					CLIENT SPECIFIED							
	No QC Reported											
		0										
QC Batch: B116715										12/16/2016	5	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0111		J1								
LCS	%	99.7	90-110									

6121198

Third Rock Consultants Steve Evans Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B117197									12/23/2016	;	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.012	UJ								
LCS	%	105	90-110								
MS	%	98.6	90-110		6121198-01	0.14	0.50	0.633			
MSD	%	92.4	90-110		6121198-01	0.14	0.50	0.601			
MS RPD	%	5.07	0-10								
QC Batch: B116741									12/16/2016	i	CJL
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	90.8	85-105								
QC Batch: B116643									12/15/2016	i	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

6121198

Third Rock Consultants Steve Evans Date Due Date Received 12/27/2016 12/15/2016

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin. A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7011915

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 02/06/2017

 Date Due
 02/08/2017

 Date Received
 01/30/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B119830									01/30/2017	,	CUS
Flow by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B119830									01/30/2017	,	CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B119830									01/30/2017	,	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B119830									01/30/2017	,	CUS
Furbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B119842									01/30/2017	,	LKE
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
QC Batch: B119878									01/31/2017	,	DJR
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ B1								

7011915

Third Rock Consultants Steve Evans Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120001										02/03/2017	7	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
LCS	%	94.4	90-110									
QC Batch: B119890										01/31/2017	7	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	<0.0079		UJ								
LCS	%	105	90-110									
MS	%	110	90-110			7011915-01	3.0	2 5.65	9.24			
MS	%	117	90-110	M1		7011915-02	3.5	8 5.65	10.2			
MSD	%	109	90-110			7011915-01	3.0	2 5.65	9.20			
MS RPD	%	0.488	0-10									
QC Batch: B119890										01/31/2017	7	LJC
Nitrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
LCS	%	92.0	90-110									
MS	%	86.1	90-110	M2		7011915-01	NI	7.61	6.55			
MS	%	87.5	90-110	M2		7011915-02	NI	7.61	6.66			
MSD	%	83.5	90-110	M2		7011915-01	NI	7.61	6.35			
MS RPD	%	3.10	0-10	M2	2							
QC Batch: B119980										02/03/2017	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	109	90-110									
MS	%	109	90-110	R1		7011915-01	NI	2.50	2.73			
MSD	%	132	90-110	M1, R1		7011915-01	NI	2.50	3.30			
MS RPD	%	18.8	0-10	M1,	R1							
QC Batch: B119830										01/30/2017	7	CUS
рН					CLIENT SPECIFIED							

No QC Reported

0

7011915

Third Rock Consultants Steve Evans Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B119877									01/31/201	7	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	0.0131	J1								
LCS	%	97.9	90-110								
MS	%	101	90-110		7011915-01	0.22	0 0.50	0.726			
MSD	%	102	90-110		7011915-01	0.22	0 0.50	0.730			
MS RPD	%	0.453	0-10								
QC Batch: B120245									02/03/201	7	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.012	UJ								
LCS	%	99.8	90-110								
MS	%	101	90-110		7011915-03	0.26	5 0.50	0.769			
MSD	%	102	90-110		7011915-03	0.26	5 0.50	0.776			
MS RPD	%	0.816	0-10								
QC Batch: B119884									01/31/201	7	CJL
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	95.8	85-105								
QC Batch: B119830									01/30/201	7	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

- B1 The analyte value in the Method Blank is above the Control Limit.
- M1 Matrix Spike recovery outside Control Limits due to sample matrix interference; biased high.
- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

7011915

Third Rock Consultants Steve Evans Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7011918

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 02/06/2017

 Date Due
 02/08/2017

 Date Received
 01/30/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B119833									01/30/2017		cus
Flow by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B119833									01/30/2017		CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B119833									01/30/2017		CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B119833									01/30/2017		CUS
Turbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B119842									01/30/2017		LKE
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
QC Batch: B119878									01/31/2017		DJR
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ B1								

7011918

Third Rock Consultants Steve Evans Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Batch QC													
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample		aw bike	Raw	Date	Time	Tech
QC Batch: B120106											02/03/201	7	EGD
Nitrogen, Ammonia					SM 4500 NH3 G								
Blank	mg/L	<0.22		UJ									
LCS	%	91.7	90-110										
мѕ	%	92.2	90-110			7011918-03	N	ND	2.50	2.31			
MSD	%	92.4	90-110			7011918-03	N	ND	2.50	2.31			
MS RPD	%	0.204	0-10										
QC Batch: B119890											01/31/201	7	LJC
Nitrogen, Nitrate					EPA 300.0								
Blank	mg/L	<0.0079		UJ									
LCS	%	105	90-110										
QC Batch: B119890											01/31/201	7	LJC
Nitrogen, Nitrite					EPA 300.0								
Blank	mg/L	<0.075		UJ									
LCS	%	92.0	90-110										
QC Batch: B119980											02/03/201	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G								
Blank	mg/L	<0.40											
LCS	%	109	90-110										
QC Batch: B119833											01/30/201	7	CUS
pH					CLIENT SPECIFIED								
	No QC Reported												
		0											
QC Batch: B119877											01/31/201	7	EGD
Phosphorus					EPA 365.1								
Blank	mg/L	0.0131		J1									
LCS	%	97.9	90-110										

7011918

Third Rock Consultants Steve Evans Date Due Date Received 02/08/2017 01/30/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120245									02/03/201	7	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.012	UJ								
LCS	%	99.8	90-110								
QC Batch: B119884									01/31/201	7	CJL
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	95.8	85-105								
QC Batch: B119833									01/30/201	7	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

B1 The analyte value in the Method Blank is above the Control Limit.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7020452

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 02/17/2017

 Date Due
 02/16/2017

 Date Received
 02/07/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120464									02/07/201	7	CUS
Flow by Measurement & 0	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B120464									02/07/201	7	CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B120464									02/07/201	7	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B120471									02/07/201	7	LKE
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
QC Batch: B120569									02/08/201	7	MTA
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								

7020452

Third Rock Consultants Steve Evans Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Batch QC Analysis	Units	Recovery/	Min-Max	Qualifier	Method Reference	Sample	Raw	Raw	Raw	Date	Time	Tech
-tialy515	Office	RPD	IVIIII-IVIUX	Quantici	Method Reference	ID	Sample	Spike	- Itaw	Dute	111110	10011
QC Batch: B120704										02/10/2017		EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
_cs	%	91.7	90-110									
QC Batch: B120724										02/10/2017		EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
_cs	%	98.2	90-110									
мѕ	%	99.9	90-110			7020452-05	0.41	3 2.50	2.91			
MSD	%	102	90-110			7020452-05	0.41	3 2.50	2.96			
MS RPD	%	1.58	0-10									
QC Batch: B120600										02/08/2017		LJC
litrogen, Nitrate					EPA 300.0							
Blank	mg/L	0.0300		J1								
cs	%	102	90-110									
ıs	%	111	90-110	M1		7020452-01	3.3	2 5.65	9.58			
ISD	%	111	90-110	M1		7020452-01	3.3	2 5.65	9.58			
IS RPD	%	0.104	0-10	M	1							
QC Batch: B120600										02/08/2017		LJC
litrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
.cs	%	97.0	90-110									
AS	%	89.8	90-110	M2		7020452-01	NI	7.61	6.84			
MSD	%	93.7	90-110			7020452-01	NI	7.61	7.12			
MS RPD	%	4.15	0-10									
QC Batch: B120883										02/16/2017		EGD
litrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
_CS	%	101	90-110									

7020452

Third Rock Consultants Steve Evans Date Due Date Received 02/16/2017 02/07/2017

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120464										02/07/201	7	CUS
рН					CLIENT SPECIFIED							
	No QC Reported											
		0										
QC Batch: B120651										02/08/201	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0173		J1								
LCS	%	99.7	90-110									
MS	%	98.4	90-110			7020452-01	0.21	2 0.50	0.704			
MSD	%	99.8	90-110			7020452-01	0.21	2 0.50	0.711			
MS RPD	%	1.00	0-10									
QC Batch: B121089										02/15/201	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.012		UJ								
LCS	%	96.4	90-110									
QC Batch: B121090										02/15/201	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.012		UJ								
LCS	%	95.6	90-110									
MS	%	95.5	90-110			7020452-03	0.23	4 0.50	0.712			
MSD	%	94.8	90-110			7020452-03	0.23	4 0.50	0.708			
MS RPD	%	0.535	0-10									

7020452

Third Rock Consultants Steve Evans Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120590									02/08/201	7	JAR
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	97.0	85-105								
00 B / L D400750										_	145
QC Batch: B120756									02/09/201	7	JAR
Solids, Total Suspended				USGS I-3765-85							
Blank	mg/L	<1									
LCS	%	98.0	85-105								
QC Batch: B120464									02/07/201	7	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

M1 Matrix Spike recovery outside Control Limits due to sample matrix interference; biased high.

M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Directo

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7020456

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 02/17/2017

 Date Due
 02/16/2017

 Date Received
 02/07/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120466									02/07/2017	,	CUS
Flow by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B120466									02/07/2017	,	CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B120466									02/07/2017	,	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B120466									02/07/2017	,	CUS
Furbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B120515									02/07/2017	,	LKE
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
QC Batch: B120569									02/08/2017	,	MTA
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								

7020456

Third Rock Consultants Steve Evans Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120724										02/10/2017		EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
LCS	%	98.2	90-110									
QC Batch: B120600										02/08/2017	•	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	0.0300		J1								
LCS	%	102	90-110									
QC Batch: B120600										02/08/2017	,	LJC
Nitrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
LCS	%	97.0	90-110									
QC Batch: B120883										02/16/2017	•	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	101	90-110									
MS	%	144	90-110	МЗ		7020456-02	2.9	7 2.50	6.58			
MSD	%	138	90-110	МЗ		7020456-02	2.9	7 2.50	6.41			
MS RPD	%	2.62	0-10	M	3							
QC Batch: B120466					OLIENT SPECIFIED					02/07/2017		CUS
pH					CLIENT SPECIFIED							
	No QC Reported	0										
QC Batch: B120651										02/08/2017	·	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0173		J1								
LCS	%	99.7	90-110									

7020456

Third Rock Consultants Steve Evans Date Due Date Received 02/16/2017 02/07/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max Qu	ualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B121090										02/15/201	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.012		UJ								
LCS	%	95.6	90-110									
QC Batch: B120756										02/09/201	7	JAR
Solids, Total Suspended					USGS I-3765-85							
Blank	mg/L	<1										
LCS	%	98.0	85-105									
QC Batch: B120466										02/07/201	7	CUS
Temperature					CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

M3 Analyte in the parent sample for the Matrix Spike was >4x the concentration of the spike solution which renders the spike amount insignificant. Matrix spike recoveries do not impact the quality of the parent sample data for this analyte.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7020456

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Original Date Reported
 02/17/2017

 Report Reissued
 02/23/2017

 Date Received
 02/07/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120466									02/07/2017	,	CUS
Flow by Measurement &	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B120466									02/07/2017	,	CUS
Oxygen, Dissolved				SM 4500 O G							
	No QC Reported										
		0									
QC Batch: B120466									02/07/2017	,	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
		-									
QC Batch: B120466									02/07/2017	,	CUS
Turbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
		-									
QC Batch: B120515									02/07/2017	,	LKE
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
-		-									
QC Batch: B120569									02/08/2017	,	MTA
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								
Digitis.	mg/L	-2.0	03								

7020456

Third Rock Consultants Steve Evans Report Reissued

Date Received

02/23/2017 02/07/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B120724										02/10/2017	7	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
LCS	%	98.2	90-110									
QC Batch: B120600										02/08/2017	7	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	0.0300		J1								
LCS	%	102	90-110									
QC Batch: B120600										02/08/2017	7	LJC
Nitrogen, Nitrite					EPA 300.0							
Blank	mg/L	<0.075		UJ								
LCS	%	97.0	90-110									
QC Batch: B120883										02/16/2017	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	101	90-110									
MS	%	144	90-110	МЗ		7020456-02	2.9	7 2.50	6.58			
MSD	%	138	90-110	МЗ		7020456-02	2.9	7 2.50	6.41			
MS RPD	%	2.62	0-10	M	3							
QC Batch: B120466					CLIENT SPECIFIED					02/07/2017	7	CUS
P 11	No QC Reported				CEILITY OF EOIL IED							
	No QC Reported	0										
QC Batch: B120651										02/08/2017	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	0.0173		J1								
LCS	%	99.7	90-110									

7020456

Third Rock Consultants Steve Evans Report Reissued Date Received 02/23/2017 02/07/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B121090									02/15/201	7	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.012	UJ								
LCS	%	95.6	90-110								
QC Batch: B120756									00/00/004	7	JAR
Solids, Total Suspended				USGS I-3765-85					02/09/201	/	JAK
Blank	mg/L	<1									
LCS	%	98.0	85-105								
QC Batch: B120466									02/07/201	7	CUS
Temperature				CLIENT SPECIFIED							

No QC Reported

0

Qualifier Definitions

M3 Analyte in the parent sample for the Matrix Spike was >4x the concentration of the spike solution which renders the spike amount insignificant. Matrix spike recoveries do not impact the quality of the parent sample data for this analyte.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7031163

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 03/29/2017

 Date Due
 03/29/2017

 Date Received
 03/17/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B123439									03/17/2017		CUS
Flow by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B123439									03/17/2017		CUS
Oxygen, Dissolved				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B123439									03/17/2017		CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B123439									03/17/2017		CUS
Turbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B123442									03/17/2017		BAS
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
QC Batch: B123445									03/18/2017		DJR
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								

7031163

Third Rock Consultants Steve Evans Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B123566										03/21/201	7	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ L1								
LCS	%	88.4	90-110	L1								
QC Batch: B123816										03/27/201	7	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ L1								
LCS	%	83.7	90-110	L1								
QC Batch: B123662										03/23/201	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	92.4	90-110									
QC Batch: B124108										03/29/201	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	90.4	90-110									
QC Batch: B123439										03/17/201	7	CUS
рН					CLIENT SPECIFIED							

No QC Reported

0

7031163

Third Rock Consultants Steve Evans Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B124081										03/28/2017	,	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.010		UJ								
LCS	%	103	90-110									
QC Batch: B124082										03/28/2017	,	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.010		UJ								
LCS	%	103	90-110									
MS	%	92.8	90-110			7031163-10	0.19	9 0.50	0.663			
MSD	%	95.1	90-110			7031163-10	0.19	9 0.50	0.675			
MS RPD	%	1.72	0-10									
QC Batch: B123583										03/21/2017	,	CJL
Solids, Total Suspended					USGS I-3765-85							
Blank	mg/L	<1										
LCS	%	92.0	85-105									
QC Batch: B123439										03/17/2017	•	CUS
Temperature					CLIENT SPECIFIED							
	No QC Reported											
		0										
QC Batch: B123359										03/18/2017	•	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	0.0300		J1								
LCS	%	97.3	90-110									
QC Batch: B123359					EDA 200 0					03/18/2017	•	LJC
Nitrogen, Nitrite		-0.0070			EPA 300.0							
Blank	mg/L	<0.0070	00.445	UJ								
LCS	%	99.5	90-110									

7031163

Third Rock Consultants Steve Evans Date Due Date Received 03/29/2017 03/17/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B123359									03/18/201	7	LJC
Phosphate				EPA 300.0							
Blank	mg/L	<0.0080	UJ								
LCS	%	92.8	90-110								

Qualifier Definitions

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7041709

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 05/08/2017

 Date Due
 05/08/2017

 Date Received
 04/27/2017

 Customer #
 E4530

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B126503									04/27/2017	•	CUS
Flow by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B126503									04/27/2017	•	CUS
Oxygen, Dissolved				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B126503									04/27/2017	•	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B126503									04/27/2017	•	CUS
Γurbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B126505									04/27/2017	•	BAS
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
QC Batch: B126569									04/28/2017		DJR
BOD, 5 Day				SM 5210 B							
Blank	mg/L	<2.0	UJ								

7041709

Third Rock Consultants Steve Evans Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B126761										05/03/201	7	EGD
Nitrogen, Ammonia					SM 4500 NH3 G							
Blank	mg/L	<0.22		UJ								
LCS	%	90.4	90-110									
MS	%	98.9	90-110	R1		7041709-01	NI	2.50	2.47			
MSD	%	89.2	90-110	M2, R1		7041709-01	NI	2.50	2.23			
MS RPD	%	10.3	0-10	M2,	R1							
QC Batch: B126691										05/03/201	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	92.4	90-110									
MS	%	92.8	90-110			7041709-01	0.45	5 2.50	2.78			
MSD	%	96.4	90-110			7041709-01	0.45	5 2.50	2.87			
MS RPD	%	3.23	0-10									
QC Batch: B127037										05/05/201	7	EGD
Nitrogen, Total Kjeldahl					SM 4500 NH3 G							
Blank	mg/L	<0.40										
LCS	%	96.0	90-110									
MS	%	100	90-110			7041709-09	1.6	2.50	4.10			
MSD	%	104	90-110			7041709-09	1.6	2.50	4.19			
MS RPD	%	2.16	0-10									
QC Batch: B126503										04/27/201	7	CUS
pH					CLIENT SPECIFIED							

No QC Reported

0

QC Batch: B126606										04/28/2017	EGD	
Phosphorus					EPA 365.1							
•												
Blank	mg/L	<0.017		UJ								
LCS	%	100	90-110									
200	70	100	30-110									
MS	%	103	90-110			7041709-01	0.167	0.50	0.682			
MSD	%	103	90-110			7041709-01	0.167	0.50	0.683			
iiiob	70	100	00 110			7041709-01	0.107	0.50	0.003			
MS RPD	%	0.0586	0-10									

7041709

Third Rock Consultants Steve Evans Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Batch QC												
Analysis	Units	Recovery/ RPD	Min-Max	Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B126697										05/02/2017	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.010		UJ								
LCS	%	101	90-110									
MS	%	93.9	90-110			7041709-02	0.239	9 0.50	0.708			
MSD	%	98.3	90-110			7041709-02	0.239	9 0.50	0.730			
MS RPD	%	3.06	0-10									
QC Batch: B127178										05/08/2017	7	EGD
Phosphorus					EPA 365.1							
Blank	mg/L	<0.010		UJ								
LCS	%	98.9	90-110									
QC Batch: B126562										04/28/2017	7	CJL
Solids, Total Suspended					USGS I-3765-85							
Blank	mg/L	<1										
LCS	%	95.0	85-105									
QC Batch: B126563										04/28/2017	7	CJL
Solids, Total Suspended					USGS I-3765-85							
Blank	mg/L	<1										
LCS	%	100	85-105									
QC Batch: B126503										04/27/2017	7	CUS
Temperature					CLIENT SPECIFIED							
	No QC Reported											
		0										
QC Batch: B126575										04/28/2017	7	LJC
Nitrogen, Nitrate					EPA 300.0							
Blank	mg/L	<0.0051		UJ								
LCS	%	99.5	90-110									

7041709

Third Rock Consultants Steve Evans Date Due Date Received 05/08/2017 04/27/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B126575									04/28/2017	7	LJC
Nitrogen, Nitrite				EPA 300.0							
Blank	mg/L	0.0310	J1								
LCS	%	98.1	90-110								

Qualifier Definitions

- M2 Matrix spike recovery outside Control Limits due to sample matrix interference; biased low.
- R1 Relative Percent Difference (RPD) of Matrix Spike Duplicates outside of Control Limit.

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7050152

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503 Date Reported
Date Due
Date Received
Customer #

05/03/2017 05/11/2017 05/02/2017 E4530

KDOW Cane Run Watershed Project

<u> </u>											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B126802									05/02/201	7	CUS
Flow by Measurement &	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B126806									05/02/201	7	BAS
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									

Qualifier Definitions

Batch QC

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

The data and information on this, and other accompanying documents, represents only the sample(s) analyzed. This report is incomplete unless all pages indicated in the footnote are present and an authorized signature is included. For any feedback concerning our services, please contact your project manager at lisa.martin@microbac.com. You may also contact David Lester, Managing Director at david.lester@microbac.com or Robert Crookston, President at robert.crookston@microbac.com.

7050408

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 05/13/2017

 Date Due
 05/16/2017

 Date Received
 05/04/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B127170									05/04/2017	•	CUS
Flow by Measurement & C	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B127170									05/04/2017	•	CUS
Oxygen, Dissolved				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B127170									05/04/2017	•	CUS
Specific Conductance				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B127170									05/04/2017	•	CUS
Turbidity				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B127169				0.100000 (0.11) (:					05/04/2017		BAS
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									
00 B-4-b- D407040									05/05/03/1		0.11
QC Batch: B127212				SM 5210 B					05/05/2017		CJL
BOD, 5 Day				2INI 2510 R							
Blank	mg/L	<2.0	UJ B1								

7050408

Third Rock Consultants Steve Evans Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference		Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B127437									05/12/201	7	EGD
Nitrogen, Ammonia				SM 4500 NH3 G							
Blank	mg/L	<0.22	UJ								
LCS	%	90.8	90-110								
MS	%	98.0	90-110		7050408-03	NI	2.50	2.45			
MSD	%	98.3	90-110		7050408-03	NI	2.50	2.46			
MS RPD	%	0.224	0-10								
QC Batch: B127317									05/11/201	7	EGD
Nitrogen, Total Kjeldahl				SM 4500 NH3 G							
Blank	mg/L	<0.40									
LCS	%	101	90-110								
QC Batch: B127510									05/11/201	7	EGD
Nitrogen, Total Kjeldahl				SM 4500 NH3 G							
Blank	mg/L	<0.40									
LCS	%	102	90-110								
MS	%	99.6	90-110		7050408-07	0.47	1 2.50	2.96			
MSD	%	95.3	90-110		7050408-07	0.47	1 2.50	2.86			
MS RPD	%	3.66	0-10								
QC Batch: B127170									05/04/201	7	CUS
pH				CLIENT SPECIFIED							
	No QC Reported										

0

QC Batch: B127216										05/05/2017	EGD
Phosphorus					EPA 365.1						
Blank	mg/L	<0.017		UJ							
LCS	%	99.9	90-110								
MS	%	104	90-110			7050408-04	0.193	0.50	0.712		
MSD	%	103	90-110			7050408-04	0.193	0.50	0.706		
MS RPD	%	0.945	0-10								

The data and other information contained on this, and other accompanying documents, represents only the sample(s) analyzed and is rendered upon the condition that it is not to be reproduced wholly or in part for advertising or other purposes without the written approval from the laboratory.

7050408

Third Rock Consultants Steve Evans Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

Batch QC											
Analysis	Units	Recovery/ RPD	Min-Max Qualifi	er Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B127180									05/08/2017	7	EGD
Phosphorus				EPA 365.1							
Blank	mg/L	<0.010	UJ								
LCS	%	99.5	90-110								
QC Batch: B127273									.= //	_	CJL
Solids, Total Suspended				USGS I-3765-85					05/06/2017	(CJL
				0303 1-3703-63							
Blank	mg/L	<1									
LCS	%	98.0	85-105								
QC Batch: B127170									05/04/2017	7	CUS
Temperature				CLIENT SPECIFIED							
	No QC Reported										
		0									
QC Batch: B127196									05/05/2017	7	LJC
Nitrogen, Nitrate				EPA 300.0							
Blank	mg/L	0.0270	J1								
LCS	%	97.4	90-110								
QC Batch: B127196									05/05/2017	7	LJC
Nitrogen, Nitrite				EPA 300.0							
Blank	mg/L	0.0340	J1								
LCS	%	99.2	90-110								

Qualifier Definitions

B1 The analyte value in the Method Blank is above the Control Limit.

7050408

Third Rock Consultants Steve Evans Date Due Date Received 05/16/2017 05/04/2017

KDOW Cane Run Watershed Project

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

7050672

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 05/11/2017

 Date Due
 05/18/2017

 Date Received
 05/09/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

<u> </u>											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B127463									05/09/201	7	CUS
Flow by Measurement &	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B127470									05/09/201	7	DZW
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									

Qualifier Definitions

Batch QC

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M

David Lester Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

7051191

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503
 Date Reported
 05/19/2017

 Date Due
 05/25/2017

 Date Received
 05/16/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B127967									05/16/201	7	CUS
Flow by Measurement &	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B127991									05/16/201	7	BAS
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									

Qualifier Definitions

Batch QC

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

7051396

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 05/19/2017

 Date Due
 05/30/2017

 Date Received
 05/18/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Daton Q0											
Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B128237									05/18/201	7	CUS
Flow by Measurement &	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B128238									05/18/201	7	BAS
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									

Qualifier Definitions

Batch QC

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

7051758

Third Rock Consultants Steve Evans 2526 Regency Road, Suite 180 Lexington KY, 40503

 Date Reported
 05/25/2017

 Date Due
 06/05/2017

 Date Received
 05/24/2017

 Customer #
 E4530

KDOW Cane Run Watershed Project

Analysis	Units	Recovery/ RPD	Min-Max Qualifier	Method Reference	Sample ID	Raw Sample	Raw Spike	Raw	Date	Time	Tech
QC Batch: B128609									05/24/201	7	CUS
Flow by Measurement &	Calc.			EPA 600							
	No QC Reported										
		0									
QC Batch: B128660									05/24/201	7	DZW
E. coli				SM9223B (Colilert-18)							
Blank	MPN/100mL	<1.0									

Qualifier Definitions

Batch QC

THIS REPORT HAS BEEN REVIEWED AND APPROVED FOR RELEASE:

Lisa Martin, A.M.

David Lester, Managing Director

As regulatory limits change frequently, Microbac advises the recipient of this report to confirm such limits with the appropriate Federal, state, or local authorities before acting in reliance on the regulatory limits provided.

400-911X

CHAIN OF GUSTODY	PDF Ana Run Watershed Based Plan mwooton	Project Contact (for laboratory): Marcia L. Wooton TLTDDDCK Third Rock Consultants, LLC	CONSULTANTS 2526 Regency Road)	Methodology Required: 40CFR Part 136 (A) MICROBAC* Lexington, KY 40503 (B) MICROBAC* (Turnaround Time Required: 7 Working Days EDD Required: X Yes _ No sA sA sT	Container Size/Type	50 ml 800 A00	The servative Code and state and state are served as a servet servet and serv	SA - H2SO4 Requested Lab Analysis On-Site/Field Weasurements		s for NH3, NO2, NO3, CBOD5.	gen (%) TES TES TES	cate sampled at earliest time Cate sampled at earliest time CBOD5 CBOD5 COND CO	Sample I.D. Matrix Collection Grab/ Fill # of Containers Per Sample Sample Sample I.D. Matrix	1 SW 6-724 12.05 G Y*N 1 1 1 1 1	1235	4 SW (C-2746 (350 G Y*N 1 1 1 1 1 1 1	77-25-7	6 SW 6-27-16 1451 G Y*N 1 1 1 1 1	SW 6 1 1 1 1 1	8 SW (6-27-46 1105 G Y*N 1 1 1 1 1 1 1 1 1 1 1 1	1533 G	 DD SW (6-2746 ***** G Y*/N 1 1 1 1 1 2/ - See Field Notebook-	Date/Time Received By: Date / Time Temp. Upon Receipt (C): 2.2	6-28-16 1049 MULL HOHMIL How 16.28-16 849 Containers Properly Preserved: (Yesy No)		
#20D	Client: Third Rock Cons Project Name: Cane Ru	Project Contact (for labo	Phone #: 859-977-2000	Collected By: Client -	Methodology Required:		Turnaround Time Requi		Comments:			NOTE:	Report to MDLs for NH	TSS RL of 1.5, OP and PT RL of 0.05.	for hold purposes.	> Laboratory #										Relinquished By:	Calls	5	

K (6,004

⟨€⟩ MICROBAC®

CHAIN OF CUSTODY www.microbac.com

3323 Gilmore Industrial Blvd. Louisville, KY 40213 502.962.6400 p 502.962.6411 f

Lexington, KY 40503 859.276.3506 p 859.278.5665 f 2520 Regency Rd.

Evansville, IN 47715 812.464.9000 p 812.424.0667 f

2701 N. Cullen Ave., Ste. A

Paducah, KY 42003 270.898.3637 p 270.898.3666 f 5309 Reidland Rd.

100 Grand Vue Plaza, Ste. 22 606.487.0511 p 606.910.0086 f Hazard, KY 41701

No. Bottles Received: Analyses Requested Yes No No times on dups per protocul 710 Custody Seals Intact? 13. C Thermometer ID: Yes No (TAT besited till-lin desired TAT) Samples Received on Ice? Temp. Upon Receipt (°C): Soll, Sludge, Water Soll, Sludge, Water, Oil, etc. DID HOEN TOSSH FONH SHON 3 Preservative in Container To be filled out by Microbac Plastic clear glass, Wal, etc. Notes: Type of Container 76000 Number of Containers 96 Due Date: ${\mathcal I}$ Time: Time: Time: TIme: IIme: Date: 6 127/16 10 Date: Date: Date: Sample ID / Description Date: Date: PO #: Fax: ROCK 00 01-40.0 Sampler: C / Co Client: Third Site / Project Name: Date / Time City / State / Zip: Relinquished By: Relinquished By: Relinquished By: 6-27 Street Address: Received By Received By: Received By: Attention: Phone: (Email:

Version 05.19,2015

*Standard RUSH TAT Charges: Same Day x3; Next Day x2; Three Day x1.5. Please contact us for RUSH request arrangements at 502.962.6400

ot

Ky 16-004

	BATO TO						T		1			(Flow (cfg	3.34	30	1	10	1.53	6	1	4	ō		Τ	Τ				
	ö	mox														1	0.0		1.05	1	+	10.01	П						THE PROPERTY.
	voice T	ants.c	:	i. L	o	23			Wet	nents		(.U.T.N)		1,5	J.W		3,1		0.5	1		0	H		5	3	7		STATE OF STREET
	t & In	onsult	ooton	ultants	א א הא א	4050			Dry _	SUIG		(^{o o}) əтић	Tempera	38	29.0	5	25,	27.3	24	1		27,		tebook		1 -	Ţ		History and the Res
	Repor	drocko	Marcia L. Wooton	Const	Regency Suite 180	Jame 155 Ington, KY 40 859-977-2000				ild Miss		SonatoubnoS (r	ofiloeq2 no\orlmu		3500		4168 25.6	5864	020			387.2		See Field Notebook -	Sured B	(ON /S		-	- 一
	alytica	@thir	Marci	I nird Kock Consultants, LLC	zozo Regency Road Suite 180	Lexington, KY 40503 859-977-2000	1		Weather Event:	Ton-Site/Field Measurements		(·	U.S) Hq	197			7.5	5.8	7.5			7.6		- See F	/ Mea	(See (3))		
	PDF Analytical Report & Invoice To:	mwooton@thirdrockconsultants.com	Ē		•	_	emarks		Weat	NOTE:	7-	d Oxygen (%	evlossiQ Saturatio	2%	100	-	138,0	203.4		1	1	69.9			(C): 14	Presen	(NO)		三年 五月
		E					Field Remarks:				(7/6	m) nəgyxO b	eviossiQ	10	1	П	11.01		8.	T	1	5.4			Temp. Upon Receipt (C): /4 / Measured By:	Containers Properly Preserved: (Yes) No)	Bottles Intact: (Nes) No)		COCICODY - TRC Project File COC Cony - TRC "ahoratory Sarxinasinasia
	H						融	TS	402 P	SIS		llo-	建筑的设计	-	1	1	1	1 /	1	+	-	1 6	1	F	Upon	iners F	s Intac		人田門上北
					۲۵		Type	SA	802 P	Analy	ered)	o (* Field Filt	d G.	4	4		4	+	+	7	+	F	-	F	Temp	Conta	Bottle		Far Sar
λ(7	۲	L L	ن	/ation	SA	320z P	Lab /		т, тки, инз	ontainer Analysis	4	4	,	1	7	1	1	4	1	1	1	温素設置	1739			horate
1018	1	1	(5	TANT	B	reser	Container/Size/Tvpe=	50 mL	ested		SON ,SC	# of Containers Analysis	7	7	1	1	7	F	F	f	7	1	1	Time	77			RICT P
CHAIN OF CUSTODY		(٥	2	SUL	MICROBAC.	* Preservation Type	- 100	320z P	Requested Lab Analysis		SST ,8008) 1	7	7	1	1	1	1	-	1	1	F	+	Date/Time	7-16			Sync
NOF	1	1	-	7	CONSU	Σ	Param.	1000	E	(Cont.)				×,×	\ \ \ \ \	*	×*×	N*Y	₹ *≻	*	Y*/N	X*N	NA	N.	・	6.9			COC
SHAI			L H	ヒゴ	U	0							Grab /	υ	b	0	O	O	Ø	9	ပ	ပ	6	O	記録説				Sec. Sec.
)			Ē					8	* Preservative Code	73			Security Sec	8	35	1	00	3	21	1	IS.	33	1	:(1			HH 128
			1	-		,		, Yes	vative	SA - H2SO4 ST - Na2S2O3	1 - Ice (AII)		Collection	1205	(2)		1350		14		110	5	1	****	d By:	A			3C Pro
								Required: X Yes	reser	SA-I			Collection	6-27-16	6-27-16		6-27-16	6-27-16	6-27-16		6-27-16	G-2746		1	Received By:	Knama			T. VOC
		ı						equire	3				* O. *	ō	ف	+	é	Ö	ė	H	é	ف	1		N N N	Da	ę V		OC.Cc
		V						EDD R					Wathx	SW	SW	100	SW	SW	SW	SW	SW	SW	SW	*	がある	19			3
	Ĭ	an	ton					ш				me				T		1		1			Ī		意思	6:39		П	eport)
	-	sed L	. Woo	M				ays			30D5.	iest ti	Sample I.D.	_	2		4	2	9	1	8	6	4	4	First Date // Time	19	-		68'8'R
		ed Ba	rcia			1 136		ding D			3, CE	ıt earl	Samp						T	1				Ţ	Date	10-27-16,	- 13		Samp
	s, LL(tersne): Ma			R Par		Work			2, NC	oled a			4	h		4	1	1			_		墨墨	(0			mpany
	ultant	II WA	ratory			40CF		.pa.			3, NO	samp		1					ı			-							(Accol
	Cons	04 P. R.	rlabo	7-2000	 - -	ired:		Zequii			NH IC	0.05. licate	# A												d By	X	4		ratory
	YOCK .	716-0	ot (for	9-977	Clie	Requ		ime .)Ls fc	o, L of (dupl	orator												uishe	-00			3 Labo
	Namo	# . K	Conta	#: 85	ed By:	ology		nung 1	ints:		to ME	PT R Sume 1 purp	Laboratory#												Relinquished By:	7		The Control of the Co	COCIL
000#	Project Name: Case Bir West	Project #: KY16-004	Project Contact (for laboratory): Marcia L. Wooton	Phone #: 859-977-2000	Collected By: Client	Methodology Required: 40CFR Part 136		Turnaround Time Required: 7 Working Days	Comments:	NOTE:	Report to MDLs for NH3, NO2, NO3, CBOD5.	OS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.													A	1		Charles and Charles	Original COC/To Laboratory (Accompany Samples & Report)
3	ם	- 0	D.	0	O	≥	-		O	_ 2	R I	-014	學學		1			4				1			室	-		- 1	O

6061975 LISA MARTIN

i i						מסופס ה אוניים	3	1	A STATE OF THE PARTY OF	0		THE COME	STUBBLE	TO LOS	Control of		記した	
Crient: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	s, LLC ershed Based Plan					1		1				PDF	Analyti	cal Repo	PDF Analytical Report & Invoice To:	ice To:		
Project #: KY16-004	מופת המפתח בומון					1	(1				mwoc	oton@t	hirdrock	mwooton@thirdrockconsultants.com	nts.con		
Project Contact (for laboratory): Marcia L. Wooton	: Marcia L. Wooton			 	THTD	DT-	2		>			F	Ma hird Ro	Marcia L. Wooton Rock Consultants		C		
Phone #: 859-977-2000				_	1	CONSU	1 0 S	ا الا	/S トフ				2526	Regen	2526 Regency Road) 		
oncored by: chelle					[Suite 180	80			
Methodology Required: 40CFR Part 136	र Part 136				0	M	C R C	(A) MICROBAC	Ü				Lexir 8	ington, KY 40: 859-977-2000	Lexington, KY 40503 859-977-2000			
							TOWN.	* Preservation Type	ation	Туре	Field	Field Remarks:	rks:					
Turnaround Time Required: 7 Working Days		EDD Req	EDD Required: X Yes	Yes_No	_				SA	S	ST							
							S	Container Size/Type	Size	Type	1.69							
Comments:			* Preser	* Preservative Code	qe		320z P	50 mL 32oz P		802 4c	40z P	Š	Weather Event:	vent:	_Dry	Wet		
			SA.	SA - H2SO4			Req	Requested Eab Analysis:	Lab.A	nalysi	S	0	In-Site/I	Field Me	On-Site/Field Measurements	ents		
NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5.	2, NO3, CBOD5.			I - Ice (All)						(pə	(7							
TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	led at earliest time						SST, èdos	SON, SO	т, тки, инз	O (* Field Fitter	d Oxygen (mg√	d Oxygen (%		Sonductance (r	ıfure (° ^C)	(.U.T.N)	(
Laboratory #	Sample I.D.	Matrix *	Collection	Collection	Grab / Comp	Pilled VIII	0 #	# of Containers Per	containers Analysis		Tomas	evlossi□	sturatic S) Ho	Specific olioped		/Jibid1uT	-low (cf	
	1	SW	7/18/14	1900	O	N/*>	-	-	-	-	16.4	36	<u> </u>	7	4	00	1.4	
	2	SW	7/18/16	645		N/*Y	1	F	-	-	7	2 51.	7	10		-	119	
	က	SW	3/8/A	112	9	N/*Y	1	1	-	1	5	9	zion	-				
	4	SW	7/18/16		O	× *≻	1	-	-	-	1 7.7	16	1	75+1 9.		0.0	1	5
	വ	SW	91/81/12	1150	O	₹ <u>*</u> ≻	-	-	-	-	_ 00	97,9	7	657	1339	0.0	0.35	linear.
	1 0	SW			O	₹ *≻	-	-	-	-	+	4						למולקות
		SW			O	Z >	-	-	-	-	-							2
	ω	SW			O	₹ *>	_	-	-	-	-							date
	ກ	SW			ပ	Z/×>	-	7	-	-	-							10.01
	10	SW			O	√*/N	-	-	-	-	_							Ato.v.
	QQ	SW		*****	g	N/*Y	-	-	-	+	-		- Se	Field N	See Field Notebook			7/-
Relinquished By:	Date / Time	100000	Received	ed By:	起いい	the same	Date /	Date / Time		Temp.	Jpon Rec	Temp. Upon Receipt (C): 5. 2 Measured By:	5.2M	easured	3y: LM	5		.81/
THE OF AMOUNT	12119187L								Ť	Contain	ers Prop	Containers Properly Preserved: (Yes / No)	served: (Yes / No)	(') /	٠		
Loo Mait.	·7-18-16126	e								Sottles	Intact: (Bottles Intact: (Yes / No)				١		

CHAIN OF CUSTODY Client: Third Rock Consultants, LLC	Lexington, KY 40503 859-977-2000 arks: Neather Event: Dry Wet On-Site/Field Measurements Conductance Go.U.) Conductance PH Gemperature (X.T.U.) Temperature (X.T.U.) Turbidity (X.T.U.) Turbidity (X.T.U.) - See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook See Field Notebook	Marcia L Wooton Amayucal Reports a Invoice 103 Marcia L Wooton Amayucal Reports a Invoice 103 Marcia L Wooton Third Rock Consultants, LLC 2526 Regency Road Suite 180 Lexington, KY 40503 Spa	Third R 255. 257. 24.2 7.4 2.0 07.2 14.4 14.0 0.7 2.5 2.5 2.5 14.4 14.5 14.6 14.5 14.6 14.5 14.6 14.6 14.6 14.6 14.6 14.6 14.6 14.6	Field Remarks. Third Third Third Saturation) Neath Neat	Sign P 4 2 3 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Cont. Cont.	Stendardon Stendardon	TRDROCK CONSULTANTS Sab CONSULTANTS Sab CONSULTANTS Sab Container Size Type Container Size T	CONSUL MICRO MICRO Comp (Comp (d: X Yes _ No Reservative Co SA - H2SO4 SA - H2SO3 1 - Ice (All) S-IL 100	** Preservative Code ** Preservative Code SA - H2SO4 SA - H2SO4 SA - H2SO4 ST - Na2S203 1 - Ice (All) N 778/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/L/	Maintx: Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw S		Third Rock Consultants, t Name: Cane Run Water t#: KY16-004 t Contact (for laboratory): #: 859-977-2000 ted By: Client - C. R. dology Required: 40CFR cound Time Required: 7 V and Time Required: 7 V cound Time Required: 7 V d PT RL of 0.05. ssume duplicate sample ld purposes. Laboratory # Laboratory # Relinquished By:	
--	---	---	---	--	--	---	---	--	--	--	--	---	---	---	--	---

			N 100 100 100 100 100 100 100 100 100 10	A 100 A 100	CHA	CHAIN OF CUSTODY	SUS	100									
Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004	s, LLC ershed Based Plan					1	((1				PDF Ar	nalytical n@thire Marci	lytical Report & Inv @thirdrockconsult Marcia I Wooton	PDF Analytical Report & Invoice To: mwooton@thirdrockconsultarts.com Marcial Wooton	se To:	
Project Contact (for laboratory): Marcia L. Wooton Phone #: 859-977-2000 Collected By: Client - Chalcan Plane	: Marcia L. Wooton			Ė	HIR.	RDR Consu	జ్ఞ	S L N L S	Y ⁶			Thir	Third Rock Consultants, 2526 Regency Road Suite 180	d Rock Consultants, 2526 Regency Road Suite 180	tants, Ll Road	LLC	
					0	♠ MICROBAC¹	ROE	3 A C	-				Lexington, KY 40503 859-977-2000	ington, KY 40: 859-977-2000	40503		
Turnaround Time Required: 7 Working Days	+ 1	EDD Req	Required: X Yes	es No		361 1	Pre	serva	* Preservation Type	pe ST	Field F	Field Remarks	100				
Comments:			* Dracen	* Preservative Code	a	32	Coni	50 mL 32oz P	Container Size/ lype	/pe		Wea	Weather Event: X Dry			Wet	
			SA-	SA - H2SO4			Redue	sted L	Requested Lab Analysis	alvsis	200	On	Site/Fie	eld Mea	On-Site/Field Measurements	nts	
NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,	2, NO3, CBOD5.		ST - N - 16	ST - Na2S2O3 I - Ice (All)			SS		NH3	(nalamu n	(უ/ճա) ս	%) u		suce			
***** Assume duplicate sampled at earliest time for hold purposes.	oled at earliest time						CBOD2' T	MO2, NO3	PT, TKN,	P ° (* Fiel	ved Oxyge	ved Oxyge lion)	(n	ic Conduct (mɔˈ	(° °) erutere	ity (N.T.U.)	cfs)
Laboratory #	Sample I.D.	Matrix *	Collection Date	Collection Time	Grab / Comp	Filtd	# of	Container Analysis	# of Containers Per Analysis	er	lossiQ	lossiQ Satura	S) Hq	Specif (umho	Tempe	Turblo	Flow (
	-	SW	8-24	31:15	Ø	N/ *≻	-	-	-	-	1	91.8	8.0	633	250	j	00
	2	SW	8 24	100:00	O	N/*≻	-	-	-	1	7.18		7.32		11.53	1	12.0
	3	SW	1	1	ß	N/*Y	-	1	+	1 1			1		1	1	I
	4	SW	HZ-8	58:01	Ð	√*/N	-	-	-	1	1	1	7,5	5083	20.9	1	0.69
	2	SW	8-24	11:25	ပ	\ \ \ \ \	-	-	-	-	8.52	8.52 96.7	7.59	8.120	19,00	1	4.3
	9	SW	8-24	11:55	O	۲*/N	-	-	-	-	7.2	9 8 6	7.3	652	20,2	1	3.5
	7	SW			ပ	×,×	-	-	-	-							
	∞ α	NS SW			υ (Z .	- ,	- ,	- ,								
	- C	MS MS			ט פ	Z Z X				+							
	2 =====================================	SW			o o	×× *≻	-	-	-	-							
-	QQ	SW	12-8	****	Ø	N *≻	-	-	-	1			- See F	See Field Notebook	ebook -		L
Relinquished By:	Date / Time	N. Franklin	-Received By:	d By:	SALES SALES	NASAS.	Date / Time	ime	Te	mp. Up	on Rece	Temp. Upon Receipt (C): 8.4CMeasured By: 7	4CMea	sured By	P	\\ \{ \} \	
That I tour	824/18	A	1	6	^	21.20	MINT	13:55		ontaine	rs Prope	Containers Properly Presérved: (Yes / No)	\$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3 \$	(ON / 6			
									Ĭ	ottles in	Bottles Intact: (1987 NO)	(oN / s					

Client. Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project Name: Cane Run Watershed Based Plan Project Contact (for laboratory): Marcia L. Wooton Phone #: 859-977-2000 Collected By: Client - Bert Remley & Rain Storm Methodology Required: 40CFR Part 136 Turnaround Time Required: 7 Working Days EDD Required: X Yes Comments: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes. Laboratory # Sample I.D. Matrix Date 1 Sw 1	- No - No - No - No - No - No - No - No	TRDROC CONSULTAN Preservati SOD5, T55 Requested La	Preserve Some 1	ROCK SULTANTS ROBAC Preservation Type Container Size/Type cor P 50 mL 320z P 80z Requested tab Analys	ation Type		DWM.	PDF Analytical Report & Invoice To: mwooton@thirdrockconsultants.com Marcia L. Wooton Third Rock Consultants, LLC	Uytical Report & Inv @thirdrockconsult Marcia L. Wooton Rock Consultants	ort & Invector	nts.cor	
atory): Marcia L. Wooton Ber T. Remley & Roin Story 10CFR Part 136 3, NO2, NO3, CBOD5. 1 Sw 2 2 Sw 3 3 Sw 5 4 Sw 5 5 Sw 5 6 Sw 5 6 Sw 5 6 Sw 5 6 Sw 5 6 Sw 5 7 Sw 5 8 Sw 6 Sw 6 Sw 6			De, TSS Squest	A N T Servatio	S S SecType			Ma Third Ro	arcia L. V	Monton		_
Sample I.D. Sw Sw Sw Saw Saw Saw Saw Sample I.D. Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw	No Post No Pos	S Z O Z S Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z	Do, TSS Son tales Son tale	Servation Servation Servation Size S	S run Type			くいく		sultants,	O I	1
40CFR Part 136 red: 7 Working Days EDD Requestable 13, NO2, NO3, CBOD5. Sample 1.D. Natrix 1 Sample 1.D. Sw 2 Sw 3 Sw 5	1 No 04 Code:	2 300 300	Sontal So	Servatio	n Type) (S Regency Suite 180	2526 Regency Road Suite 180		
I Time Required: 7 Working Days EDD Requebles for NH3, NO2, NO3, CBOD5. 1.5, RL of 0.05. ne duplicate sampled at earliest time irposes. boratory # Sample I.D. Netrix 1 2 SW 2 3 SW 3 5 SW 5 SW 5 SW 5 SW 5 SW 5 SW 5 SW 5 S	es _ No ative Code 12SO4 2S2O3 e (All)	25 100	Contain Son Son Son Son Son Son Son Son Son So	Servation Servation Inner Siz	ze/Type			Lexir 8	ington, KY 40! 859-977-2000	Lexington, KY 40503 859-977-2000	~	
MDLs for NH3, NO2, NO3, CBOD5. 1.5, RL of 0.05. ne duplicate sampled at earliest time trposes. boratory # Sample I.D.	es _ No ative Code 225204 a25203 e (All)	202 300C	De, TSS Request P P SO NOS	Inner Sizer All 3202 of the Lab	ze/Type		Field Remarks;	arks:				
MDLs for NH3, NO2, NO3, CBOD5. 1.5, RL of 0.05. ne duplicate sampled at earliest time irposes. boratory # Sample I.D. Netrix 1 2 SW 2 3 SW 3 4 SW 5 5 SW 5W 5	ative Code 12S04 22S203 e (All)	35 EE	Contain Nos	mul 3202 ml 4304 ml 4304 ml 4304 ml 4304 ml 440 ml	P 80Z	ST						
MDLs for NH3, NO2, NO3, CBOD5. 1.5, RL of 0.05. ne duplicate sampled at earliest time riposes. boratory # Sample I.D.	ative Code 12504 225203 e (All)	38	DS, TSS Request	ted Lab	P 802	4)			Î			
me Matrix SW SW SW SW SW SW SW SW	12504 a25203 e (All)	002 3000	DS, TSS Requestry NO3	ted Lab		40Z P	_	Weather Event:	Event:	Dry	Wet	
SW SW SW SW SW SW SW	(Al)	002 3000		VH3	Analysis.	sis.		On-Site/Field Measurements	Field Me	easurem	erts	
2 SW SW SW SW SW SW SW SW SW SW SW SW SW		002 3000	-	HN —			-		ə			
Sample I.D. Matrix 1 1 SW 2 SW 3 SW 4 SW 5 SW		_		PT, TKN, N 02, NO3	P ^o (* Field Fi	E-Coli	n) nagyxO bav wed Oxygen (%)	(uoi	c Conductanc	(°°)	(¡U.T.N) yi	(alc
	Collection Grab / Time Comp	Filt'd	# of C	of Containers Per Analysis	ers Per is			Satural B) Hq	_		bid₁nT	Flow (
	ŋ	N/*>	-	-	-	-						
	O	^*/N	1	1 1	+	1						
	O	_*/N	-	-	-	-						
	O	\ *\	-	-	-	1						
	O	×,N	-	1	-	-						
AAC	O	\ \ \ \ \ \	1	-	-	-			-			
7 sw <u>x</u> /24/lu	1170 G	√*/N	-	-	-	1	17:0	1	5 678	8 225	1	0.05
SW	1720 G	N,*≻	-	-	7-	٠-	606 CA.4				1	1
4 1 1 7 1 5 1 1 1 1 1 1 1 1 1 1	o ahai	N/*/	1	1	-	-	36	1,7		2 21.7	1	21.0
10 sw X/24/10	0916 G	N,*≻	1	1	1	7,	7 8 4	137	-		1	0.03
11 s ws 11	1000 G	\\ \\	1 1	1 1 1	1	1 1	13 -	1) lo	889 0	3 20.9	1	12.0
, ws QQ	9 ******	√*/N	1 1	1 1	-	1		- Se	e Field	See Field Notebook		
Received By: Date / Time Received By:	1 By:	D	Date / Time	me	Temp	. Upon	Temp. Upon Receipt (C): 11.1 & Measured By:	C): 11.48	Neasured	By	3	
X / 1/1/2 St. 18:35 . 18 . 18 . 18 . 18 . 18 . 18 . 18 . 1	1	2/24	91/1	13:3	2 Conta	ainers l	Containers Properly Preselved; (1969)	reserved;	ARES / No	_	_	
					Bottle	es Intac	Bottles Intact: (Yes / No)	(0)				

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	-																
Project #: KY16-004 Project Contact (for laboratory): Marcia L. Wooton Phone #: 859-977-2000 Collected By: Client - \(\sigma\), \(\sigma\)/\$s^2, \(\sigma\)	sed Pla	ton			F ©	MICR MICR	IRDROC CONSULTAN	O L P P P P P P P P P P P P P P P P P P	∠ [∞] ;			PDF Anwoote	F Analytical Report & Invoctor Sultra Coton (2014) Anarcia L. Wooton Third Rock Consultants, 2526 Regency Roac Suite 180 Lexington, KY 40503 859-977-2000	Othical Report & Invariants Report & Invariants Marcia L. Wooton Rock Consultants S26 Regency Roa Suite 180 Sxington, KY 4050 859-977-2000	PDF Analytical Report & Invoice To: mwooton@thirdrockconsultants.com Marcia L. Wooton Third Rock Consultants, LLC 2526 Regency Road Suite 180 Lexington, KY 40503 859-977-2000	olce To:	
Turnaround Time Required: 7 Working Days	1	EDD Req	Required: X Yes	es _ No			Son Con	eserva -	* Preservation Type	ST	Field F	Field Remarks.	<i>id</i>				
Comments:			* Preservative Code	ative Co	je.	3	32oz P 5	50 mL 32	32oz P 8oz	40Z		Wea	Weather Event:		Dry	Wet	
NOTE:			SA- ST-N	SA - H2SO4 ST - Na2S2O3		SEC.	Reque	sted L	Requested Lab Analysis	lysis		On-	Site/Fie	eld Mea	On-Site/Field Measurements	nts	
Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	NO3, CBOD5. d at earliest time		<u>8</u> - I	ce (All)			CBOD2, TSS	NOS, NO3	PT, TKN, NH3	E-Coli	(шд\Г)	ed Oxygen (%	(.U	c Conductance (m)	(^{o.o.})	(,U.T.N) v t	(s):
Laboratory #	Sample I.D.	Matrix	Collection	Collection Time	Grab / Comp	Fillrd	# of	Container	(C)	er	∕lossiQ	NossiQ Saturat	.8) Hq	Specifi Nodmu	Tempe	ibidınT	Flow (c
	-	SW	9//8/6	1020	ŋ	√*/N	-	-	-	-	6,66	82	7.61	(44)	なる	4.3	1.9
	2	SW	9/18/16	1105	တ	√*/N	-	-	1	1	8.03	66	7.33	140	24.49	4.9	1.5
	က	SW	3/18/16	1135	G	√*/N	-	-	1	-	7.95	92	7.57	522	20.97	5.7	000
	4	SW	1/8/16	1700	ပ	۸*/N	-	-	-	-	6,0)	18	7.3	570	22,1	2.7	K11,01
	2	SW	9/18/16	1220	O	√*/N	-	-	-	-	16.31	126	7.63	659	23.93	2.5	0.5
	9	SW	1/10/16	300	U	√*/N	-	-	-	-	5.33	60	7.39	648	22.22	10	0.5
	× 80	WS WS			υ U	Z Z *> *>											
	6	SW			0	Z Z X			+	-							
	10	SW			Ŋ	N *≻	-	-	H	-							
	11	SW			Ø	√*/N	-	-	-	-							
	DD	SW	3/18/6	*****	O	×,×	-	-	-	-			- See F	See Field Notebook	ebook -		
Relinquished By:	Date / Time	1255	Received By:	By:	100		Date / Time	ime	Ten	p. Upc	Temp. Upon Receipt (C):	t (C): 5	5, Measured By: Jiff	sured By	まつま	١.	
12/2	3/8/201 1456	You	0/1/2			11.	8/2016	0 1426		itainer	Containers Properly Preserved: (res) No)	y Preser	ved: (庵	(ON (S		i	
									T B	tles Int	Bottles Intact: (Yes / No)	/ No))				

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004 Project Contact (for laboratory): Marcia L. Wooton Phone #: 859-977-2000 Collected By: Client - J. Storm, B. Rer Methodology Required: 40CFR Part 136 Turnaround Time Required: 7 Working Days	Jan					1											
Project #: KY16-004 Project Contact (for laboratory): Marcia L. WoPhone #: 859-977-2000 Collected By: Client - J. Storm B. Methodology Required: 40CFR Part 136 Turnaround Time Required: 7 Working Days	5					1	(1				PDF Ar	PDF Analytical Report & Invoice To:	Report	& Invoi	se To:	
Project Contact (for laboratory): Marcia L. Woo Phone #: 859-977-2000 Collected By. Client J. Storm B. Methodology Required: 40CFR Part 136 Turnaround Time Required: 7 Working Days				ŀ)	(-1	000	Marci	Marcia L. Wooton	oton		
Phone #: 859-977-2000 Collected By: Client J. Storm B. Methodology Required: 40CFR Part 136 Turnaround Time Required: 7 Working Days	oton				F		7		¥			Ţ	Third Rock Consultants, LLC	Consul	tants, L	2	
Methodology Required: 40CFR Part 136 Turnaround Time Required: 7 Working Days	-				1	N N	SULI	Z	<i>•</i> ∽				2526 R S	2526 Regency Road	Road		
Turnaround Time Required: 7 Working Days	S water				0	MIC	⟨∅⟩ MICROBAC	3AC	2		b		Lexington, KY 40503 859-977-2000	ington, KY 40: 859-977-2000	40503		
Turnaround Time Required: 7 Working Days							* Dro	tevnos	* Droconzetion Time	9	Field R	Field Remarks:					
	EDD	Required:	red: X Yes	es _ No			-	- Sacrivar	SA	ST							
							Cont	ainer S	Container Size/Type	be							
Comments:	100		Preserv	* Preservative Code	ē	3.6	32oz P 50	50 mL 320;	32oz P 8oz	40Z P		Wea	Weather Event: X Dry	T.	1	Wet	
			SA -	SA - H2SO4			Poditostod Lab Analysis	stod Lo	A Aus	hicio	A TO THE WAY	O.	On Site/Field Mossimonts	IN MOS	e iromo	nte	
. HECK			ST - N	ST - Na2S2O3		100	Pedae	Dale L	200	i yala	Service Comments	5	חוביום	N MICH	allelle		
Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,	ري د		ગ - I	I - Ice (All)				ا			(უ/6ⴍ	%		әэ			
OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	time						CBOD2' 128	NO2, NO3	PT, TKN, NP	E-Coli) nəgyxO bə	nəgyxO bəv (noi	(-0-	c Conductan cm)	(° C)	(,U,T,N) yi	(sjc
Laboratory # Sample I.D.	4.5	Matrix *	Collection Date	Collection	Grab / Comp	Fillrd	*	Container Analysis	of Containers Per Analysis	er	√lossiΩ	lossiQ Saturat	S) Hq	Ppecifi (umho)	Tempe	bidıuT	Flow (e
	0)	SW			ပ	N/*≻	-	<u> </u>	1	-							
2	0,	SW			ပ	N,*γ	-	-	1	-							
3	0,	SW			O	N*Y	-		1	-							
4	0)	SW			ပ	N/*Y	1	1	1	-							
5	0)	SW			O	N/*	-	-	-	-	.5.						
9	3,	SW	г		Ŋ	V. *≻	-	-	-	-					-		
7	3)	Sw (_ 1	12:00	ပ	\ √*/N	-	-	-	-	4.95	<u>6</u> . √	7.28	539.5	24.22	0.0	9 0
80	0,	sw (8/6	03:0]	O	N/*Y	1	-	1	-	(o.73	805	6.83	-0	32.8	0.0	MA
6	-	sw 9	-	12:25	Ö	*/N	-	-	1	-	4.4	533	73	340	24.1	0.0	0,204
10	3	Sw 1	84/1	4100	g	√*/N	۳-	-	1 1	1	158	48	7.67 745.1		10.51	0,0	6,085
11	, , , , , , , , , , , , , , , , , , ,	sw 9	8/,	1:20	9	N/*≻	1	+	1 1	1	8.03	78.7	49.7	8.41€	23.96	0.	0, 123
QQ	,	sw l		*****	ß	N/*Y	1	-	-	-			- See F	Field Notebook	ebook -		
Relinquished By: , , Date / Time	Je et	20000	Received By:	d By:	SSPECT.	20200	Date / Ti	Time	Ter	np. Up	Temp. Upon Receipt (C): 5,4	pt (C): 5		Measured By: J IM	11m	,	
Wast W. Sentre 9/8/10 17	- 1817	2001	160			4.810	,	418	B S	ntainer ttles In	Containers Properly Pres Bottles Intact: (Yes / No)	ly Prese s / No)	Containers Properly Preserved:((Yes) No) Bottles Intact: (Yes / No)	(on (s			
Original Symptomy (Accompany Symples & Donot	Donort)	100	Tome TB	COC Conv. TPC Broloct File	of it	100	TBC TBC shoretone Somices Condinator	of Labo	Parotery 6	Sorvice	Coordi	nator	10000		No.	ALC: NO.	SPERSON A

#200	Property of the second		10世界的	后,体	CHA	NOF	CHAIN OF CUSTODY	Ydo.	No. of	1000	13			THE WAY	The same		Service of the servic
Client: Third Rock Consultants, LLC	s, LLC					1	(1				PDF An	alytical	PDF Analytical Report & Invoice To:	& Invoi	ce To:	
	Garle huit watershed based rian 6-004			ı			(1					cployd	athird:	cbloyd@thirdrockconsultants.com	sultants	COM	
Project Contact (for laboratory): Cory Bloyd): Cory Bloyd				HID	5	2	2	>			Thire	Rock	Third Rock Consultants, LLC	tants, L	CC	
				-	<u>-</u>	J N O) z	∕ ∽				2526 R	2526 Regency Road	Road		
collected by. Client					(Ō	Suite 180	_		
Methodology Required: 40CFR Part 136	R Part 136				0	Σ	⟨₫⟩ MICROBAC	AC	4				Lexington, KY 859-977-20	ington, KY 40 859-977-2000	40503		
						308	* Pre	* Preservation Type	on Typ	a)	Field Remarks:	emarks					
Turnaround Time Required: 7 Working Days		EDD Req	Required: X Yes	es _ No			à	SA	4	ST							
· · · · · · · · · · · · · · · · · · ·		1					Conta	Container Size/Type	ze/Tyr	ē		١					
Comments:	-1		* Preserv	* Preservative Code	Je	32	32oz P 50	50 mL 320z P	80z	40Z		Weat	Weather Event:		Dry	Wet	
			SA -	SA - H2SO4		部款	Requested Lab Analysis	sted La	b.Anal	/sis		On-	Site/Fie	On-Site/Field Measurements	sureme	nts	1000
NOTE:			N - TS 01 - I	ST - Na2S2O3 I - Ice (All)				-	(t		The state of the s						0000
Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,	2, NO3, CBOD5.										(¬/ճա	%		əo			
OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	oled at earliest time						CBODE, TSS	ЬТ, ТКИ, ИР 402, ИОЗ 1	P ^o (* Field P	E-Coli) nəgyxO bə	ed Oxygen ((1)	c Conductan	rature (° °)	(.U.T.N) \((s)
Laboratory#	Sample 1D	Matrix	Collection	Collection	Grab / Comp	Filth	# of (# of Containers Per	iers Pe	Legal III	vlossiC	/lossiC aturat	s) Ho	ilioəq6 olunu olunu	edwə	[bid]u	o) Mo <u> -</u>
	7		11/20/01	20.0	N. Sec.		and the second	- lais	-			S]					4
		SW	10125/16	7.75	O	N/×>	-	_	-	-	2,06		18.7	449	01,1	37	1.53
	2	SW	×	10% 15	ŋ	N/*/	-	-	-	-	57.		1.75	704	(0.27	7.5	べ.
	က	SW			O	N/*≻	-	_	~	-							
	4	SW	10/35/1C	05:01	ပ	۸*/N	-	1	-	-	8,7		7.69		953	4.8	Not men
	5	SW		11,35	ပ	N/*≻	-	-	-	-	6.28		7.56	713	16.73	3.8	0,13
	9	SW	4	1(:50	Ŋ	×,N	-	-	-	-	6.23		7.44	77.	12.38	24	0,43
	7	SW			ပ	√*/N	-	-	-	-							
	∞	SW			O	√*/N	-	-	-	-							
	6	SW			Ŋ	۲*/N	-	-	-	-							
	10	SW			ပ	√*/N	-	_	-								
	11	SW			O	\	-		-	-							
	DD	SW		*****	g	N/*Y	-	1	-	-			- See F	See Field Notebook	sbook -		
C Retinguished By:	Date / Time	0	Received By:	d By:,	1000	1650	Date / Time	me	Тет	p. Upo	n Receip	t (c): 5	. (Meas	Temp. Upon Receipt (C): 5. (Measured By	Ch		
James Mary	10-25-16/12:48	XX	JUK	ME		100	15-11	210	woo カブ	tainers	Containers Properly Pres	Preser	Containers Property Preserved: (Yes) No)	(ON (S			
>								П	T	9111	(6)	(ox)	j	2			
A SECURITION OF SECURITION									-								
Original COC To Laboratory (Accompany Samples & Report)	mpany Samples & Report)	1	COC Copy - TRC Project File	C Project	File	200	COC Copy - TRC Laboratory Services Coordinator	C Labo	ratory S	ervices	Coordir	ator				STAFFE STAFF	STATE OF THE PERSON NAMED IN

Corr

HIRD ROCK Consultants Care Rock Consultants Care Rock Consultants Care Rock Consultants Care Rock Consultants Care Rock Consultants Care Rock Ca	i																	
EDD Required: X Yes _ No SM CR OB AC	Client: Third Rock Consultant: Project Name: Cane Run Wat Project #: KY16-004 Project Contact (for laboratory) Phone #: 859-977-2000	s, LLC ershed Based Plan): Cory Bloyd			1	Ŧ	くは			Y			Splot Color	Analytica Ad@thlin C lird Roc 2526	al Repordrockco Cory Blo K Consu	t & Invonsultan yd iltants,	ice To:	
Freservative Code SA ST Freservation Type Field Remarks: SA Freservation Code SA ST ST Freservative Code SA SA Freservative Code SA SA Freservative Code SA SA SA SA SA SA SA S	Collected By: Client Methodology Required: 40CFI	R Part 136					$\frac{1}{2}$ $\frac{1}{2}$	ROE	BAC	n - ;				Lexing	Suite 18 Iton, KY	,0 40503		
Preservative Code 320z P 50.ml 320z P 3	Turnaround Time Required: 7			uired: X	1	6		* Pre	serva	tion T	lpe ST		Remar		7-776-6	000		
Collection Col	Comments:			* Preserv	ative Coc	<u> </u>	3	Cont	omt 32	Size/T	ype 22 40.	100 N	×	ather Ev		1 4	Wet	
- Coe (Al) - Coe (Al) - Coe (Al) - - - - -	H C N			SA - ST - N	H2SO4 la2S2O3		1000	Reque	sted L	ab An	alysis		0	-Site/F	eld Mea	sarrem	ents	
SW Collection Grap Filed # of Containers Per Conductant Comports of Carbon Filed # of Containers Per Conductant Composition	Report to MDLs for NH3, NO. TSS RL of 1.5,	2, NO3, CBOD5.		- 10	se (All)						(pered)	(႗/ճա	%		əc			
Sample L.D Marry Collection Graph Fired # of Containers Peer	OP and PT RL of 0.05. **** Assume duplicate samp for hold purposes.	iled at earliest time											ed Oxygen ('			(° C)	(,U.T.N) <i>yi</i>	(ย)
2 SW G Y [*] N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Laboratory #	Sample I.D.	- Matrix *	Collection Date	Collection Time	Grab / Comp	Filled	jo#	Conta	iners F	er.	I ∕lossiQ	/lossiQ Saturat			Tempe	ibidıuT	Flow (c
2 SW G Y*N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1	SW			ŋ	N/×≻	-	-	-	F							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2	SW			Ŋ	√*/N	1	1	-								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	SW			9	N/*γ	-	-		-							
SW C Y*N 1 1 1 1 1 1 1 1 1		4	SW			O	×,′N	-	-	-	-							
SW 16/25 16/25 G 17/1 1 1 1 1 1 1 1 1 1		ഗ വ	SW			O	√*/N	-	-	+	+							
8 SW /o'25 // '. '55 G Y*N 1 1 1 1 1 1 2 5 5 C 4 705 /L 10 SW /O'25 /* '55 G Y*N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0 1	AND O	14/20	14.35	o c	N *		- ,	+	+	-		1	4	1000		Š
9 SW / C/US 9: 35 G Y*N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. 80	SW	M '	11.05	0	Z			+	┿	1		1	705	7.7	45.	0 0
10 SW / C/V5 7:35 G Y*N 1 1 1 1 6-9 657 7-5 7.5 12.5 12.5 12.5 12.5 12.5 12.5 12.5 12		o	SW			9	√*/N	-	-		-	-		-	,		1	
11 SW (シンカ マンカ G Y*N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		10	SW	10/05	. 4	ပ	N/*Y	_	-	-	-	_	65.7	1	765	77	26	20.00
Date / Time		11	SW	10/25	4 1	9	N/*γ	-	-	-	-	2	65.2		141	\$1		2
Date / Time Received By: Date / Time Temp. Upon Receipt (C): 6.2.2 Measured By: Date / Time Temp. Upon Receipt (C): 6.2.2 Measured By: Date / Time		DD	SW	16/25	*****	Ŋ	√*/N	-	-	-	-			1	Field No	ebook -		0.
25/16 19 Man Land 10/35/10 13/9 containers Properly Preserved: (Ves) No) Bottles Intact: (Yes) No)	Relinquished By:	Date / Time	C	Received	; By:	STATE OF	155	Date / Ti	ime	Te	mp. Uş	oon Rece	ipt (C):	0.2 Me	ssured By		5	
Bottles Intact: (Yes)/ No)	Dan Jak	41 7/150	Alex	-	, }		6/01	17	13	5	ntaine	rs Prope	rly Pres	κρους (Χ	es) No)	7		
								۱		8	ttles II	ntact: ((e	(oN /s					

Client: Third Rock Consultants, LLC																
Droiogé Moment	, LLC					1		1		L	PDF /	Analytica	PDF Analytical Report & Invoice To:	& Invoic	e To:	
Project Name: Carle Run Wate	Carle Run watershed Based Plan					1	(_	cploy	d@third	cbloyd@thirdrockconsultants.com	sultants	COM	
Project Contact (for Jahoraton)	Proof Con			F	ŀ	1		(•	_		Ö	Cory Bloyd	p		
Phone # : 850 077 2000	cory proyu						Y		ت		누	ird Rock	Third Rock Consultants, LLC	tants, LI	ပု	
Collected By: Client	00					NO	ULT) Z V	∲ ∽			2526 F	2526 Regency Road	Road		
1	00									_		0)	Suite 180	_		
Methodology Required: 40CFR Part 136	R Part 136				0	(MICROBAC	30B	AC				Lexingt 859	Lexington, KY 40503 859-977-2000	40503		
						- 60	* Pres	servatio	* Preservation Type	Field	Field Remarks:	L	2	3		
Turnaround Time Required: 7 Working Days		EDD Red	EDD Required: X Yes	es No			-	A.S.		T.S.						
						38	Conta	iner Siz	e/Tvne							
Comments:		The Party of	1000年間の	S. 1257.00	exigne	100	50.	-	Bo7	100			1	ŀ		
			* Preserv	* Preservative Code	le	32oz	۵	P 3202 P	7 d	7 d	We	Weather Event:		Dry	Wet	
			-SA-	SA - H2SO4			Segues	ted Lab	Requested Lab Analysis	u.	O	Site/Fig	On-Site/Eleid Measurements	Tiramar	te	9666
NOTE:			ST - N	ST - Na2S2O3		1	-	_	-		5		מתואומס	-	2	III THE STATE OF T
Report to MDLs for NH3, NO2, NO3, CBOD5.	, NO3, CBOD5.		-	()		_			(pə.	(7/						Ī
TSS RL of 1.5,								£H	ilter	/6w <u>]</u>			əɔ			
OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	ed at earliest time						, NO3	TKN, NF	Field *	olo Oxygen () uə6kxC		netaubn	(° °)	(.U.T.I	
						-				ved (pə/			ratu	ty (h	(st
Laboratory #	Sample I.D.	Matrix 1	Collection	Collection Time	Grab / Comp	Filtrd	#of C	# of Containers Per Analysis	ers Per	lossiQ	_	S) Hd	Specifi odmu	Lempe	Turbidi	o) wol <u>-</u>
	1	SW		1	O	N/*≻	2	F	-	1				İ		1
	2	SW	1	1			2	-	-	1					H	1
	က	SW	1	1	1	N/*>	1	7	+					Ħ		
	4	SW		Ī	\vdash		2 2	-	-	1					$\parallel \mid$	11
	5	SW	1	1			2	7	-	1				\parallel	1	1
	9	SW	1	1		*\N *\N	2 1	-	-	1					1	1
	7	SW		1	Ű	√*/N	2	-	-	-					1	1
	80	SW	11-30-16	0811.	O		2 1	-	-	59	829	7.3	736	16.1	0.0	1
	6	SW		1	ŋ	√*/N	2	-	-	1	Ħ	Ш	11	11		1
	10	SW	11-50-16	0280	Ö		2 1	-	-	9	5/1/	7,3	597	16.13	7.3	17
	11	SW	11-36-16	0001			2	-	,	-	54.5	100	-	-10		100
	DD	SW	11-5016	*****			2	-	-	_		See	1 5	1 .	7	
Relinquished By:	Date / Time	SUNTENNE	Received By:	1 By:	ALCO	Ö	Date / Time	Je Je	Temp.	Jpon Rec	Temp. Upon Receipt (C):	A Mea	A Measured Bv:	7	1	
Comp	OEE1/91-0E-11	Stor	ME	t		11.30	10/10	1350	Contair	ers Prop	Containers Properly Preserved: ((Es) / No)	irved: (🞉) (ON 1/8	ا حن		
									Вощея	Bottles Intact: (Yes)/ No)	(on //sa)					
3																F 7
Original COC To Laboratory (Accompany Samples & Renort)	Pond Sample P Dong			1												

.

HIRDROCK Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & Cancellaries, LIC Project Name Care & C																		
HIRD Required to the Require	Client: Third Rock Consultants Project Name: Cane Run Wat Project # : KY16-004	s, LLC tershed Based Plan					1	11	1				PDF	Analytic /d@thir	al Repor	t & Invo	ice To:	
CONSULTANTS CONSULTANTS	Project Contact (for laboratory) Phone #: 859-977-2000): Cory Bloyd			二	Ħ	2	Z	20	×			Ë	ird Roc	Cory Blook K Consu	yd Itants, I	TC	
The Required Control of the	Collected By: Client - 55	05,3				U	N 0	SUL	Z Z Z	S L				7270	Regency Suite 18	y Koad 0		
Preservation Type Field Remarks: F	Methodology Required: 40CFI	R Part 136				0	MIC	RO	ВАС	. (1				Lexing 85	ton, KY 9-977-2	40503		
The continue of the continue	Turnaround Time Required: 7			red: XY	1			- Pro	eserva	SA Size	ype	Total Total	Remar	ks				
To MDLs for NH3, NO2, NO3, CBOD5. 1- loce (Al) 1- loce (Comments:		*	Preserva	ative Cod	9	3	202 P 5	0 mL 33	oz P	3oz 4c	27.0	Š	ather Ev			Wet	
1-the (MI) 1-t				SA - F	12SO4		32	Reque	sted L	ab Ar	ialysis	25 25 35 35	0	-Site/F	ield Mea	sureme	ents	1
Sw -30-le	NOTE: Report to MDLs for NH3, NO: TSS RL of 1.5,	2, NO3, CBOD5.		 0	(AII)					ε	ltered)		9/		Ә			
Sample I.D. Matrix Collection Col	OP and PT RL of 0.05. **** Assume duplicate samp for hold purposes.	oled at earliest time											ed Oxygen (%		c Conductanc	rature (° ^C)	(U T N) _V	(sì
1 SW -20- -9	Laboratory #	Sample I.D.	ALCOHOL:	Collection	Collection	Grab /	Fill'd Y/N	# of	Conta	vsis		Laurence	vlossiQ issturati		Specifio olodmu)	Tempe	ibidnuT	Flow (c
2 Sw -30-lb 0;0 0 G		1	Sw /	_	07.0	O	N/ *≻	2	-	-	H		,	-	3		36	8
3 SW — G Y*N 2 1 1 1 1 — F.S. 6 Lo. 1.1 1		2		į	0:00	ŋ	۸*/N	2	-	-				1.30	2019	12.40	4.6	192
5 SW -30-14 -00 G Y*N 2 1 1 1 1 1 6.19 - 7.53 6.24 2.19 1.96 6 SW -30-14 -20 G Y*N 2 1 1 1 1 5.94 - 7.53 6.24 2.19 1.9 8 SW -30-14 -20 G Y*N 2 1 1 1 1 1 1 1 10 SW -30-14 -30 2 1 1 1 1 11 SW -30-14 -30 -30-14 -30 11 SW -30-14 -30 -30-14 -30 11 SW -30-14 -30 -30-14 -30 -30 11 SW -30-14 -30 -30-14 -30 -30 11 SW -30-14 -30 -30 -30 -30 -30 -30 -30 11 SW -30-14 -30		က	SW			9	*/N \	2	-	1	-							1
5 SW -30-16 :00 G Y*N 2 1 1 1 16,19 - 7.53 6.9. 2.46 .74 7 SW -30-16 1:20 G Y*N 2 1 1 1 1 1.5,94 - 7.36 6.57 3.19 .9 8 SW -6 Y*N 2 1 1 1 1 1 1 1 1 1 1 10 SW -6 Y*N 2 1 1 1 1 1 1 11 SW -6 Y*N 2 1 1 1 1 1 1 11 SW -7 SW 2 1 1 1 1 DD SW -7 SW 2 1 1 1 1 DD SW -7 SW -7 SW -7 SW -7 SW 11-30-16/ 313 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 2 1 1 1 1 11-30-16/ 132 3 1 1 1 11-30-16/ 132 3 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 11-30-16/ 132 3 1 1 1 1 1 11-30-16/ 132 3 1 1 1 1 1 1 11-30-16/ 132 3 1 1 1 1 1 1 1 11-30-16/ 132 3 1 1 1 1 1 1 1 1		4	SW	1	1		Y*/N	2	-	-	· +			1				1
6 SW -20- 4		2		20-16	00:11	O	√* \	2	-	-	-			7.5	ह किंदि	12.46	<u>†.</u>	0.55
SW SW C Y*N 2 1 1 1 1 1 1 1 1 1		9 1		91-02-1	1:20	Ø	N. *>	2	-	-	+	1	-	7.36	657	13.19	6	1.05
9 SW 6 Y*N 2 1 1 1 1 1 6 T 1 1 1 1 1 1 1 1 1 1 1 1 1		_ α	SW SW			0	Z Z	2 0	- ,	- ,	+]						
10 SW G Y*N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ο σ	NIS OWN	1		9 (Z Z	7 0		- -	+		Ш					
11 SW		10	SW		1	1	Z Z	1 0	-	- -	-							1
Date / Time Received By: Date / Time Temp. Upon Receipt (C): 4. Measured By: 1.30-16 / 13/3 Containers Properly Preserved (Yes) No) 1/-30-16/13-20 1/-30-16/13-2		11	SW	1			×,×	1	-	-								
12-30-16/13/3		DD	SW		*****	ŋ	×*/	7	-	-	-]		See	Field No	Hoode		
/13/3 / Containers Properly Preserved (Yes) No)	() Refirequished By:	Date / Time		Received	By:	700元	1248	Date / T	ime	N.	emp. L	pon Rece	ipt (C):	1	asured By	1	7	
/1330 Abama the 11/20-10/320 Bottles Intact: (Yes) No)	The free	\sim	100	h	134	4	1/30	191			ontain	ers Prope	rly Pres	erved(()	es/No)		I n	
	10000	V	Spa	NDS.	13		11-3	71-0	13		ottles	ntact:	loN(s))	Ĺ	Λ	
										Г								

Project Wilder, Carne Consultants, LIC Project Based Plant	Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Project #: KY16-004 Project Contact (for laboratory): Cory Phone #: 859-977-2000 Collected By: Client - (A KR) Methodology Required: 40CFR Part Turnaround Time Required: 7 Workii	d Based Plan					١	1			-							
THIRDROCK CONSULTANTS Field R	Project #: KY16-004 Project Contact (for laboratory): Cory Phone #: 859-977-2000 Collected By: Client - (A R) Methodology Required: 40CFR Part Turnaround Time Required: 7 Workii Comments:						/	(/			ш с	DF Ana	lytical F	Seport &	Invoic	e To:	
EDD Required: X Yes _ No SA ST _ Relid Rem SA ST _ Relid Rem SA ST _ Relid Rem SA ST _ Relid Rem SA ST _ Relid Rem SA ST _ Relid Rem SA _ Requested Lab Analysis _ SA - H2SO4	Project Contact (for laboratory): Cory Phone #: 859-977-2000 Collected By: Client - (A, BR) Methodology Required: 40CFR Part Turnaround Time Required: 7 Workir Comments:				F		1	(21	200	Cor	Cory Bloyd	oliailis.		
EDD Required: X Yes _ No	Phone #: 859-977-2000 Collected By: Client - (A, BR) Methodology Required: 40CFR Part Turnaround Time Required: 7 Workir	y Bloyd				느		2		<u> </u>			Third	Rock (onsult	ants, LL	O.	
EDD Required: X Yes _ No SA ST ST ST ST ST ST ST ST ST ST	Comments:	3			•	_ O) N	2) z	ø Ø			6	526 Re	gency	Road		
EDD Required: X Yes _ No SA ST	Methodology Required: 40CFR Part Turnaround Time Required: 7 Workir Comments:	/	į			1								Su	Suite 180			
## Preservation Type Field Rem Preservation Type Field Rem Saza	Turnaround Time Required: 7 Workir Comments:	136				9	7 C.	30 B	AC				۳	exingtor 859-9	ington, KY 40: 859-977-2000	10503 10		
SA + H2SO4 ST - Mazter ST - Mazter ST - Mazter SW 2-75-16 1/4 C C C C C SW 2-75-16 1/4 C C C C SW 2-75-16 1/4 C C C C SW 2-75-16 1/4 C C C C SW 2-75-16 1/4 C C C C SW 2-75-16 1/4 C C C SW 2-75-16 1/4 C C C SW 2-75-16 1/4 C C C SW 2-75-16 1/4 C C SW 2-75-16 1/4 C SW 2-75-16 SW 2-75-16 1/4 C SW 2-75-16 SW 2-	Comments:			ired: X Y	ı			* Pres	servation	Typ.	1 5	ield Re	marks:				11	
Preservative Code Signary Sign	Comments:	1		d d			200	Conta	iner Si	ze/Typ	0 0							
SA - H2SO4 ST - Na25203 1 - Ice (All) SW Collection Grap Filte Comp NN Analysis SW SW SW I275-I6 140 G G Y*N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		46206		* Preserv	ative Cod	ė	320	а.	лL 32oz	Δ.	40Z P		Weath	er Even	t: Dny		Wet	
- -				SA-F	12SO4		(878)	Sednes	ted La	о Апа)	sis		On-S	te/Field	Meas Meas	uremer	ts.	
SW 2-75-76 1/5 6 7*N 2 1 1 1/6 1/5 1-7 8 1 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6 1/5 1/6	NOTE: Report to MDI a for NH3 NO2 NO3	, coo.		-	(AII)					(pa		(-						
SW 2-15-16 140 G Y*N Z T T T T T T T T T	TSS RL of 1.5,	s, ceous.						-	13	_			%		90			
Sample I.D. Matrix Date Time Comp With Analysis Sample I.D. Matrix Date Time Comp With Analysis Sample I.D. Matrix Date Saw Collection Comp With Sample I.D. Saw Saw Collection Comp With Sample I.D. Saw Collection Comp With Sample I.D. Saw Collection Comp Saw Collection Comp Saw Collection Comp Saw Collection Comp Saw Collection Collection Containers Property Preserved: (**Containers Preserved: (**Containers Preserved: (**Containers Preserved: (**Containers Preserved: (**Containers Preserved: (**Containers Preserved: (**Containers Preserved: (**	OP and PT RL of 0.05. ***** Assume duplicate sampled at for hold purposes.	t earliest time					22297222	18.07 7.1					ion)		c Conductan	(°°) enuter	(.U.T.N) ţ	(sì:
Sample I.D. Matery Date Inne	TO A STATE OF	C. C.	類談師	Collection	Collection	Grab /	1000	# of C	Sontair	ers Pe			viosei aturati		mpo becui	ədwə _.	ibidıu	o) wol
2 SW 2-15-16 14C 6 Y*N 2 1 1 11 12.19 45.8 7-60 8 SW 2-15-16 14C 6 Y*N 2 1 1 1 12.19 45.8 7-60 9 SW 12-15-16 1056 6 Y*N 2 1 1 1 10.8 10 SW 12-15-16 1056 6 Y*N 2 1 1 1 10.8 11 SW 12-15-16 1003 6 Y*N 2 1 1 1 1 10.8 Date / Time Received By: Date / Time Temp. Upon Receipt (C): & Date / Time 12-15-16 14 5 XM	DATE OF THE PERSON NAMED IN	Dailiple I.D.	MIGUIA	Date	linne	A COLUMN TO A COLU	South In	CONTRACTOR OF THE PERSON NAMED IN	Allaly	2		+	S	+		1		4
Sw Sw Sw Sw Sw Sw Sw Sw						5	<u> </u>	2	1	1		ı	l	1		1		1
Sw Sw Sw Sw Sw Sw Sw Sw	1					þ			1		1	Ì	I	1	İ	I	I	
5 SW 3-15-16 190 G Y*N Z 1 1 12.19 95.8 7-60 8 SW 2-15-16 190 G Y*N Z 1 1 1 12.19 95.8 7-60 10 SW 2-15-16 1056 G Y*N Z 1 1 1 10.8 11 SW 12-15-16 1003 G Y*N Z 1 1 1 10.8 DD SW 12-15-16 1003 G Y*N Z 1 1 1 1 10.8 11 SW 12-15-16 1003 G Y*N Z 1 1 1 1 10.8 12-15-16 1915 X X X X X X X X X	1		SW			þ		1		1	1	I	I		١	ı	I	
5 SW 3-15-16 1140 G Y*N Z 1 1 12.19 95.8 7-60 8 SW 2-15-16 1245 G Y*N Z 1 1 1 12.19 95.8 7-60 10 SW 2-15-16 1245 G Y*N Z 1 1 1 18.09 112.4 11 SW 2-15-16 1056 G Y*N Z 1 1 1 18.09 112.4 12-15-16 140 SW 2-15-16 1003 G Y*N Z 1 1 1 10.8 7.9 Date // Time Received By: Date // Time Temp. Upon Receipt (C): 2.7 12-15-16 140 SW 12-15-16 SW Temp. Upon Receipt (C): 2.7 12-15-16 140 SW SW Temp. Upon Receipt (C): 2.7 12-15-16 140 SW SW SW SW SW SW SW S	1	4	SW			1	14/2/	1	+	ŀ	1	1	t	t				
Sw	1	0	SW			9	71/	1	1	E	1	t	t	1			T	
7 SW 2-15-16 140 G Y*N Z 1 1 1,18 95.8 7.60 8 SW 2-15-16 125 G Y*N Z 1 1 1 6.8 66.9 7.6 10 SW 2-15-16 1056 G Y*N Z 1 1 1 19.09 1/24 8.01 11 SW 2-15-16 1056 G Y*N Z 1 1 1 10.8 - 7.9 12 SY 12-15-16 10.3 G Y*N Z 1 1 1 10.8 - 7.9 Date/Time Received By: Date/Time Temp. Upon Receipt (C): 2.7 12 SY SY SY SY SY SY SY S	1		SWV			b	1	7	I	1	f	1	t	t				
8 SW 12-75-16 1/25 G Y*N 2 1 1 1 16,8 66,9 7-6 10 SW 12-15-16 1/05G G Y*N 2 1 1 1 1 10,8 — 7.9 11 SW 12-15-16 1/05G G Y*N 2 1 1 1 1 10,8 — 7.9 DD SW 12-15-16 1/003 G Y*N 2 1 1 1 1 1 1.5 — 7.8 DD SW 12-15-16 1/003 G Y*N 2 1 1 1 1 1 1.5 — 7.8 12-15-16 14-15		7	SW	2-15-16	1190		√*/N	2 1	1	٦	1 1				617	4,55	2.5	10:0
9 SW [2-15-16 [05-6 G Y*N 2 1 1 1 1 19.09 [12-6 8-0] 10 SW [2-15-16 003-6 G Y*N 2 1 1 1 1 10.8	L	8		275-16			γ*/N	2 1	_	-	1 6		6		4131	3.7	36	1
10 SW 12-15-16 403 G Y*N Z 1 1 1 10.8 7.9		6		12-15-16	1056		√*/N	2		-	1 /6	8,091	126		683	2.60 5	0	100
11 SW 12-15-16 4003 G x**N 2 1 1 1 11.5 7.8		10	SW		0830		√*/N	2	1	-	1 (2.8	1	62	113 (9.7	0.087
Date / Time Received By: Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time Temp. Upon Receipt (C): & / Mes Date / Time D		11	SW	12-15-6	1003		N/*/N	2		-	1 /	5.7	1		599	2 5,5	170	0.53
Date / Time Received By: Date / Time Temp. Upon Receipt (C): 名。 12-15-16 4 (C		_ QQ	SW	97-51-51	****		٧*/N	2	_	-	-			See Fig	Field Notebook	book -		
Han Martin 13-15-1(a) 141C Containers Properly Preserv	0.00 March	Date / Time		Received	By:	100		ate / Tir	ne	Tem	p. Upon	Receipt) Meas	red By:	27	~	
i .	Co 18 12-11	_	Ser.	Mari	1		-	5.110	141	Ö	ainers F	roperly	Preserve	ed: (Mes	(No)		7.	
	Houmann 13	15-10141C)							Bott	les Intac	t: (Yes/	No))				
		, wh																
77-15-16		12-15-14																

Figure Harm. Came Run Waterston Band Band Run	Project Name: Cane Run Watershed Project Arms: Cane Run Watershed Project Contact (for laboratory): Cory Phone #: 859-977-2000						1										A TONISH OF THE PARTY OF THE PA	NUMBER
THIRD ROCK Third Rock Consultants consultants consultants Third Rock Consultants consultants Third Rock Consultan	Project #: KY16-004 Project Contact (for laboratory): Cory Phone #: 859-977-2000	Based Plan					/	(1			2	F Anal	tical R	eport &	Invoic	e To:	
HIRD ROCK Consultation Third Rock Consul	Project Contact (for laboratory): Cory Phone #: 859-977-2000						1	(히	loyd(a)	hirdroc	Kconsi	Itants.	COM	
Superior Constitution Constitu	Phone #: 859-977-2000	Bloyd				77	7	2	7		-		Third F	Sock Co.	proyu	nts I	C	
System State Sta	Collected Bv: Client					- 0	ONS	22) ×	g so			25	26 Rec	Jency F	toad)	
EDD Required: X Yes _ No SA ST SA ST	Methodology Required: 40CFR Part 1	136				0	AI C.	30 B	AC		-		Le	Surt xington	e 180 , KY 4	0503		
Preservative Code Start						I	NA.	* Drg	He/No	1,50	-	ld Rer	Jarke.	829-9	77-200		k	
Preservative Code 10	Turnaround Time Required: 7 Workin			red: XY				Date District	מוור	n you	t	2	al So					
Preservative Code 370x p 50 ml 330x p 50 ml					1		100	Conta	iner St	e/Type	0							
S.Y. A. H.2024 Nequested Lab Analysis Onesite 1 - Lee (All) S.W. (2) / 5 10:20	Comments;			Preserva	ative Cod	Φ	320	D.	3202	Q.	4oz P		Weathe	r Event			ēţ	
The (All) The				SA-FS	12SO4			Sednes	ted Lat	Analy	Sis		On-Sit	e/Field	Measu	remen	ts	三 一
SW 2 1 1 1 1 1 1 1 1 1	NOTE: Report to MDLs for NH3, NO2, NO3, TSS DI 264 6	, свор5.		<u>-</u>	(AII)		-		{	(benet								
SW (2/15) (3/15) (1/15)	OP and PT RL of 0.05. ***** Assume duplicate sampled at effor hold purposes.	earliest time							_	ii			(uc			ature (° °)	(.U.T.N) <u>v</u>	(s.
SW (2/5 10:20 G Y*N 2 1 1 1 10.69 76.1 7.35 638.4 0.8 15.3 SW (2.6.2 10:20 G Y*N 2 1 1 1 1 1 10.56 76.1 7.35 638.4 0.8 15.3 SW SW (2.6.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ample I.D.	Matrix	Collection Date	Collection		3234	#of C	Contain	ars Pe	25 (A)		itenuteS			Tempe:	Turbidit	Flow (c
SW SW SW SW SW SW SW SW SW SW SW SW SW S		1	SW	1			N.	-	-		$\overline{}$	_	\vdash	356	38.4	+	23	8
SW G Y*N 2 1 2 1 1 1 1 1 1 1 1 1 2 1		2	SW	12/15	10:50		Z.		1	-			+	3.7	11.70	1	الم	2,07
SW (2/15 1(:3)) G (**N) 2 1 1 1 1 1 7.6 71 2 6.83 (97) 1.65 5.9 SW (5/15 1(:3)) G (**N) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		က	SW				∠ *,		7	-	-							
SW \(\frac{1}{2}\) \(\frac{1}{1}\) \(\frac{1}{3}\) \(\frac{1}{6}\) \(\frac{1}{4}\) \(\frac{1}{1}\) \(\frac{1}{3}\) \(\frac{1}{6}\) \(\frac{1}{4}\) \(\frac{1}{1}\) \(\frac{1}{3}\) \(\frac{1}{6}\) \(\frac{1}{4}\) \(\frac{1}{1}\) \(\frac{1}\) \(\frac{1}{1}\) \(\frac{1}\)		4	SW			\neg	N.	2	-	-	-							
SW \$\sqrt{1}\times \text{1}(\sqrt{5}) \text{1} \text{1}(\sqrt{5}) \text{2} \text{3} \text{4} \text{3}		2	SW	1		\dashv	Z.		7	-	-		1.26			1	6	2.91
SW G Y*N Z 1 1 1 1 1 SW G Y*N 2 1 1 1 1 1 SW G Y*N 2 1 1 1 1 1 SW G Y*N 2 1 1 1 1 1 SW Temp. Upon Receipt (C): -0. Date / Time Temp. Upon Receipt (C): -0. 1 1 1 1 CALISTIME Date / Time Temp. Upon Receipt (C): -0. Bottles Intact: (?es / No) 1 1 1		۸ ۵	SW SW	2/17	11:30	+	Z ;	2	-		\rightarrow	7	-				80	3.8A
SW G Y*N 2 1 1 1 1 SW SW 2 1 1 1 1 1 SW X*N 2 1 1 1 1 1 Received By: Date / Time Temp. Upon Receipt (C):-0.4 (2) / 5 / //, (4) / 2 · / 7 Containers Properly Preserved Bottles Intact: (30s / No)		. 8	SW				Z Z	2 2	-		- \	+	ŀ			t	T	1
SW G Y*N 2 1		6	SW				√*/N	2	-	-	-			r	-	T		
SW SW Received By: CAN A To The Temp. Upon Receipt (C): -0.4 CAN A To The Temp. Upon Receipt (C): -0.4 Bottles Infact: (79c / No)		10	SW				Z.	2	-	-	-	H	-	-	i	t		
SW		11	SW				√*,N	2	1	-	-							١.
Received By: Date / Time Temp. Upon Receipt (C):-2.4 (インパングの Containers Properly Preserve Bottles Intact: (でき / No)		DD	SW		****		√*/N	2		-	-			See Fiel	d Noteb	- ye		
12/15/16/0/12:45	産業を基準し	ate / Time		Received	By:	511	District the	ate / Tir	ne	Tem	. Upon F	eceipt (C):-0.5	Measu	ed By	2 Ch	1	
	(a)	5/6/24	1		1		17/13	/		9 Cont	ainers Pr	operly F	reserve	d: Mes/	No)			
(ht)										Bottl	es Intact	(Yes //	(0)		. (1	(
						Ī	1	V	1	_							CF	S

Comments: Comm	Required: X Yes _ No		10			PDF A	nalytical	PDF Analytical Report & Invoice To:	& Invoic	E To:	Ī
St EDD Required: X Yes _ No	Required: X Yes _ No	NO NO US US US US US US US US US US US US US	,			cployc	cbloyd@thirdrockconsultants.com	OCKCOLIE	ultants.	com	
Superior Superior Superior Superior	Required: X Yes _ No		SOCI	Y [∞]		Thi	Cc d Rock 2526 R Si	Cory Bloyd Third Rock Consultants, LLC 2526 Regency Road Suite 180	l ants, LL Road	O	
## Sample I.D. Saw 1.30-17 1.05 G * Saw 1.30-17 1.0	Required: XYes	MICR	(MICROBAC	÷			Lexington 859.	Lexington, KY 40503 859-977-2000	40503 30		
**Preservative Code **A - H2SO4 **SA - H2SO4 SA - H2SO4 ST - Na2S203 1 - Ice (All) **The Comp **The Code **The Code **The Code **The Code **The Comp *	Kequired: X Yes _	= 1	* Preservation Type	tion Type		Field Remarks:					Г
* Preservative Code SA - H2SO4 ST - Na2S203 1 - Ice (All) 05. cate sampled at earliest time			Container Size/Type	Size/Typ	ST						
SA - H2SO4 ST - Na2S203 1 - Ice (All) 05. cate sampled at earliest time Sample I.D. Men'rx Collection Grab / Comp Time Collection Collection Grab / Comp Saw / 30-17 1220 G Sw / 30-17 10-55 G Sw / 30-17 10-55 G Sw / 30-17 10-55 G	* Preservative Code	3202	P 50 mL 320z	oz P 8oz	40z P	Wea	Weather Event:	nt:Dry		Wet	
1- Ince (All) 105. 105. 105. 105. 105. 105. 105. 105. 105. 105. 106. 107. 108. 108. 108. 109	SA - H2SO4 ST - N92S2O3	Re	Requested Lab Analysis	ab Analy	sis	O	Site/Fie	On-Site/Field Measurements	uremer	ī.	
cate sampled at earliest time cate sample I.D.	1- loe (All)				(7/6ա			əc			
Sample I.D. Metrix Collection of Collection of Computer o		CBODS, TSS	NO2, NO3	PT, TKN, NH.	E-Coli	oy Oxygen (°	(*n*	ic Conductanc (cm)	(° °) enutere	(.U.T.N) (ti	cts)
2	Collection Collection Date Time	Filth	# of Container Analysis	Containers Per Analysis			S) Hq	lioeq2 (odmu)	Tempe	DidiuT	Flow (
5W SW SW SW SW SW SW SW SW SW SW SW SW SW	SW	Y'N Z	-	+	-				Ī	Ì	1
Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw Sw S	SW SW	Y.N. 2	1	<u></u>	+			1		1	1
SW SW SW SW SW SW SW SW SW SW SW SW SW S	W	2 N/*Y		+	+				Ħ	1	1
8W 8W 8W 8W 8W 8W 8W 8W 8W 8W 8W 8W 8W 8		7*/N 2	+	+	+				1		1
sw 1/30-17 1/45 6 sw 1/30-17 1/25 6 sw 1/30-17 1/05-5 6 sw 1/30-17 1/05-5 6	9	Y*/N 2	-	+	7				\dagger		1
sw 1-30-1 1220 G sw 1-30-1 1220 G sw 1-30-1 1250 G sw 1-30-1 7-55-1 S sw 1-30-1 7-55-1 G		Y /N 2	1	-	F			_	++	11	I
5	1.30-17 1145		-	-	1 10.5			30	_		21-0
Sw 1/301 71/055 G	0221 1-05-1	_	-	-	1 3,7	-	7		01		1
200	201 LAS-1	X*/N ×			10.0	25.0	7.6	390	525	27.2	25.00
SW [1-30-1] NJS	1-30-17 1015		-		1 6.8		7.5				109
SW 1/30-17 ***** G	1-30-17 *****		-	-	-		1 4	Not	7 1	1	
Relinquished By: Date / Time Received By:	Received By:	Dat	Date / Time	Tem	Temp. Upon Receipt (C):	ceipt (C):	7 Mea	A Measured By:	7	E	
1302/1337 M	15/11	1-30-1	7 133	Con	Containers Properly Preserved: (र्रिक्ड / No) Bottles Intact: (रिव्ह / No)	erly Prese	rved: (%e	(ON / §			
						\					
Original COC To Laboratory (Accompany Samples & Report) COC Copy - TRC Project File C	COC Copy - TRC Project File	COCCOD	COC Copy - TRC Laboratory Services Coordinator	oratory Se	ryices Coc	rdinator	A STATE OF THE PARTY OF THE PAR	き			喜

Client: Third Rock Consultants, LLC Project Name: Cane Bun Watershad Based Blan	TEC																
Project #: KY16-004 Project Contact (for laboratory): Cory Bloyd Phone #: 859-977-2000 Collected By: Client -	Cory Bloyd			Ė	HIR	SNO.	IRDROCI CONSULTANI	O P P P P P P P P P P P P P P P P P P P	Y [∞]			Cbloyc Thir	i@thirdi C.c. d Rock 2526 R S Lexingt	cbloyd@thirdrockconsultants.com Cory Bloyd Third Rock Consultants, LLC 2526 Regency Road Suite 180 Lexington, KY 40503	& Invoi	se To:	
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	es _ No		989]]8	* P.	* Preservation Type	SA SA	ype ST	order Lon	Field Remarks:		859-977-2000	00		
Comments:			Preserv SA-	Preservative Code	வ	ii ii	32oz P 50	P 50 mL 3202 P 802 4	S P 8 S	802 40Z	2	Wea	Weather Event:	int:	V_ vrd.	Wet	
NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	، NO3, CBOD5. ع ed at earliest time		A-ST- N - I	³ 4ST - Na2S2O3 I - Ice (All)			CBOD5, TSS NO2, NO3 PT, TKN, NH3 PO (* Field Filtered)	NO2, NO3	PT, TKN, NH3	P O (* Field Filtered) E-Coli	(¬/6ш) uə6/xO pə/	ved Oxygen (%	(.U.	ion) (LU, Conductance cm) (ma) strature (° C) (ma) strature (° C)	o (^{2 °}) eintere	(J.T.U.) yi	cis)
Laboratory #	Sample I.D.	Matrix *	Collection Date	Collection Time	Grab / Comp	Pilled Y.N.	# of	# of Containers Per Analysis	iners l	Jer.	lossiQ	NossiQ Saturat	S) Hq	Bibeq8 Norlmu)	Tempe	Turbidi	Flow (c
	1	SW	1/30/17	05:6	၅	N/*/	2	-	-	- -	23.38)	6,33	511	4.416	2.4 1	14.07
	2	SW	1130117	55:01	ŋ	N/*/	2	1	-	1	23,52	1	86	144	5,62	6,0	12.25
	က	SW	1/30/17	10:30	ပ	Y*/N	2	-	-	-	11.48	1	12.5	420	16.916	1.6	D.74
	4	SW	1/20/17	11:30	O	N/*≻	7	-	-	-	11.40	1		. 1		12	0,36
	2	SW	1/30/17	12:00	O	N/*>	2	-	-	-	-	1			- 1	0	H.53
	0	SW	1/20/14	16:15	υ β	N N	2 0	-		-	4.86		4.3	250	7,55	۲,۲	F 1
	00	MS			6	N/*	2	-	-	-						1	
	6)	SW			9	X.X	C	1	+	1						1	
	7	SW			6	*	23	+	1	1							/
	11	MS			G	N/*/	2	-	1	7						1	11
	QQ	SW		****		N/*≻	2	7-	-	-			- See F	- See Field Notebook	sbook -		
1 Relinquished By:	, Date / Time		Received By:	d By:	1000		Date / Time	ime	Te	mp. U	Temp. Upon Receipt (C): 4 4 CMeasured By	ot (C): 4	4 cMea	sured By	2	1	
Lux Low	1/20/17 2:10				1	1/30	113	14.11	S A	ontaine	Containers Properly Preserved: (Yes / No)	ly Presé	184. 186.	(oN / s			
											5						

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004 Project Contact (for laboratory): Cory Bloyd Phone #: 859-977-2000 Collected By: Client																ľ	SOUTH STATES
Project Name: Cane Kun watersned Project #: KY16-004 Project Contact (for laboratory): Cory Phone #: 859-977-2000 Collected By: Client						1	(1				PDF Ar	PDF Analytical Report & Invoice To:	Report	& Invoi	ce To:	
Project Contact (for laboratory): Cory Phone #: 859-977-2000 Collected By: Client	based Plan			J		1	(cployd	cbloyd@thirdrockconsultants.com	Goog Bloud	sultant	COM	
Phone #: 859-977-2000 Collected By: Client -	Bloyd			-	H	7	2	2	_			Thi	Coly Bloyd Third Rock Consultants: LLC	Consul	u tants. L	S	
Collected By: Client -	,			_	T) 2		ے کے	<u>_</u>				2526 R	2526 Regency Road	Road		
					ر	2	- - - -	Z	0				Ō	Suite 180	_		
Methodology Required: 40CFR Part 136	136				0	M M C	(MICROBAC	AC					Lexington, KY 40503 859-977-2000	ington, KY 409 859-977-2000	40503		
						Gil	* Pre	servat	* Preservation Type)e	Field F	Field Remarks:	ı				
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	es_No		_	-	S	SA	ST							
						465	Conta	ainer S	Container Size/Type	e e							
Comments:			* Preservative Code	ative Cod	9	32	32oz P 50	50 mL 32oz	z P 80z	40z P		Wea	Weather Event:	М	Dry	Wet	
			SA-I	SA - H2SO4		(pt	Requested Lab Analysis	sted Le	ab Ana	lysis	1000	-io	On-Site/Field Measurements	Id Mea	sureme	ents	1
NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5.	, свор5.		<u> </u>	SI - Na2S2U3 I - Ice (All)					(fered		(7/6ເ	c.		e			
ISS RL of 1.3, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	earliest time						280D5, TSS	102, NO3	РТ, ТКИ, ИНЗ Р ^О (* Field Fil	E-Coli	ned Oxygen (m	ed Oxygen (%	("Ո	c Conductance (m:	rature (° ^C)	(U.T.U.) yi	(sì
Laboratory #	Sample I.D.	Matrix *	Collection Date	Collection	Grab / Comp	Filtd	to #	Container Analysis	S	ច	/lossiQ	/lossiQ Saturat	S) Hq	itioəq2 olodmu)	Tempe	ibidiuT	Flow (c
	1	SW			Ø	×, ×,	2	-	-	-							
	2	SW			ŋ	\ ×/N	2	-	-	-							
	3	SW			ပ	√*/N	2	-	1 1	1							
	4	SW			၅	√*/N	2	1	1	-							
	2	SW			O	\ *≻	2	-	-	-							
	9	SW			ŋ	√*/N	2	-	-	-							
	7	SW	27-17	1106	ပ	Y*/N	2	-	-	-	11.3	91.9	7.9	184	8.11	11.0	0.19
	80	SW	2-7-17	5411	ტ	√*/N	2	-	-	-	7.7	68.7	7.6	628	11.7	8.0	1/8
	6	SW	1-1-1	1033	ပ	√*/N	2	-	1	-	711	91.5	8.1	2	9.7	5.7	4
	10	SW	2.7-17	OULD	ပ	√*/N	2	1	7	-	9.3	86.5	2.6	0841	1.7	150	17.71
	11	SW	7-7-17	1001	Ö	\	2	1	1	-	9.1	84.1	7.7	721	7.6	6.9	0.73
	DD	SW		*****	ß	Y*∕N	2	-	1	-			- See F	Field Notebook	ebook -		
Relinquished By:	Date / Time	100000000000000000000000000000000000000	Received By:	d By:		\$27.FE	Date / Time	ше	Ter	ոթ. Սր	Temp. Upon Receipt (C): 4.8 Measured By:	pt (C): 5	. Schea	sured By	M.	31	
But dush 2.	2-7-170150	H	h	FA.	0	7-7-1	2-17	1389		ntaine	Containers Properly Preserved: (Mes) No)	ly Prese	rved: Pre	(ON)			
					Î				<u> </u>	Ties III	Bottles Intact (Yes) No)	(ON)					
									Т								
Original COC To Laboratory (Accompany Samples & Report)	amples & Report	The second	COC Copy - TRC Project File	C Project	e e	200	COC Copy - TRC Laboratory Services Coordinator	C Labo	ratory ?	Service	S Coord	nator		Party State			1000

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004 Project Contact (for laboratory): Cory Bloyd Phone #: 859-977-2000				L								100			A 2500 B	5
Project Name: Cane Run Watershed Project #: KY16-004 Project Contact (for laboratory): Cory Phone #: 859-977-2000						-					PDF	Analytic	PDF Analytical Report & Invoice To:	& Invoi	- C-	
Project #: KY16-004 Project Contact (for laboratory): Cory Phone #: 859-977-2000	d Based Plan					1	(/		_	cplo	vd@thir	cbloyd@thirdrockcopsultants com	of ulfants	. E	
Project Contact (for laboratory): Cory Phone #: 859-977-2000				ŀ		111	(_			Cory Bloyd	7	3	
Phone #: 859-977-2000	/ Bloyd			-	H	7		1			È	ird Roc	Third Rock Consultants		0	
					I)	2	<u>ا</u>	,			2526	2526 Regency Road		2	
Collected By: Client -					ر	2	ا ا	- Z 4	n				Suite 180	0		
Methodology Required: 40CFR Part 136	136				0	(MICROBAC	30B	AC				Lexing	Lexington, KY 40503	40503		
į						*. § =	* Pres	servatio	* Preservation Type	12.7	Field Remarks	١	7			T
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	res _ No			Conta	SA	Container Size/Type	TS .						
Comments.			0.000		10000	3202	z P 50 mL	nl 32oz P	80z	40z	×	Weather Event	1	20	Wet	Τ
			Liesell	rieservative Code	, e		-	8 6	ı.				П	Н		
ii C			ST-N	SA - H2SO4 3T - Na2S2O3		<u>=</u> 1	Sednes	ted Lab	Requested Lab Analysis	S	O	-Site/Fi	On-Site/Field Measurements	sűremei	nts	
NOTE: Report to MD & for NH2 NO2 NO2 CBODE	2000		1-1	! - Ice (All)					(p	(
TSS RL of 1.5,	, ceous.							3	ltere	`7/6u			ə			
OP and PT RL of 0.05.	earliest time					301 3	5, TSS 103	(N' NH:	i4 bləi4	Adeu (u	%) uə6%		luctanc	(_{o c})	(.U.	
for hold purposes.						0000	402, N			ed Ox	xO bə			rature	T.M) <u>v</u> :	(sì
100 March	M	The state of	Collection	Collection	Grab /	Filtd	35-	ontaine	of Containers Per	\los:	\los:	.S)		ədu	ibid	o) w
Laboratory # Sa	Sample I.D.	Matrix *	Date	Time	Сотр	Y.N		Analysis	0	ai□			aq2 mu)	nəT	Tur	/ol4
	-	SW	11/1/c	448	ŋ	N/*Y	2 1	-	-	1 9.09	83	7,85	371.1	10.10		7.59
	2	SW	-	980	ပ	N/*Y	2 1	+	-	1 854	F 81.4	7.87	五	+11	,	3.45
	3	SW		900	O	*\N	2 1	-	1	1 8,67	0.18 6	1	40,4	11.35	1	6.0
	4	SW		070]	O	N/*Y	2 1	1	-	1 8.37	7 79.1	7.73	378.3	11.65	,	40
	5	SW	-	1040	O	*/N	2 1	-	1	1 8.55	() W =	7.15	_	11.77	١	4.35
	9	SW	>	1105	O		2	-	-	1 8.3	78.7	17.58	487.0 11.78	11.78	1	4.87
	7	SW					2	-	-	-						1
	8	SW			O		2	-	-	-						
	6	SW			ŋ		2 1	-	1	1						
	10	SW			O	√*/N	2 1	1	1	1					Ħ	
	11	SW			9	N/*Y	2 1	1	-	-						
	DD	SW	2/7/17	*****	ŋ	N/*>	2	-	-	4-		- See	See Field Notebook	ebook -		
Relinguished By: Da	Date / Time	Self-like	Received By:	d By:	SERVICE OF	ď	Date / Time	je E	Temp.	Temp. Upon Receipt (C):	eipt (C):	75 "Mez	75 "Measured By	no.		
MA X D 3/	16:31/21/2	1		4	Λ	11/2	41	11:51	Contain	ers Prop	erly Pres	Containers Properly Preserved: (Nes / No)	(ON / %			T
)	7 7 ,	7							Bottles	Bottles Intact: (Yes) / No)	es/No)	V				
					T					12						

B

ш																	
Orient: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	, LLC rshed Based Plan					1	(1				PDF /	unalytica d@thire	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com	& Invoi sultants	ce To:	
Project #: KY16-004	ā			F	Ē	1			_			i		Cory Bloyd	. .		
Project Contact (for laboratory): Phone #: 859-977-2000 Collected By: Client	Cory Bloyd						∠ ∃	J ^A	√ [∞]			ᆮ	ird Roci 2526	Third Rock Consultants, LLC 2526 Regency Road	tants, L Road	2	
Methodology Required: 40CFR Part 136	3 Part 136				0	Σ	⟨♠⟩ MICROBAC	3 A C					Lexing	Sulle 100 Lexington, KY 40503	40503		
													82	859-977-2000	00		
Tumaround Time Required: 7 Working Days		FDD Reg	Redriited: X Yes				* Pr	eserva	* Preservation Type	/pe		Field Remarks:	.s:				
				1			5	tainer	Container Size/Type	g ea							
Comments:			* Preserv	Preservative Code	4	6	32oz P 5	50 mL	% P	80z 40z		×	Weather Event:	П	Dry	Wet	
			SA-	SA - H2SO4		Ī	Requested Lab Analysis	sted L	ab An	alysis		Ō	-Site/F	On-Site/Field Measurements	sureme	nts	
NOTE:	30000		N-T2	ST - Na2S2O3 - Ice (All)				-		(p:	_						
Report to MDLS for NH3, NO2, NO3, CBOD5. TSS RL of 1.5, OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	i, NO3, CBOD3.						30D6, TSS	25, NO3	T, TKN, NH3	o (* Field Filtere -Coli	J\gm) nəgyxO b	d Oxygen (%		Conductance (n	(^{o o}) enute	(.U.T.N)	(5
						1	- 1	N	1	_	_	evlc oits	_	oific no\cn	pers	idity	do)
Laboratory #	Sample I.D.	Matrix *	Collection Date	Collection Time	Grab / Comp	YIN	# of	of Containers Analysis	iiners I ysis	Per	ossia	ossiQ nutsS) Hq	oquin) oədS		Turb	Flow
		SW	11/8	018	9	N/*Y	2	-	-	1 1	5911	546 !	12.51	4450	5.43)	707
	2	SW		a.	ŋ	N/*Y	2	-	1	1 1							
	3	SW		230	ß	\	2	-	1	1 1	11.33	8.96	7.48	519.8	7.4	,	4.52
	4	SW		300	ß	Y*/N	2	-	-	-	9.47	83.	2 7.39	372.1	8.17	1	
	വ	SW		320	ပ	Y*/N	2	-	-	-	11.83	101.	70.8 7	-		1	
	9	SW	Þ	340	O	Y*N	7	-	-	-	11.72	2 100.8	8 7.99	522.9	7.81	1	
	7	SW			ဗ	X*/N	2	-	-	-							
	80	SW			O	ν*/ν	2	-	-	-				1			
	თ	SW			O	X*X	2	-	-	-							
	10	SW			O	√*/N	2	-	-	1							
	11	SW			G	Y*/N	2	1	-	1							
	DD .	SW		****	g	Y*/N	2	1	1	1 1			- See	See Field Notebook	tebook -		
Relinguished By:	Date / Time		Received By:	d By:			Date / Time	rime	Ĕ	emp. U	pon Rec	eipt (C):	4-(JME	Temp. Upon Receipt (C): 4. ("Measured By;	۲.	ÇI	
C-XX-1	3/17/17 1910	X.5.	SUNC	utr		5 7	2-17	1	ان ال	ontain ottles I	Containers Properly Pres Bottles Intact: (Yes / No)	erly Pres	Containers Properly Preserved: (Yes / No) Bottles Intact: (Yes / No)	(es / No)	,		
												`) 1	כ		

Project Name Care Run Weterstred Based Plan Project Name Care Run Weterstred Based Plan Project Name Care Run Weterstred Based Plan Project Name Care Run Weterstred Based Plan Project Name Care Run Weterstred Based Plan Project Name Care Run Weterstred Based Plan Project Weterstred Based Plan Project Name Care Run Weterstred Based Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Weterstred Plan Project Wete																		
THIRD ROCK Cony Bloyd		ts, LLC					1	(1			L	PDF	Analytic	al Repor	rt & Invo	ice To:	
Field R Fiel	Project Name: Cane Run Wa	stershed Based Plan					1	(1				cblo	yd@thir	drockco	nsultan	ts.com	
Part 136 Part 1	Project #: KY16-004				ŀ		_	(Sory Blo	ρλο		
Part 136 Part 136	Project Contact (for laborator	y): Cory Bloyd				득		2		>			-	nird Roc	k Consi	ultants,	LLC	
SOD South	Phone #: 859-977-2000					<u> </u>	13		ノ;)⊦	4				2526	Regend	sy Road		
Sys EDD Required: X Yes No CRO B A C	Collected By: Client -						2	2 U L	¥	Λ -					Suite 18	. ₈		
Time Required: 7 Working Days EDD Required: X Yes _ No	Methodology Required: 40C	FR Part 136				@	Σ	R 0	BA(()				Lexin 89	gton, KN 59-977-2	7 40500 2000	~	
Time Required: 7 Working Days EDD Required: X Yes No Container Sizer Type Sizer Pick Pick Sizer Pick Pick Pick Pick Sizer Pick Pick Pick Pick Pick Pic							Г	* Pr	reserv	ation 1	уре	Fiel	1 Rema	rks:				
Share Form Size Page P	Turnaround Time Required:		EDD Requ	ired: ∑ Y	1					SA	6	Ŀ.						
San H2SO4 Sor Mark								Cor	ıtainer	· Size/	Гуре		1					
The (All) SA - H2804 SA -	Comments:			* Preserv	ative Co	e e		۵			_	20 2	8	eather E	vent:	Dry _	Wet	
-				SA-	H2SO4			Regul	pested	A de	isylet	-		-Site/F	ield Me	asilrem	ents	١
Figure Collection Collect	NOTE:			ST - N	a2S203						+	1	-					
Cate sampled at earliest time Cate sampled at earliest time Sample I.D. Sample I	Report to MDLs for NH3, NITSS RL of 1.5	02, NO3, CBOD5.		<u>-</u>	(All)					3	iltered)	(J/bu			əc			
Sample I.D. Matrix Date Collection Time Comp Vin Time Filled Comp Vin Time # of Containers Per Digital Comp Vin Time # of Containers Per Digital Comp Vin Time # of Containers Per Digital Comp Vin Time # of Containers Per Digital Comp Digital Containers Per Digital Containers Per Digital Containers Per Digital Containers Property Preserved: (Yes / No) 2 SW G Y*N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OP and PT RL of 0.05. ***** Assume duplicate san for hold purposes.	ipled at earliest time						SST, adole	102, NO3	ьт, тки, ин			ed Oxygen (c Conductano (m)		(U.T.N) Ų	(sic
SW G V*N 2 1 1 1 1 1 1 1 1 1	# vootstoot #	C dumen	Motrix +	Collection	Collection	Grab / Comp	Filtd	‡±	f Cont	ainers	Per	rlosaiC	rlossiC		Specifi		bidnuT) wol∃
2 SW G Y*N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		-	N.S.			ď	N/*>	,	7	-	-	-	_					
3 SW G Y*N Z 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			MS			9 0	× × ×	, ,		-		F	-					
5 SW 6 G Y*N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ı m	MS.			0	*>	,	-	-	-	-	H					
5 SW 6 Y*N 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		4	SW			O	×,N	2	-	-	-	-			10-			
6 SW 3/7/7 3:495 G Y*N 2 1 1 1 1 15/1 126.3 8,1 436 7, 8 SW 3/7/7 3:495 G Y*N 2 1 1 1 1 15/1 126.3 8,1 436 7, 9 SW 7:N 2 1 1 1 1 1 14,9 135.4 8,8 33.4 6, 10 SW 7:N 2 1 1 1 1 14,4 9,1 135.4 8,8 33.4 6, DD SW 7:30 G Y*N 2 1 1 1 1 1,4 99,1 13.5 8,1 648 (0. Date / Ine SW 7:30 G Y*N 2 1 1 1 1 1,4 99,1 7.89 693 8. Date / Ine SW 7:N 2 1 1 1 1 1 1,4 99,1 7.89 693 8. 2 17-17 17 10 SW 7:N 2 1 1 1 1 1 1,4 99,1 7.89 693 8. 2 17-17 17 10 SW 7:N 2 1 1 1 1 1 1,4 99,1 7.89 693 8. 3 7-7 1 1 1 1 1 1,4 99,1 7.89 695 8.		5	SW			ပ	\ */N	2	-	-	-	-						
7. SW 3/17 3:455 G Y*N 2 1 1 1 15 13(6.3 8,1 436 7, 13 13 13 13 13 13 13 1			SW			၁	Y*/N	2	-	-	-	-		4				
8 SW		7.	SW		3:45	ŋ	Y*/N	2	7	-	-		_		-	3 7.44	3.	0.43
9 SW 3; L, G Y*N 2 1 1 1 1 14, q 125, 6, 8, 8, 33, 6, 10 SW 1:50 G Y*N 2 1 1 1 1 1 1, + q 13, 6, 17, 648 (0. 1.50 SW 1.50 G Y*N 2 1 1 1 1 1 1, + q 1, 1 1, + q 1, 1 1, 1		80	SW	-		ပ	Y*/N	2	-	-	-		_	7	-	9	ē.	
10 SW 1:50 G 1" 1 1 1 1,3 103.6 1" 648 10. Date / Time		6	SW		3:12	Ø	Y*/N	2	-	-	-	-	0	2	-	-	w	56
11 13 14 17 17 18 18 18 18 18 18		10	SW		1:50	g	Y*/N	2	1	1	-	1 11	-	9	849	10.4	1.9	146
Date / Time Received By: Date / Time Temp. Upon Receipt (C): せんのMeasured By: 3/17 17 10 大の 大の 大の 大の 大の 大の 大の 大の 大の 大の 大の 大の 大の		11	SW	\ <u></u>	2:30	ပ	N/*Y	2	-	-	-		+			€. 80 €. 90	ードー	jost.
Date / Time Temp. Upon Receipt (C): 4.し Measured By: Date / Time Temp. Upon Receipt (C): 4.し Measured By: 3/17/17 4:30 Containers Properly Preserved: (Yes / No) 3/17/17 10 Stills Intact: (Yes / No)		QQ	SW		*****	ပ	N/*≻	2	-	-	-			1	Field N	otebook		
2 17-17 1710 大人 イゾ グラン Containers Properly Preserved: (Yes / No)	Relinquished By:	Date / Time		Receive	d By:			Date /	Time		Temp.	Upon Re	ceipt (C)	4.CM	easured		()	
1717 1710 Sunday Sunday (Yes/No)	Mat Mada	7	7.6	11	1	1	3/	41/4	7		Contai	ners Pro	perly Pre	served: (Yes / No)		(
<i>/</i>	CHACKET.	1171171	CX	any	H		m	7-17	נו		Bottles	Intact:	Yes / No	_		7		
))		×													
Control of the contro			ı	l	١	I		١	I	1		l			١	١	l	l

Client: Third Rock Consultants, LL	011							l	I	ı				I			
Project Name: Cane Run Watershed Based Plan Project #: KY16-004	ershed Based Plan					1	((/				PDF A	cbloyd@thirdrockconsultants.com	Cbloyd@thirdrockconsultants.com	& Invoi	ce To:	
Project Contact (for laboratory): Phone #: 859-977-2000 Collected By: Client	: Cory Bloyd			<u></u>	H.S.	SON SU	SESTINATION OF THE SESTIMATION O	SAN	\mathbf{X}_{∞}^{L}			Ē	rd Rock 2526 I	Cory Broyd Third Rock Consultants, LLC 2526 Regency Road Suite 180	/d Itants, I / Road /	OT.	
Methodology Required: 40CFR Part 136	R Part 136				0	<u>Σ</u>	♠ MICROBAC	3AC	2				Lexing 859	Lexington, KY 40503 859-977-2000	40503 300		
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	es No			Preservation Type	Preservation Type	SA Sizor	pe ST	track law	Field Remarks:	isi				
Comments:			Preserv	Preservative Code	ø	6 K	32oz P 50	50 mL	Sec P 802	2 40Z		We	Weather Event:		, Dry	Wet	
			SA-I	SA - H2SO4		-	Requested Lab Analysis	sted La	ab An	alysis	Sept de Sept	100	-Site/Fi	On-Site/Field Measurements	sureme	ints 4.4	
NOTE: Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,	2, NO3, CBOD5.			1 - Ice (All)						/ na lau	(¬/ճա	%		əc			
OP and PT RL of 0.05. **** Assume duplicate sampled at earliest time for hold purposes.	led at earliest time						CBOD5, TSS	VO2, NO3	PT, TKN, NH	P°(* Field F	ved Oxygen (ved Oxygen (' ion)	(±N	c Conductano (m)	rature (° ^c)	(UTU) vi	(sis
Laboratory #	Sample I.D.	Matrix	Collection Date	Collection Time	Grab / Comp	Filtd	**	of Containers Per Analysis	ners.F	ē	lossiQ	rlossiQ Saturat	S) Hq	Specifi Nodmu)	Tempe	ibidınT	Flow (c
	1	SW	た)を2-1	10:50	5	\ *\N	2	-	<u>_</u>	-	1.52	111.5	7.84	Z SOLH	20.15	4.2	5.42
	2	NS	4 23-12	11:55	ဗ	_*\	2	1	1	1 1	12.85	197.8	7.75	524.9	Po.65	2.5	3.04
	က	SW L	H-27-17	(1:45	Ŋ	Y*/N	2	1	1	-	10.4	113.0	135	3859	74	3.1	1
	4	SW	4-23-14	12:30	ပ	٧*/N	2	-	1	-		1335	7.94	3685	18,44	3.5	1
	5	SW	4-53-4	12:50	ပ	X Y V	2	-	Ì	-	13.16	1547	8.13	5.815	70.34	2,2	5.31
	9		4-23-14	1:20	O	√*/N	2	-	-	-	12.85	145.9	8 8.10	o ths	11.6	2,3	168
	7	SW			ပ	¥,	2	+	+								
	00	SW			ပ	Z.	2	_	_	-							
	o C	SW			₀	N	7 0	+		-							
	2 7	AAC .			، و	ζ,	7	1									
		MS MS		*****	ڻ ري	Z Z	2 0		- +				900	See Field Notabook	yoode		
\ Relinguished By:	Date / Time		Received By:	By:			Date / Time	ae l	Te	J OE	Temp, Upon Receipt (C):	ot (C):	4.6 Me	Measured Bv:	¥*° :		
Jan Jan	81:1/1:12/6	X	B			4.27.1	۲ ,	1349	l i	ntaine	Containers Properly Preserved: (Yes / No)	ly Prese	rved: (Y	(oN/s		ı	
										ttles Ir	Bottles Intact: (Yes / No)	30 B					
												1	1				

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project A: KY16-004 Project Contact (for laboratory): Cory Bloyd Phone #: 859-977-2000 Collected By: Client - C. 8 4 5 5 6 4 6 6 6 6 6 6 6 6	sed Plan					1000											
Project #: KY16-004 Project Contact (for laboratory): Cory Blc Phone #: 859-977-2000 Collected By: Client - C. 8 4 5						1	((1				PDF An	alytical @thirdr	Report	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com	se To:	
Phone # : 859-977-2000 Collected By: Client - C. β κμ δ , S	pác			F	H	<u>_</u> ۲	R	7	\succeq			Thire	Co J Rock	Cory Bloyd	Cory Bloyd Third Rock Consultants, LLC	C	
	Kylenc			-	-	ONS)z	_ S_⊢				2526 Regency Road Suite 180	Regency Suite 180	Road		
Methodology Required: 40CFR Part 136					8	WICROBAC	ROE	3AC	,			-	Lexington, KY 40503 859-977-2000	ington, KY 40:859-977-2000	40503		
							* Pre	servat	* Preservation Type) e	Field R	Field Remarks;	1				
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	es_No			,	S	SA	ST							
						翻	Cont	ainer S	Container Size/Type	oe.							
Comments:			* Preserv	* Preservative Code	9	32	32oz P 50	50 mL 32o	32oz P Boz	40Z		Weat	Weather Event:		Dry	Wet	
			SA -	SA - H2SO4		1	Requested Lab Analysis	sted La	ab Ana	Vsis		On-S	Site/Fie	Id Mea	On-Site/Field Measurements	nts	是 图
NOTE:			ST - N ol - l	ST - Na2S2O3 I - Ice (AII)						202	New States	5		0		2	NO.
Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,	BOD5.										(⁊/6w	%		90			
OP and PT RL of 0.05. **** Assume duplicate sampled at earliest time for hold purposes.	liest time						CBODE, TSS	MO2, NO3	РТ, ТКИ, ИН Р ⁰ (* Field F	E-Coli) nəgyxO bə	on) ou)	(·n	c Conductan (m:	rafure (° ^C)	(,U,T,N) \t	(s):
			Collection	Collection	Grab /	Filled	#	Contaí	of Containers Per	er Gr	vloss	vloss :urati	.S) I	itioə olodr	ədw	ibidı	o) Mo
Laboratory # Sam	Sample I.D.	Matrix *	Date	Time	Сошр	N/A		Analysis	sis		Βİα		Hq		эΤ	υT	이크
	_	SW			ပ	Y*/N	7		7	+							
	2	SW			ŋ	ν*/N	4		7	-							
	3	SW			9	-\ N/*Y	4	1	1	1							
	4	SW			9	۲*/N	4		1	1							
	5	SW			ပ	7 N/*Y	7	1	T	1							
	9	SW			ŋ	√*/N ^	4	1	F	Î							
	7	SW	4-23-17	:320	ŋ	×,√	2	_	-	-	15:11	192.7	8.41	365	22.52	6.0	100>
	80	SW	4-27-17	1230	ပ	Y*/N	2	-	-	-	6.80	73.9	7-21	553	20.13	1.1	1
	o	SW	4-17-17	1145	ပ	*\ \	2	-	-	-	9.66	1.011	8.38	250	19.62	3,5	81.
	10	SW	4-27.17	1035	O	×*/N	2	-	-	-	8.01	873	7.57	57.5	1725	V	10.0
	11	SW	4-22-17	1100	9	N/*Y	2	+	1	1	\Z\\ \&	6'88	7.61	711	(2.23	0	50.0
	DD	SW	4-27-17		9	√*/N	2	1	1 1	1		1	- See F	See Field Notebook	ebook -		
Relinquished By: Date	Date / Time	7	Received By:	d By:	中温	- 最初時	Date / Ti	Time	Ter	np. Upo	n Recei	Temp. Upon Receipt (C): (C. L. Measured By:	U Meas	sured By	J#R	١,	
151/h - 1/5x	CIPI +1/	To The	OHE			4-27-1	17	14,	410 Co	ntainer	Proper	Containers Properly Preserved: (Yes / No)	ved: (Yes	s / No)			
		,							Bo Bo	tles Int	Bottles Intact: (Yes / No)	(ON /					
									T								
									1						Mary Company	-Charleson -	HIPPOTOGOGO

4							. 1)	
Client: Third Rock Consultants, LLC	nts, LLC					1	((PDF Analytical Report & Invoice To:
Project Name: Cane Kun Watershed Based Plan Project #: KY16-004	/atershed Based Plan					1	((cbloyd@thirdrockconsultants.com
Project Contact (for laboratory): Cory Bloyd	ry): Cory Bloyd				LID	7	ROCK	Third Rock Consultants, LLC
Phone #: 859-977-2000 Collected By Client - 7.	C. Klas				1) NO	NSULTANTS	2526 Regency Road
÷	ER Dart 136				(-)	0 3	O KEOROEKU	Lexington, KY 40503
					ÿ			859-977-2000
Turnaround Time Required: 7 Working Days	7 Working Days	EDD Reg	Required: X Yes	(es No		-1	* Preservation Type	Field Remarks:
				ı		1	Container Size/Type	
Comments:			* Preser	* Preservative Code	e		402 P	Weather Event:
NOTE:			ST - N 9! - I	ST - Na2S2O3 I - Ice (All)			Requested Lab Analysis	sis On-Site/Field:Measurements
***** Assume duplicate sampled at earliest time for hold purposes.	npled at earliest time						E-Coli	(s _j
Laboratory #	Sample I.D.	Matrix *	Collection	Collection	Grab / Comp	Fitte	# of Containers Per Analysis	Flow (c
	1	SW	5-7-13	103B	Ø	N *≻	-	58,91
	2	SW	5-2-17	11.15	ဟ	×,×	€	14,09
	က	SW	4-4-17	1100	Ø	×,×	-	0,05
	4	SW	5-2-47	1155	O	√*/N	1	70,01
	5	SW	5-2-17	1300	O	√*/N	1	9.54
	9	SW	5-2-17	1225	Ŋ	\ \ \ \ \	1	9,78
	7	A.O			9	X**N	1	
	89	AAG			9	N/*/	-	
	0	SW			U	X*/N	+	
	10-10	SW			ø	24/	+	
	1	SW			5	N/A	-	
	da	AMS		****	•	**		Jondald Bell Both
Relinquished By:	Date / Time		Received By:	d By:			Date / Time Temp	Temp. Upon Receipt (C): 7.3 ** Measured By:
2,0,	S181/ L175					5/2	11761 1313	Containers Properly Preserved: ((es) No) Bottles Intact: (Yes) (No)
999								:

· · · · · · · · · · · · · · · · · · ·									
Client: Inira Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan	nts, LLC atershed Based Plan					1,	((PDF Analytical Report & Invoice To:
Project #: KY16-004	Con. D	M		-	þ	1	7000		Cory Bloyd
Project Corriact (for laboratory): Phone # 859-977-2000 Collected By: Client	ry): cory bioyd			antos:		ns No	ACK SULTANTS		Third Rock Consultants, LLC 2526 Regency Road Suite 180
Methodology Required: 40C	40CFR Part 136						⟨		Lexington, KY 40503 859-977-2000
Tumaround Time Required: 7 Working Days	7 Working Days	EDD Requ	Required: X Yes	es No			* Preservation Type	Fype	Field Remarks:
							Container Size/Type	Type	
Comments:			* Preservative Code	ative Cod	Φ		402 P		Weather Event:DryWet
NOTE:			ST - N 01 - I	ST - Na2S2O3 1 - Ice (All)			Requested Lab Analysis	nalysis	On-Site/Field Measurements
***** Assume duplicate sampled at earliest time for hold purposes.	npled at earliest time						E-Coli		(s):
Laboratory #	Sample I.D.	Matrix ⁴	Collection Date	Collection Time	Grab / Comp	- Filtd	# of Containers Per Analysis	. Per	Plow (c
	-	SW			9	N/*Y	1		
	2	SW			ტ	N/*Y	-		
	က	SW			ß	Y*/N	-		
	4	SW			ပ	\ \ \ \ \ \	-		
	co.	SW			ပ	√*/N	-		
	9	SW				√*/N	-		
	7	SW	2-2-14		7	N. *≻	~		0.656
	ω	SW	レーマーン	~ -		Z X	-		NA
	o (SW		11.10	Ø	×,×	+		2.585
	10	SW	5.2-17		ပ	√*N	1		5.61
	77	SW	5.2-17	0830	O	Z,	-		5.61 1.724
	OO .	SW	2-2-27	****	ပ	N.	-		- See Field Notebook -
S١	Date / Time		Received By:	By:			Date / Time	Temp. Upo	Temp. Upon Receipt (C): 44 Measured By:
Mrs Mouth	5-2-17 109	200	Boa	the		5.3	3-17 1309	Containers	Containers Properly Preserved: (Yes / No)
								Bottles Int	Bottles Intact: (Yes / No)

Client: Third Rock Consultants, LLC																	
Project Name: Cane Run Water Project #: KY16-004 Project Contact (for laboratory): Phone #: 859-977.2000	ock Consultants, LLC Cane Run Watershed Based Plan 16-004 t (for laboratory): Cory Bloyd			F	早	A	(\mathbb{Z})	/ 0	<u> </u>			PDF A	nalytica 1@third C rd Rock	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com Cory Bloyd Third Rock Consultants, LLC	t & Invo	ts.com	
Collected By: Client -						ONSO	SUL	N A	S				2526	2526 Regency Road Suite 180	y Road 0		
Methodology Required: 40CFR Part 136	R Part 136				0	Σ O	(A) MICROBAC	3 A C	-				Lexing 859	Lexington, KY 40503 859-977-2000	40503 40503 000		
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Y	X Yes _ No		383	* Pre	serva	Preservation Type	. ST	man I am	Field Remarks					
Comments:		445	* Preservative Code	ative Cor	je	9	32oz P 50	50 mL 32	32oz P 8c	80z 40z		Weš	Weather Event:		D _O	Wet	
- EL			SA - ST - N	SA - H2SO4 T - Na2S2O3		2000	Requested Lab Analysis	sted L	ab An	alysis	100	O	Site/Fi	On-Site/Field Measurements	sureme	ents	April 3
Report to MDLs for NH3, NO2, NO3, CBOD5. TSS RL of 1.5,	12, NO3, CBOD5.		1	I - Ice (AII)						(naiaiii	(7/6ս	%		90			
OP and PT RL of 0.05. ***** Assume duplicate sampled at earliest time for hold purposes.	oled at earliest time						CBOD5, TSS	NOS, NO3	PT, TKN, NH	P ^O (* Field F	ed Oxygen (i	ed Oxygen (' on)	(.U	Conductance)	rature (° ^c)	(.U.T. <i>N</i>) _V	(sì
Laboratory #	Sample I.D.	Matrix	Collection	Collection	Grab / Comp	Pilk	jo#	Container	U)	Je.	vlossi□	vlossiQ Saturati	S) Hđ	Specific	Тетре	libid¹u⊤	Flow (c
		SW	£1/h/s	Sh. 9	ŋ	N/*≻	2	-	_	-	6/16	208	234	4713	11,92	10.6	2000
	2	SW	11/4/5	8:15	ŋ	√*/N	2	-	_	-	82.6	2.75	7.88	5.00		5.9	ax
	က	SW	2/4/17	8:10	9	Y*/N	2	-	-	1 1	67.7	6.57	7.69	3990	14.88	0,1	1
	4	SW	2/11/12	6:30	ပ	*\ *\	2	-	-	-	94.0	9.0	7.48	3605	15.51	0.0	1
	2	SW	5/4/17	4:1	O	√*⁄N	2	-	-	1	71.5	(89)	7.6	5/6,1	15,04	1.5	4.6
	9 1	SW	5/4/17	1:15	O	×,′N	2	-	-	-	4	6,93	75E	88.5	113)	8	5.65
	, 8	SW			o c	Z	7 0	- ,									4
	o.	MS			0	*	1 0		+	+							
	10	SW			0	₹ * *	1 2									4	
	11	SW			ŋ	×,×	2	-	-	-						Ĭ	
	QQ		5/4/7	*****	ပ	×*N	2	1	-	-			- See	See Field Notebook	tebook -		
Relinquished By:	Date / Time	100	Received By:	i By:	50.10	7	Date / Time	ime	Te	mp. Up	Temp. Upon Receipt (C):	ot (C): (\	Measured By	1	2	
25.20	2-4-19/6/8/m					2.4	17 .	6:50	3	infaine ittles ir	Containers Properly Preserved: (1997) No) Bottles Intack (1985 / No)	ly Prese	rved: (K	(oN /S			
											İ						
Original COC Tallaborate (Assessment Co.	一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一					I		١	١	I		١				ı	I

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004 Project Contact (for laboratory): Cory Bloyd)-					1			l	l		١		١			
Project Name: Cane Run Watersh Project #: KY16-004 Project Contact (for laboratory): Compone #: 850 077 2000	Daniel Daniel					-		/				PDF A	nalytica	Report	& Invo	PDF Analytical Report & Invoice To:	
atory):	led based Plan					1	(1				cblove	(@third	cbloyd@thirdrockconsultants com	Sulfant	S Com	
atory):				1		1	(1							Cory Blowd	7		
Phone # - 850 077 2000	Cory Bloyd					5	2	5	\			Ë	d Rock	Third Rock Consultants 11 C.	tants	٠	
1 HOLD II . 000-01 1-2000					=)	1)	_				2526 F	2526 Recency Boad	Road .	i)	
Collected By: Client -					_	2	2 0 5	Z Z	S				- 0)	Suite 180			
Methodology Required: 40CFR Part 136	art 136				0	$\frac{\Sigma}{\Omega}$	(MICROBAC	3AC					Lexingt 859	Lexington, KY 40503 859-977-2000	40503		
						255	* Pre	Servat	* Preservation Tyne	90	Field F	Field Remarks:	1				
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	es_No			-	0	SA	ST			;				
							Cont	ainer S	Container Size/Type	- be							
Comments:			Preserv	* Preservative Code	ē	33	32oz P 50	50 mL 32oz P	z P 80z	40Z		Wea	Weather Event:		Dry	Wet	
			- SA -	SA - H2SO4			Regisered 1 ab Analysis	tod I	A And	liveire	MANAGE	č	Cito/Ei	old Mag			
NOTE:			ST - N	ST - Na2S203		81	- Andrew	- פובת	20.718	lysis -		5	SITE/FIE	On-Site/ Field Measurements	sureme	ints	
Report to MDLs for NH3, NO2, NO3, CBOD5.	03, свор5.		<u>-</u>	I - Ice (All)						_	(7/6						
OP and PT RL of 0.05.							SS	CHI			նա) ւ	%) ر		əout			
***** Assume duplicate sampled at earliest time for hold purposes.	at earliest time						2BOD5, TS	VOS, NO3	PT, TKN, N	E-Coli	ed Oxyger	ed Oxygen on)	(·n	: Conducta (m:	(^{o o}) enuter	(-U-T.N) <u>v</u>	(si
aboratory#	Somely I D		Collection	Callection	Grab /	Filted	325	Contai	· ·	75-28	vlossi	vlossi sturati	.S) H	olioəq oloqu	ədwə	hibidīu	o) wo
	Campie I.D.	Manck	Date	ıme		1	-	Huai	SIS		a	es a	ď		1	Т	H
		SW			Ø	N/×	2	_	7	-							
	2	SW			ŋ	√*/N	2	_	1	1			1				
	က	SW			ပ	۲*/N	2	-	1	-							
	4	SW			ပ	۲*/N	2	-	1 1	-		Ň					
	c2	SW			ဟ	۲*/N	2	1	1	1							
	9	SW			O	۲*/N	2	1	1	1							
	7	SW	5-47	7,00%	Ŋ	√*/N	2	1	1	-	10.3	167.4	7.3	424	15.2	3.0	0.37
	80	SW	いまし	OBY IN	ဟ	×,√	2	-	1	-	1.5	24.5	20	945	16.0	0.51	W/A
	თ	SW	5-4-7	7.400	0	√*/N	2	+	1	+	4.6	49.9	7.5	294	17.1	4.	1.88
	10	SW	547	8.36	ഗ	Y*/N	2	1	1 1	-	8.0	458	76	L94	15.2	370	3.80
	11	SW	441	8750m	တ	×*/N	2	-	-	-	7.1	75.7	70	172	15.9	3.4	15.0
	QQ	SW		*****	Ø	*\ *\	2	-	-	-			- See	Field Notebook	ebook -		
Relinquished By:	Date / Time	-07-10 P	Received By:	d By:			Date / Time	me	Ter	ρ. Upo	Temp. Upon Receipt (C):	pt (C):6	J'EME	/ Measured By	uto		
5 8020	·05:6/L1-5-5	The same	11/1		i	5.4	11	9:50		ıtainer	Containers Properly Preserved: (Nes / No)	y Prese	Wed.	(oN/s			
									T M	tles Inf	Bottles Intact: (Yes / No)	(ON/					
			ŀ)						
The state of the s													١			ı	

Client: Third Rock Consultants, LLC Project Name: Cane Run Watershed Based Plan Project #: KY16-004 Project Contact (for laboratory): Cory Bloyd Phone #: 859-977-2000 Collected By: Client - C.	ed Plan					1	(PDF Analytical Report & Invoice To:
oject Contact (for laboratory): Cory Bloy oject Contact (for laboratory): Cory Bloy one #: 859-977-2000 Illected By: Client - C.Bloy of ethodology Required: 40CFR Part 136						1	((cbloyd@thirdrockconsultants.com
ethodology Required: 40CFR Part 136	p			Ė	HIN	SON SU	ROCK		Cory Bloyd Third Rock Consultants, LLC 2526 Regency Road Strifts 180
					0	Σ	♠ MICROBAC		Same 155 Lexington, KY 40503 859-977-2000
Turnaround Time Required: 7 Working Days		EDD Requ	Required: X Yes	es _ No			* Preservation Type ST ST Container Size/Type	Туре	Field Remarks:
Comments;			Preserv	* Preservative Code	<u>0</u>		40z P		Weather Event: DryWet
NOTE:			ST - N DI - I	ST - Na2S2O3 I - Ice (All)		(100)	Requested Lab Analysis	Analysis	On-Site/Field Measurements
***** Assume duplicate sampled at earliest time for hold purposes.	est time						E-Coli		(aì
Laboratory # Sample I.D.	le í.D.	Matrix *	Collection Date	Collection	Grab / Comp	Filtd	# of Containers Per Analysis	s Per	b) wol국
		SW	59-17	1350	ပ	N/*≻	_		2,02
2	2	SW	14 1 13	1310	ტ	√*/N	-		%.5%
n	m	SW		(335	B	√*/N	1		70.01
4	_	SW		1345	ပ	*/N	-		90.0
S	10	SW		1200	ပ	N, *≻	-		17.5
9	0 2	NS N	-	1195	o	Z	-		4.78
- α		A MS	-	2001	י פ	N *>	- -		0.19
6	6	SW		1625	0	. × *≻	-		1.25
10	0	SW		0830	9	√*/N	_		0.67
	_	SW	_	0955	ŋ	√*/N	1		رم. م م. ح
OQ DD	D	SW	1 10	*****	g	N/*Y	-		- See Field Notebook -
Relinquished By: Date / Time	/ Time	SECTION.	Received By:	J.By:	THE PERSON NAMED IN	25.72	Date / Time	Тетр. Про	Temp. Upon Receipt (C): 2, C Measured By; ゴガム と) こ
11.6.5	71500	1	20	10		59-1	W21 C	Containers	Containers Properly Preserved: (Yes / No)
								Bottles Int.	Bottles Intact: (Yes / No)

st time EDD Mate I.D. Mate S.S.	Required: X Yes _ No * Preservative Code ST - Na2S203 1- Ice (All)	No No Code	HIRDA CONSU OMICR	IRDROCK CONSULTANTS	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com Cory Bloyd Third Rock Consultants 11 C
#: KY16-004 Contact (for laboratory): Cory Bloyd #: 859-977-2000 ad By: Client - lology Required: 40CFR Part 136 bund Time Required: 7 Working Days EDD ants: Camporatory # Sample I.D. Material Street	equired: X Yes	No Code	M W W	ROCK SULTANTS CROBAC	PDF Analytical Report & Invoice To: cbloyd@thirdrockconsultants.com Cory Bloyd Third Rock Consultante 11 C
#: KY16-004 Contact (for laboratory): Cory Bloyd #: 859-977-2000 ad By: Client lology Required: 40CFR Part 136 bund Time Required: 7 Working Days EDD ants: d purposes. Laboratory # Sample I.D. Mat 1 SV 2 SS 2 SS Contact (for laboratory # Sample I.D. Mat 1 SV 2 SS A SS A SAMPLE I.D. Mat A SAMPLE I.D.	equired: X Yes	T No No No No No No No No No No No No No	M CONTRACTOR	ROCK SULTANTS SROBAC	Cory Bloyd Third Bock Consultants 11 C
Contact (for laboratory): Cory Bloyd #: 859-977-2000 ad By: Client - lology Required: 40CFR Part 136 bund Time Required: 7 Working Days EDD ants: d purposes. Laboratory # Sample I.D. Mat 1 SV 2 SN	equired: X Yes	No Code	M M M M M M M M M M M M M M M M M M M	SULTANTS SROBAC	Third Rock Consultants
ad By: Client - lology Required: 40CFR Part 136 bund Time Required: 7 Working Days EDD sound Time Required: 7 Working Days EDD april: E	equired: X Yes	No Code	CON	SULTANTS	וווים ויספר ספוומוווים, רבכ
ology Required: 40CFR Part 136 ound Time Required: 7 Working Days EDD snts: d purposes. Laboratory # Sample I.D. Mate SN	equired: X Yes	No Code	MIM (2)	CROBAC:	2526 Regency Road Suite 180
sume duplicate sampled at earliest time d purposes. Laboratory # Sample I.D. Mater St. St. St. St. St. St. St. St. St. St.	equired: X Yes	s _ No Ne Code (All)	1	* Preservation T	Lexington, KY 40503 859-977-2000
sume duplicate sampled at earliest time d purposes. Laboratory # Sample I.D.	* Preservat ST - Na2	ive Code (All)	, = ,	ST	pe Field Remarks:
sume duplicate sampled at earliest time d purposes. Laboratory # Sample I.D.	* Preservat	ive Code S203 (All)	, # , #	Container Size/Type	ed
d purposes. Laboratory # Sample I.D.	ST - Na2 - Ice (S2O3 (All)		402 P	Weather Event:DryWet
cate sampled at earliest time . Sample I.D. 1				Requested Lab Analysis	alysis On-Site/Field Measurements
Sample I.D.				E-Coli	(s _j
	Collection	Collection Grab / Time	b/ Filtd p Y/N	# of Containers Per Analysis	Per Flow (c
	1/1/01/5	345 6	Z * * F	1	14.2
	1 /	330 G		7	6.01
3 SW	7	300 G	Z		1001
		305 G	Z.	-	10,01
	,	1245 G	Z.	-	6.6
and the same of th		(215 G		-	2,5
MS 8		28.11	Z Z		14+
			*	-	1.83
10 sw	/	9000	>	1	64,
11 SW	/	999 C	X Y	1	1,25
ws QQ	11	9 ******	NA.	1	- See Field Notebook -
Relinquished By: Date / Time	7 Received By:	3y:		Date / Time Te	Temp. Upon Receipt (C): 2, 9 Measured By: 111 /2
18 10 17 18 10 Ja	Luck		510.17	15 10	Containers Properly Preserved: (Yes / No)
				BC	Bottles Intact: (Yes / No)
					(24) 224
Original COC To Laboratory (Accompany Samples & Bench	COC Com TBC Brains	Decision Ella	200	The state of the s	

Project Name: Cane Run Watershed Based Plan	S, LLC					1	(
	tershed Based Plan			_		1			PDF Analytical Report & Invoice To:
Project #: KY16-004		K	1			-			cbloyd@thirdrockconsultants.com
Project Contact (for laboratory): Cory Bloyd): Cory Bloyd	И		 	노	TRI	ROCK		Cory Bloyd Third Rock Consultants, LLC
Collected By: Client - C.1	C. Bland					CON	ONSULTANTS	ø	2526 Regency Road
Methodology Required: 40CFR Part 136	R Part 136				0	M	(MICROBAC		Suite 180 Lexington, KY 40503 859-977-2000
Turnaround Time Required: 7 Working Days		EDD Required: X Yes	uired: X	Yes _ No	0		* Preservation Type ST	n Type	Field Remarks:
Comments.			* Preser	* Preservative Code	e		Container Size/Lype 4oz P	e/Type	Weather Event:DryWet
NOTE:			ST-1	ST - Na2S2O3 I - Ice (Ali)			Requested Lab Analysis	Analysis	On-Site/Field Measurements
***** Assume duplicate sampled at earliest time for hold purposes.	oled at earliest time						E-C0!!		(5)
Laboratory #	Sample I.D.	Matrix."	Collection Date	Collection	Grab / Comp	Para	# of Containers Per Analysis	rs Per	o) wol <u>-</u>
		SW	5-18-17	0551	ပ	N*Y	_		8978
	2	SW	7. 4.	1415	ტ	√*/N	-		6.03
	က	SW		1500	ပ	Y*/N	-		70,01
	4	SW		1350	ပ	۲ ۲*	-		(0.07
	Ω (2)	SW		1330	O	×,×	-		3,33
	9 1	SW		1305	ပ	N/ *≻	-		3,34
	, 0	SW		22.55	Ð	₹	-		0.67
	0 0	MS C		1220	o ·	<u>N</u> , ≻	-		
	D C	ANO O	-	1038	တ (Z ;	-		0, 56
	7 7	AAC C		1050	9	Z.	-		0,/3
	= 6	WS O	- 1	00//	υ (N *>	-		
Relinquished By:	Date / Time		Received Rv-	d Bv	פ	-	Date / Time		- See Field Notebook -
(Jo 18)	5-18-17/1545		an	D		5/4	5 151 6/19	Containers	Containers Properly Preserved: (A.S.)
								Bottles Inta	Bottles Intact: (Yes/ No)

Client: I hird Rock Consultants, LL Project Name: Cane Run Watersh	ock Consultants, LLC Cane Run Watershed Based Plan					1	((PDF Analytical Report & Invoice To: cblovd@thirdrockconsultants com
Project #: KY16-004				H		1	(Cory Bloyd
Project Contact (for laboratory): Cory Bloyd	Cory Bloyd					5	KOCK		Third Rock Consultants, LLC
Phone #: 859-977-2000			Ž I	-	1		SHAN HINNE		2526 Regency Road
Collected By: Client -						2	0 L A 0		Suite 180
Methodology Required: 40CFR Part 136	Part 136				0	ω	♠ MICROBAC		Lexington, KY 40503 859-977-2000
Turnaround Time Required: 7 Working Days		FDD Requi	Required: X Yes	o Z			* Preservation Type	層	Field Remarks:
			- (1 ;				Container Size/Type	Type	
Comments:			Preserv	* Preservative Code	0	12	40z P		Weather Event: Dry Wet
			ŀ				Requested Lab Analysis	nalvsis	On-Site/Field Measurements
NOTE:			ST - N 01-1	ST - Na2S2O3 1 - Ice (All)					
**** Assume duplicate sampled at earliest time for hold purposes.	ed at earliest time						E-Coli		(st
Laboratory#	Sample I.D.	Matrix.	Collection	Collection	Grab / Comp	Y Elif	# of Containers Per Analysis	Per	o) wol
	1	SW	17/5	1015	9	√*/N	-		26.5
	2	SW	. 1,	10495	ຶດ	*\N	+		5.10
	က	SW		1040	g	√*/N	1		20.01
	4	SW		1120	Ö	Y*/N	1		<2001
	2	SW		1130	O	√*/N	-		2.03
	9	SW		1130	ß	√*/N	-		0.85
	7	SW		1215	ပ	٧*/N	-		<0.0/
	8	SW	-	950	ပ	√*/N	-		1
	თ	SW		(245	O	\	1		4.29
	10	SW		1345	ပ	√*/N	-		US6.5
	11	SW		1315	ŋ	N/*Y	٠		5,24
	QQ	SW	~	****	9	√*/N	1		- See Field Notebook -
Relinquished By	Date (Time	1/1	Received By:	1 By:	1975	\$5000E	Date / Time	remp. Upon	Temp. Upon Receipt (C):2-5 CMeasured By: 100
Media	ECHI + 1/25/5		10	1		slau	50/11/2/11/03	Containers P Sottles Intact	Containers Properly Preserved: (必多人No) Bottles Intact: (Y码, / No)
					F				D
8			I	I			THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COL		

CALIBRATION LOG

Replacement MS 5 w/ turb Serial #: 151200066822

	Notes	Were soude - Cathoroped at 1 total	J TRII-7.5	7-181-7	1 184.7.0	The Court of the text	And to the same																			
Turbidity (NTU)	2nd pt Ceilbreston Standard		100/1001	(12/00)		DO 1011	100	7																		
Turbidit	1st Pt Calbration Standard	6.5	0.5/3.1)	0.5 (50)	(12/90)	12/1/20	1000																			
Conductivity (uS/cm)	Conductivity	SPI	105		18	181																				
Conduc	Conductivity Calibration Standard	1.65	(234) 235	(85)45	407/475	05×100																				
	pH Standard Check	613	9.8'5	3,99	2.7	3.88																				
	pH 10 Lot #	A5197	11111	AGN 39	Decodo V	11																				
	pH 10 Reading	10.00	(01. N. Cara)			7.40 el/ach																				
	pH7.Lot#	611351			10101																					
(NS) Hd	PH 7 Reading	7,90	7.00 6.90	7.00 (6.96)	1000	7.0 G.R.																				
	pH4 Lors	1	9.00 (3.35) 144119	1	1	1																				
	pH 4 Reading		4.00 (33			1																				
	mg/L. After Calibration		9.03	70.00	2.1.2	8,30																				
CDO	mg/L. Before Calibration	1	4.29	200	5:30	8,26																				
	gp (mmHg)		793	730	130	739																				
	tottlate		95	- 1	6 60	S CB	>		1						-											
	Date	18-16	71-51-7	2.3-16																						

CALIBRATION LOG

Notes Soude - Galdersped at Here Losel Chorge of war it 1 SWITH FLORDER WITH 6.5 (1.5) (0.5 (0.0) (00/10) 1. 7.5 (0.0) (120/10) 1. 7.5 (1.37 (10) (10) 1. Turbidity (NTU) tat Pt Calibration Standard Conductivity Conductivity (uS/cm) 447 SP1 Conductivity Calibration Standard ph Standard Check A5197 pH 10 Lot# 10.00 Per 10 Reading 61119 ph 7 Lots 4.00 (3.05) 144119 TADE 90) #5197 700 (6.70) 70(5.3) 70 (6.89) 700 (70) pH (SU) PH 7 Reading 7.00 PH4 Lot# 151200066822 Pheding Calibration Replacement MS 5 w/ turb Serial #: 9.03 mg/L Before Calibration 100 7.78 SP (mm/Hg) 736 723 Meter Name: 18-16 Date

Serial #: New MS5 Unit Serial # 110800062023

New MS 5

	Notes		TRITION - CHOMOND SUNFOUT NOW OF TOF CALIF	N	TALINO Liboral Sugar	12811-71	7811-75	TK11-7.9	JEV-7.0 APLIAN MUKO	J. 1.11 G	- 1	April 12 hours house 3	ID													
y (NTU)	2nd pa Calabration Simpland			1		Ţ			11		1	1														
Turbidity (NTU)	Calipration Strodard											1														
Conductivity (uS/cm)	Conductivity Lot #	RU1	Su!	57.7	100	ST.	7	25	100		57	100	7,01	* * * *												
Conductiv	Seminativity Calibration Standard	47 (6/2)	-				447	7 (449)	1678-101		355	158/50	(125)	1155												
	pH Standard Check	15.				4.04	1		20.7	П	T	10,0	П													
	PHABLOLE	OU!			イルト	-		-		1100117		200	45009	J. 3?												
	PH 10 Reading		10.00 (100)		10 00000	(0.00 /m.ac)	CONTOCION	10.00770001	(6.00 (10.6a)	10:00 10:15	0000000	ATT TO TOTAL	100	10.01 NO.01												
	pH7 Lots	(TO)	15455	163679	ANG X	1141.40	CA LD	200	A 45197	AC197	10156			11 11												
(NS) Hd	pH 7 Beading	100 mr/001	7.00 (6.90	720076.92	7.05 17.13	7.00/74	20000	131	7.00 (27	700/74 AC197	7.00 7.2	17	つかがアル	70 64												
	PH4 Lors				1	1		1		ш	BILES (02'8) 40'5		1	1												
	pH 4 Reading	1	1							4	4.00 (9.2		11	1								1				
	mg/L Atteir Calibration	8.3.8	8.00		8.25	17.0	20.9	1118	0.70	200	8678	2		10.67												
ODI	mg/L Belore Calibration	8.38	8.49			34K	80.8	A ,04	472	9,45	2.76	N 01/2		2712												
	BP (phon)	737	266	3	7.75	285	731	127	736	763	130	120	054	783												
	ininais	S.	11	500	CR	8	CK	VK K	93	20	200	3	77													
-	Ditte	4-10-16	11	1414	4-30-15	(2-7-15)	9.9.15	10-7-15	1-2-16	27-16	9-21-5	BINDENE	7-11-16	71011									J			

Vate 4/22/2011	Initials	Blank	Calibration pt	Note
4/22/2011		0 (2.1)	100 (92.7)	Meter not used for 1+ year but held calibration relatively well
6/6/2011		0 (0.0)	100 (103.7)	There is not used to it is got the interest of
6-13-11		0 (0.0)	100 (101.9)	V
6-20-11	CB	0 (0,0)	ion Fice (4)	1/
7-13-11	CB	10.0)	100 1974	
4-1-11	CB	0 (0.0)	100 (97.2)	V
9-17-11	CB	0 (0,0)	100 Tico	
12-12-11	CB	0 (0.0)	100 100	
2-17-12	CB	0 60,0)	100 (1055)	
2-29-12	az	0.300	100 V	
3-5-12	18	0/	100/	
4-30-12	Ch	0.331	180 (155.6)	V
9-30-13	CB	0.751	100 (95-)	V.
12-13-13	C15	0.15 (0.0)	100	i nos au scionin
4-9-14	SJE	0.00 (00)	100 (100)	
5-14-19	CA	0.35V	100 /	No ordinare costa
9-8-14	US	0-10/	100 (110)	V
1-14-15	CB	0.551	100	V
7-18/16	CB	0.31	100 (9-71)	/ new col solution
		-		
		_		
	7			
		-		

CALIBRATION LOG

151200066822

Replacement MS 5 w/ turb Serial #:

	Notes	NBw soude. Catheroped at their		/ IBU-7.5	1	VI84.7.0	6.6	1/ - 501 the Surveyor with New 1955		V. IBN-755		Contract Contract	The Lord to the Colden	3/	5000	1-7011 25	V TO 1. 2	- 101 - XX	1 IRV T. 8-00 Store of both	1 180	27.1132/	1 30/173	V 361-7.3	1/ 1/811-72	V.T81-7.2		1 28/1 - 7. C - 1054 (ABING) (ABING)	1/ TK1/7.3	1	- Trans	1	V-T8V-T	7 - 7 - 7	アーゼロールアーンローフ							
Turbidity (NTU)	2nd pt Calibration Standard			100/101)	(141)00	100/00/	100/1001	mi	100/00C	100 Pr. 1	1201/1001			100/1001	CAD1		100 7001	1 300	(7:50//00/	1611/201	1 Sec 001	(20) 001	TANK INC.	1201/ 20	100 (75.6)	175	100	Contino	(96)001	CXELL CALL	100-(101)	(101) 101	136/ 08/	(429) 000							
Turbidit	Tst Pt Calibration Standard	6.5	(00)			T.S (6.0)	05/3.11	1511 50	0,510,00	25757	6571357		10100	0 5 601	(94)		20.00	8000	(0.1/2)	000 000	10/50	18	77954	P.STO.7		0 10 10	1000	101/28	25/20	0,5 50	(0) 50	(0/50)	5	350							
Conductivity (uS/cm)	Conductivity Lot #	501	101		1001	181	101	181	701	1.1	1,400			11/2)	1	500	000	(101)	-1 1.	Can	6111	Z (7)	100	11111		11 11 11	6.3		"Cain		13 11	11 11	16.	102							
Conducti	Conductivity Calibration Standard	447	1333	(884) 285	77 80 77	(のとかんかん	7 7440.1	447 795 87	447 (989)	505/1/2	レンシーラ		11.00		(Sall Sall	S - S - S	(カン/イルグ)	47.66	(455) 135	,	LIST	1	LAN CO		277	1	23/		(43) (43)	(628)	50	1	10 1 Per 1	N. N.							
	pH Standard Check		,		1				390	3,37	80.4		-	1100		0	Г		3,79		60.5	4.18		500	240	0.0	10,11	4.13	2				(0,0)	80 h							
	pH 10 Lot#	A5197	144117			Ac099	3	11 11	7	NO THE	4 40		0.00	11 11	1	100	11 /4	HLOGO	11 55	60	26.835	4.5			116235		1	11 11	140385	11 1	11 11	71 11		ALC 35							
	pH 10 Reading	10.00	10.010 (0.70)		165.610.	5	900000	(4001)2011	14.00 (Th.09)	10.00/00.01	15 (GS)		2000	110000	0000	1000/1001	7661001			Direct Hard	200 00:01	C-21 (2-9)	J. Such	10.00 (a. '.)	HOOI OPO	10:00		10,00 10.51	SECH (TOO BOM)	10-00 (0-9)	1000 (000)	10.00 19.97		10 47/435							
	pH 7 Lot#	611641	1	7	N	33	45197		(1)		The Call		25. 35	A1 356		A	2	#6129		£ 3.2	85.60%	¥	1 6 4		117	193		11 11	Ahore	14	1 1	11 11	AC 25 Th	1,86,334							
(NS) Hd	pH 7 Reading	7.00	1.0017.421	T.00 6.90 #519	700 16.96	7007	7.0/6.9	70 16 AC	7.00 (7.01	7,00077	700CK	,	- 20 / 200	CIA PACINA	2000	100 11 007	1.0/6.00	7.00 (7.8%)	1.00/691	は上海に	7.00 7.38	124 - F	1101	7.no 17.14	100 laks	1000		700 1704	7.00(7.0	740 (7.13)	7.80 KH	7.10 76.97	7.00 R.SM	725750							
	pH4 Lot#	1		F1184 (325) 44114							Charles A)((1		1]	1		1		1	DCC1H	1	1	1	1	1		P 85225								
	pH 4 Reading		1.	4.00 (3.2)			l		1	1	4.50 17.74		1	1	1		ì				1				1	4 An 14 17	7,007,531,3		1	1	l	1	1,74 R.Z	-							
	mg/L. After Calibration	1	-	7.03	1000	i c	7 11 5	8.30	3,50	200	25.0		37.3	100	000	05%	0 12	0.57	2.44	8.85	8.65	4117	Sice	200	31. 10	1550	6	2000		8158	8.95	8.11	2.53	5							
100	mg/L Before Calibration	1	1	27.7		XXX	1	1	1	263	0,5X		X	010	C	Jo. K	8,46	2.54	8.52	8.55	27.2	5.00 X	Ser. K	\$,02	2 42	4 40	7227	510		8.33			17	5133							
	gp (mmHg)	736	147	134	1		7	1	1	122	5 50		150	229	747	1741	740	143	735	75/	207	735	328	248	152	7.67	, , ,	1/2/	764	730	727	731	5/5/2	-14-E							
	Initials	B	3	500	120	12/4	-	20	-	7	22	20	CH	+	200	20	B.M.	63	35 %		0.00	68	50	3	200	2 2	00			c8			CE	CO							
	Date	18-16	3-1-18	2-15-16	3-1-16	01-01-0	10-1-10		7-11-16	. `	21-12-16	9	11.00	0-8-1	9-21-1	9-22-16	1-47-K	91-2-01	9707-01	10-35-16	91-2-11	11-75/10	11-20-12	91 51-6		(2-6	2123	2-6-17	LILLE	4-36-17	4-11-11	2-4-17	11-22-17	11-62-9							

New MS5 Unit Serial # 110800062023

Serial #:

New MS 5

	Notes	0%-/年	IRIT-6.9-CHOMPEN SURFIGE NAW O'N PER CALA	181.7.5	7	12	1581-71	VTa1-76		1611-7.0 Apr. L. ml. de.	Long	8	1/2 1/4 (9 - Chanced Co.C.)	nd botherar	II JI	V 7811-7.5	Now refealth.	200 0 000	20-00	7,72	J ISV 7.0	verd and in	Surgeof Reported by Hoch	0, 1-18-17.	1 101 7 101 11									
Turbidity (NTU)	and pt Campration		1	1		1	1	1		1	1		1	1	ı				1			1	1		,									
Turbid	Calibration						1		1		\											1												
Conductivity (uS/cm)	Conductivity Lot #	, Rui		RUI	100	192	CES.	26	572	SPI	105	18	101	LIFE	731	4.4. 4.4	432	5	Chit	2000		4 11	- 1.	-	1000	11 34								
Conduc	Conductivity Calibration Standard	47 857	135/16	22.72B)	2 38 46 Year	407 (988) 5.21	145 N	とのなる	44/1	47 442	647.650		44/173	Contract of the second	1	-	1317	10000	467	よってなど	(154) 153	0.64 1.55	48778	が大利	40	567 1998								
	pH Standard	3.97			3.8			4	107	T	П	6.19	Т	1	П	J	1	200	2.13	01		0	417	4	26.7									
	pel 10 Lot#	OU!	N. OVI	000	1191957	2/4/17	11 Tax 8	1 (44117	14111	144117		140117	W/703	The state of	- 45000	3	111			3 // 11			7	1000	10000	3								
	pH 16 Reading	1000/0001	10.00.12.11	10.00(00.01	-	io solios	-	10.00 (5.10	10000000	-	9009)	10.00 110.15	W. 100.01	17.90 Sen	13 WYG. 10.	10.00 LO.O.	10.00 (100	STACK OF	A. 21 100	100 49.93	1000 (TZ)	18.00 1 18.51	\$0.00 (10.00	100000		10,00119.06								
	pH7.Lot#		Ē	143,679	P163679	7.90 17.13 15 2679	11 11	1436	KYPZ	757	16151 B	TABITAR ACIDAL	45.107	大		1	40147		12 14	Aboa		.	1	200	1	A .								
pH (SU)	pH 7 Reading		7.00 75.30	7.00 (6.90 15.0)	720 (7.3	7.00 (7.13	70007	7.00 (7.10)	7,000	8.678	200 (47	70017	1 LT 1 MM /	STATE	TANY LITTLE	20 64.	2016	7.016037	704 (697	10000	7.00 (7.87	700 (215	7,000,74	7.45 2.17	Sales Car	7.40								
	pH 4 Lot#		(1		1	I		1	(China	1111111	1	1	1					1				G.On 12 ACT AG320									
	pH 4 Reading		1			1	1	1	1)	1		1. 44 16 24 1Chi	7.00 2.4	1	1	1					l		1		G.On 12 A									
	mg L Atter Calibration	8.38		N. Carrie		8.25	1578	y d	K VI	375	0.70	2000	No.			-	-	100	1	8.47	-	_		N.C.	8.55									
007	mg/L Beltice Calibration	9.3%	0000	66.0			25.50	2000		o v	- 3	20,45	+	Н	1	2-10-2	1001	7.5	3012	とさめ		3000		N. N.	3.35									
	BP (min)Hg)	737	12.57	130	744	733	735	135	1/2	73K	736	285	730	1	032	184	7/1/		740	- 739	735	735	14	727	73,1	727								
	initials	_		200					- 1	1 1		7		_	(E)	1	200	-	B	16 111	53	200	2	7 7.6	-	CR			-					
	Dure	4-10-14	9-19-15	1-14-14	3-K-15	4-80-	27.27	0000	10-7-15	12-E	- 0	71257	54-16	שויטכים	7-11-11	1/10/1	0.20-11	21-44-16	4-2-16	01-8-16	11-00-01	100		4.77.77	5-4-17	1-10-0								

Date	Initials	Blank	Calibration pt	Note
4/22/2011	Marine Committee	0 (2.1)	100 (92.7)	Meter not used for 1+ year but held calibration relatively well
6/6/2011	СВ	0 (0.0)	100 (103.7)	
6-13-11	CR	0 (0.0)	100 (101.9)	V
6-25-11	CB	0 (0,0)	100 (705.4)	1/
7-13-11	CB	6 (0.0)	100 974	
8-1-11	CB	0 (0:0)	100 (97,2)	V
941	CB	0 (0.0)	Ino tico	
12-22 -11	CB	0 (0.0)	100 (100)	
2-17-12	UB	0 6.0	100 (105.5)	V
2-29-12	aB,	0.30 V	1001	
3-5-12	13	0	1001	
4-40-12	Ch	0.331/	100 (15-6)	V
9-30-13	CB.	0.75	100 (95-)	
12-13-13	C13	0.45 (20)	1000	V ros ca scientin
4-9-14	STE	0.00 (00)	100 (100)	
5-14-19	CA	0.35V	100 /	No ordinare state
9-8-19	05	0-10/	100 (110)	
1-14-15	CB	0,551/	100/	V
7-18/16	CR	0.3V	100 (4-121)	/ NOW CON solution
8-24-16	CB	0.5 (0.0)	100 (98.7)	\checkmark
9-8-10	BIL	0.5 (60)	100 (95.8)	
10-20-16	CB	0,55	100 (95)	
10-25-10	CB	0.65 V	100/	V
11-3-16	CB	O.40.	100V.	Ve
11-19-15	CB	DATAV	100 110)	1,
13-15-16	05	735V	Krilios)	V
1-9-77	CB	0.50 (1.00)	100 (95)	
1-30-17	12/1	0.001100	100/100)	
2-6-17	CB	0,5 (0.05)	1001	V
2-23-17	BN	0.45 (10)	100 V	
3-17-17	CB	0.5 (0.6)	100 V	
3-21-17	an	0.6 (00)	1001	
3-29-17	CB	0.61	100 (10)	J-new col solution
4-27-17	CB	0.61	100 (95)	
4-28-17	ensil	0.5	100 (100)	V
5-4-17	CB	0,61	100 (107)	
5-8-17	13/	0.5	100 (90)	V
5-9-17	2,1	0.6	100/02)	

Serial #: UNIT-02127 Sonde-trc00517

Quanta

	N	INCO																								
		1	1		7	7																				
ty (uS/cm)	Conductivity Lot #	NWZ		487	242	12457																				
Conductivity (uS/cm)	Conductivity Calibration Standard	(125/24)	(47/92)	すじに	はかんなかん	(シカ/トゲ																				
	Standard Check		3.98		.63		N. 28																			
	pH 10 Lot #	16235	M2285	A6.75	A628	1	1623																			
	pH 10 Reading		166000	TC (8)	10.01994)	14 100	10.01																			
(SU)	pH 7 Lot	46238	Alexan	NE. 225	A6238	1638	1. o.t.							-1												
S) Hd	pH 7 Reading	20645)	(804) 01	707643	7.077.15)	30000	(30L)0'L																			
	pH 4 Lot		300		1	A 10 224	í																			
	pH 4 Reading	40/3.45)		1	*	46(40)																	100			
	BP (mmHg)	735	144	264	73.7	132	737																			
8	Membrane Replaced ?	00	A)s	NO	20	20	INO						1													
	Initials	136	\preceq	_			14																			
	Date	11-62-6	3-17-17	2-21-17	こうい	5-8-17	5-9																			

Meter Name: Quanta Serial #: UNIT-02127 Sonde-trc00517

		`			Come .	N. A. A. A. A. A. A. A. A. A. A. A. A. A.			VINEW DO weekilder	1	1	54	1/1		54		1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	The Court of the C	The course od hout a Host		7		2			,		Checked mentioned	10,1 - 170-K 76 QL	SOCTATION TO THE NO THOSE	A NOW THE WORLD ON THE WAY	\ <u>\</u>	7	1		
Sonductivity Lo	RUI	3	1	RUL			(T)	2	102		70	a		1015	CIN	11 111				101	+ 41	100		80	10)	101	101	1mg					大小の	イシ	1 - 11	100000000000000000000000000000000000000
	7	(0.56) [8	1	77X	. 1	16677		111		7		5 1000 L	1	47.7	1:1	y	2007			47(417)	20.00	1	27.	(1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 /	(441)	10401	쉱	アングルの		Ī	15001	1	11	4471	4/7	0 111 -111
pH Standard Check	26-6	300	1	0	J		377	2 7	T	J	0	1	3 992 6	V KG	-	Y.	2			2	4		\neg	15	5	97	96.	3.97			30.3	4,0%	2005	4.03	\	4/10
PH 10	のなから	517617	יי יי	07000	_	N	200	1 1 10		1	1.	1.	456121	14411-	4/1/5/51	21. 4				411351	144117	1661	0,000	/au/	JF #	15 11	11 //	1			1. 1. U.) A	A6.234	10 00	0.5.0	Ì	11///
10 Reading	Н	_	-	٦.	0		100	(3/18)		-	4.01	199.99	146/41/40	(10,01)	146610	(550) W					00 1003	l l∢	1		1	100	2				100 0 V	6 tents	10.04	11	08'	19.11.0 11.0
	-	_	10110	70-0		.,	Co		_		+	+	-	0.0				1		-	-				-	10)	20	101	-		Т		11 30-0	100	VO.	11/1
Contract of the	35		71/	1 67		3	E S	Se de	_	_		(1,2cm)	7 65 143	1.76			ر ر	1	1	7/6) 1/5	R-17 AS			-	" OGGEX	11 776.91	1, 7.07 //	7.07	1000		F 97 P		0 = 1	1.00	10	11 111 11
	-	1.60	7		7%	173	1.00	1,400	7747	0001	7.6	7.30	7.30	1001	7.00	700		1		1001	703	,	7 40	787	7.0%	10,	7.0	7.0	200		7.00	1	700	200	170	1000
	in.				1	1					1			+		1	1	1	-	1					1	1				S. C.	0	200	ala G	ر. د.:	200	9
pH 4 Readii	1,8						1		ľ	'								1		1	1						1	1		No. Contract	>	1. r Y	8.40 /2	P (1.5 %	8/11/8	
BP (mmHg)	74.3	130	728	720	757	78.3	7.50	170	764	764	SX	733	524	735	734	741	728		736	143	11	3	720	7 XX	765	740	7.00	140			でサイ	1	753	736	250	0110
embrane splaced ?		T	1					194			0//		I			PS	€	,		9	1			10	0	000	5	200		D Hoch	Uo	10	Uo Uo		7	1/1/
	50	H	1,				B		T							+	1			1	1	1	T		7	BIL		7	+						1	17 11
-	1	2-11-10	1	2		+	2	John C	1	1	5/1/1	30-150	2	5-10-15	5	1		-30-15	9	7	1	4-12-16 2-16-16	-	100	0	9	12	01770	+	Sylorifo C	10-5-16 C	30	11-3-11- 0	-	5	0
	PH 4 DH 4 Lot pH 7 Lot Reading Lot Conductivity Conductivity Conductivity Conductivity Lot Ph 10 Reading Lot Conductivity Lot Ph Check Standard Conductivity Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading Lot Ph 20 Reading	Membrane BP pH4 pH4 Lot pH7 pH7 Lot pH7 Lot pH 10 Reading pH 10 Standard C Reading C Check Standard Standard Standard Standard Standard<	Membrane BP pH 4 pH 2 bit 7 Lot pH 7 Lot pH 10 Reading pH 10 Reading pH 10 Reading pH 10 Reading calibration cali	Membrane BP pH 4 Lot pH 7 Lot pH 10 Reading pH	Membrane BP	Membrane BP	Membrane BP	Replaced 7	Standard Standard Conductivity Standard Conductivity Calibration Standard Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibratio	Membrane BP	Replaced 7 (mmHg) Reading # PH 10 Reading Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot # Conductivity Lot #	Membrane BP pH 4 Lot pH 7 pH 10 Standard Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calib	Membrane BP pH 4 Lot pH 7 pH 10 Standard Calibration Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Canductivity Lot # Candu	Membrane BP	Membrane BP pH 4 pH 4 crt pH 7 Lot pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH 10 pH	Newtrans	Membrane BP pH4 Lot pH7 Lot pH7 Lot pH1 to Standard Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibration Calibrat	Membrane BP pH4 pH4 Lot pH7 pH70 Stanfard Conductivity Lot # Reading # PH70 Stanfard Conductivity Lot # Reading # PH70 Stanfard Conductivity Lot # Reading # PH70 Stanfard Conductivity Lot # Reading # PH70 Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfard Conductivity Lot # Stanfar	Membrane BP	Manutation BP	Marritania BP	Membrane BP DH4 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7 DH7	Wearding EP	New Transport Part Part Part Part Part Part Part Conductivity Conductivity Part Conductivity Part Conductivity Part Conductivity Part Conductivity Part Conductivity Part Conductivity Part Conductivity Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Par	B	Ph	Ph	Mambrane EP	Phi	Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence Performence	Nembrane EP	Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part Part	Maintonne BP	### Part of the Lot part of the Lot part of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of the Lot of	Philodology Controlled Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology Philodology P	Maintaine BP

K4 16-004

35 Statement of the sta	5.45 132S 132S 132S 132S	\$C = 596.4 120 15.6/103.4 120 0 120 1.43	5,4 9 15233 Cor, 01 observed Not	Sp(=38).2 PD0 = 5.4 T=271 T=271	Rite in the Pain.
CR 3- Dry	CR 4 1356 Tens-25.62	(200- 416.8 00- 10.15/128.2 Turb- 2.1 0-0.01-(nessured)	SIR 6 14:51 54C = 66.60 0H = 7.5 DD = 6.8 193.	~	00 - 5:56/73.1 Q-0.01
CR 8 6-21: Ce (2): Ce	and 500 44	stal depth depth to top	Jose Of Casing.	2 1 1 2	
10 10	2/800x1/2	- 75" - top	5.7cl S.7cl 8=3.34	SpC = 573.7 DA = 79.1 T = 28.4 Twb = 15	

1015am (10:00)	12 628 12 0.00 12 0.00 14 0.00 15 0.00 16 0.00 17 0.00 17 0.00 18 0	20/11, 4.2-151.17. 5743 444 0.0 12104 1.16 5/2 4 1123	Temp 22.5 Tord 456 Two 0.0 Two 0.0
1200 6-27/6 1200 6-27/6 1949 7.9 1040 645 1050 645	6100) Must part (527-16 124/ 104/ 718 100/ 001		

	×			-					>	(-(-0-1			100				1019	1 4	× ===		(
	- 1/7						-			- 0.0						0.20						la i		A 10	227
											Jan III		27.0		-		2 2		1	o in					
																									6
						-	> -											10-						-) - J
		4					-			NA.			11.0						1	- 20					100
				- 4		-			2.25	2 V			802	EW 2			25.5		121	e en			0 11	100 E	
						-										-								== 2	- 1
																	١.								
										-					ŀ										
) = .															i				-				
																				11			4	A. Ta Ta	- 1
													- 1 -			30 1 K . 1	45.4								0.00
			100		48	i di	VES.		135	Silv			DE L	la da	dS)		ini	Sign	No.	Jar.	150	No.	le su	864	Sin de
	No.				T E								ME.			ansh	1								
NI.						C 500		III-E				201					16				DE L				

Scale: 1 square =

Scale: 1 square ≂

Cane Run	7-18-16
	CB CR
	New 1955 Flow 1 Landte Trug
6 1000	La Molte Two
Temp - 22.57	
Land - 706	
PG - 2.53/29.3	
Tub - 5.2	
Q-0,039	
8 1100	7 - (118
Temp 1244	Pooled
Cond 626	
194 6.89 00 000 74.1	10 - 1300
Turb - 10.20	pooled
(D)	
	Rite in the Rain.

6 1200	Spe De					
1						
	1 /25.1	/ *				
Temp - 23,9		0				
cand - 406	405					
Ph - 7,27	40.0 7.20 762 3.25 Tuck	(2)				
DO 350	3.25	139,7				
Turb - 5.57	Turb-	-5.55				
0) - 0.01 (0	10:0 (porsen	(observed)				+-
	, ,					
						-
						4-
						-
				1		

20.91.8 20.61 20.61 20.61 20.61	8/24/16 Car, Run	11:55 JH - 7.3 Town 20.2	600-77 Tem												
1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	in Dry San pl. of James Storm	LD0-918		9 <u>4</u> 7	101	F.	\	7-70	1.22	Reystring B-0.69	-007 8	75 75	Ø	7	20.

Ky 16-004

L00-97KX

13		lite in the Pain.
Mark & Jan Jan Condition of the Conditio		
7	CR.9 10:405 017 7.54 50 3.75-42.5 Temp 21.74 Cond 432 Cond 432	(We) 56 Type, Mas widitt ste Townshire in the
7.4 - 41.61. P	10:00 (K 7:16 DO 7:30 -41 DO 7:30 -41 Tem 20:52 (co	2021 2 SH
18 C S S S S S S S S S S S S S S S S S S	12.00 D	CR7 24757 50 63. 1emy 22.

		88	7	rg	41			w						0 0
		3		7				20						Q.
	1	S		1				5						
		6.8/87.9						2						
8		6.9						1						
	1 2	1/45.5		J 5~ 1	<i>y</i>			1						
	1 is	E	St. 0	あ	- A	2	77	200	4,	7,1	1			
		+			V	2	1		0	10	=			
	(5)	9				3								

Marcia L. Wooton

From:

Bert W. Remley

Sent:

Wednesday, August 24, 2016 4:37 PM

To:

Marcia L. Wooton

Subject:

FW: DO%

I forgot to copy you on this earlier

From: Bert W. Remley

Sent: Wednesday, August 24, 2016 3:09 PM

To: Jonathan C. Bloyd

Cc: Steve J. Evans; KY16-004_Cane_Run_Watershed_Plan; Rain A. Storm

Subject: DO%

Calculated DO% for our sites are listed below:

CR-7 = 73.3% CR-8= 69.4% from meter CR-9=42.8% CR-10=81.6% CR-11= 81.0%

Bert Remley, Ecologist

Third Rock Consultants, LLC | 2526 Regency Road | Suite 180 | Lexington, KY 40503 Office: (859) 977-2000 | Cell: (859) 619-8009 | www.thirdrockconsultants.com

Marcia L. Wooton

From:

Bert W. Remley

Sent:

Wednesday, August 24, 2016 4:37 PM

To:

Jonathan C. Bloyd

Cc:

Marcia L. Wooton; KY16-004_Cane_Run_Watershed_Plan

Subject:

Turbidity Reading

Site 8 = 2.0

Bert Remley, Ecologist

Third Rock Consultants, LLC | 2526 Regency Road | Suite 180 | Lexington, KY 40503 Office: (859) 977-2000 | Cell: (859) 619-8009 | www.thirdrockconsultants.com

Rite in the Pain 10 12 2 60 C 1263 Toub 2.7
50 590
50 6.9 128 9 T 7.33 #5H PROPERTY Dead Stippe shall 1 (Personal St. 20,01 1C. 0/500 Some Sedwest Mare to Ferena Mr. Plan S. Evers Q = 15 HO 99.12 7/8/16 Cuc Run KY16-COH 10:20 52 1105 Tem 24:47 3 135 25 757 250 7:95 250 7:95 7:45 5:45 74.37 7516 H.S 1 mg 5 to 5 (M

Site 8 10:40 am Sampling

Spc-702.3 pH-6.83

LD3-6.73 LP0-80.5 Tem-22.31 Turb-0.0 Q-NA Datalogger downloaded by Chad, Site 7 12:00 PM SPL-539.5 pH-7.28 LDO-4.95 LDO-661.3 Temp-24.72 turb.0.0 Q-0.0 Rite in the Rain.

5800-10 0.8 - Jul 1249 - 001 0.81 604 328 -001 00:1-01-10 0-0.204 5.52-001 P.P-002 5.52-001 P.P-002 5.52-001 P.P-002 5.52-001 P.P-002 9-8-16 CORE RUN CORE CR 11 - 1-20 SPC-714.8 ph-7.64 LDD-8.08 LDD-98.7 Temp 23.96 Tuch 0.0 0-0-123 Rite in the Rain

Colo 538 10-25-16		Nother 6.4 [65.7%.	6, 6		C 11 9:15 un	214 7.6	Dully 6.4 / 65.31.	141 000 THE	9-0-11	1011 - 7.7	ten0 - 11.8	001001.6.9/69.6.1.	139.	Tavb 0,0	Q= 0,25	II digital by class
Cons Rew Str 5 7-19-16 150	7.2 HJ	10 / 23 9 00 / 20/97, 9	3.5	5 low 0.25												

Scale: | square =

(-9 NOF/ON 10-25-14	
(7) Tean 9.4	
DOMON, 4,2 5 246	
0.00	
120 0.2	
G-120 OK	
9 11	
Land a more and	
2000	
1. 1.50	
7-1	
0	
Dalla 1. 2 / 20 5	
101 A 210	
306 7705	
Scale: 1 square ==	Scale: 1 square =
	The state of the s

(0/25/16 Cane Run Dry Cont.) Site L-11:50 temp-12:38 Cond-727 PH-7.44 fund-2.4 200-6.33 0-0.43				Rete in the Pain.
10 10 10 10 100 100 100 100 100 100 100	SHE 2 - 10:15 cm Temp 10:27 Cond-7:04 PH 7:45 +406-7:5 Size 4 - 10:50 T - 953 56C - 560 PH - 7:65 Timb - 4.8	Not men sure	temp-10.73 516. 713 PH 7.56 turb 2.7 DO-6,78 Q. 0.15 Low flow and thick a confident of the following a few and thick a few	may have affected thou

.

14 T.36 1.9 1.36 1.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00		Rationallin
W30/16 Conporus Site 6 11:00 40-18.19 500-594		
In Collection Whickey Turbidity - 3.6 Q - 3.04	PH-7.72 + twb-2.7 D-1.92 w: K 100 s	Do 6, 19 Jukb 1,7 506-662
5: te 1 - 9:40 5: te 1 - 9:40 T-11, 52	Site 2-10:06 50-12:40 Spline 665 DO-895 Site 3- No Flow with 5:40 5-11:00	Q-0.55 T-13.46 PH-1,53

2	1 2 - 8 - 1 2 9 - 1 2	20/100/- 6.4 67.8%. 120 67.8%.	R			Rite in the Rain.
4 CR-10 11-3016 Temp 16,1 0920 0H 7.3 Tub; 22 00 6.7 1755	Canal 587	Teng 14.0 + 4.6 16 00	604 545 1.	Temp 14,0	00 5,3/57.8%. Cord 7/6 2100 0,48 Thub 10.8	

5 (2/15 11:16 1-289-7ds tuch 5.9 2 (2415 16:20 5pc - 691.7 0.86 14.6 W Sp C - 638.4

PH - 7.35

DO - 10.69/76.1

Toes - 15.3

to a - 3.3 12/15 9:30

5pc - 643.9 8pc - 643.9 prit - 7.08 To - 8.67 68.7 Tab - 22.8 Tab - 12.8

ध्य अस

Two 09 50	
0.1	stow observed but not
	MERSURCHORE - 455UMED @ 0.01
76.0 62	Tomo - 220
DA 7.9 La Mothe Turk	Card - 482
100 100 00 00 00 00 00 00 00 00 00 00 00	11 501
Mow 20,067	
pt-	(0 - 0.0)
17-12-16	
ts. 5 7 6 603 an	
Teno 3,5	
Cand 669 *	Temp - 4.55
7.0 11.5	Carj - 617
Q T	
1/0W 0,59	8:56/6/50-10
	110000
	esecre ver
	•
	Rite in the Pain

K116-004

Queats Latotle Ins

Jamie Chodsey

5.45

1-30-17

2/7/7 (a. Runt Lant Lant Lant Lant Lant Lant Lant La	5-10:46 51C-50555- UD0-81.1 BH-7,857 +10-11.77 UD0-8.575 +10-11.78 6-11.05 6-11.05 CD0-G.30 +10.1-0.0 TURD. MELLE Not UNITHUM!	Pette in the Pain.
1-8:40 Cany Run Wet Weather 2-8:40 Wy-chielsay Spl-371:1 LD0-83.0 OH 7.85 Temp-10.10 LD0 9.09 Turb-0.0	3.9:00 Sec 410.4 LDO-81.0 LDO-9.67 2-9:20 SPC-5405 LDO-8.14 LDO-8.64 Two - 81.4 LDO-8.64 Two - 81.4 LDO-8.64 Two - 81.4 LDO-8.64 Two - 11.40 LDO-8.64 Two - 11.40 LDO-8.64 Two - 11.40 LDO-8.64 Two - 11.40 LDO-8.164 Two - 11.41	CD0-8-63 44rt-0.0

Sire6-3:40 Wohlsey	Sp(-520,9 T-7,8)	DO-11-799 10-00	8 '00'		Y								Attein to Pen.
	SPC_ 495,0 LDO- 94.5	UDO- 11.05 death - 0.0	10-7.06 10-7.06	2.00	54. 7.98 (1902 (6.8)	4.00 tust	3:00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	UPO-9,42 tulb-0,0 Q-No reading (bottery died)	Site 5 - 3:20	- 502,6 T	5 m	+101.4

50 - 13.16 50 - 14.5.2 50 - 13.16 50 - 13.16 50 - 13.16 50 - 13.16 50 - 13.16 50 - 13.16 50 - 13.16 50 - 13.83 50 - 13.83 50 - 13.83 50 - 13.83 50 - 13.83 1.416 - 2.5 1.416 - 6.0 Motor Meesure Motor S. 3 1.416 - 8.3 Motor S. 3 1.416 - 6.0 Motor Meesure Motor S. 3 1.416 - 6.0 Motor Meesure Motor	Run W chelson	SPL. 578.5	10m 0 20,34	6		5rC - 543,6			-												Atte in the Pain
The term of the first of the fi	27/17 Cane	100-	OH . 8.13				0.00 0.00	626-1438	e									ſ			
	Run W chilser	\$ S. \$. 9		4c	1		,20		3.04	-	D. COLING	Not Meaus.	J. Able	Spc- 368,5	temp. 18.44	turb- 2.3	too 1:41/e Clow	to Measure)	

M5 Plo 10 105 Toup - 17,7 Cand - 645 Ph - 7,5	14	y Evert		4-27-17 CB, SE 65° Overcon.	Spc 100 Turb	240 8.38 9.66 110.1 19.62 3.5			
M5 Plo 10 105 Toup - 17,7 Cand - 645 Ph - 7,5	5_1 twb w # 2			CB, SE	Spc 194 20 Zup Turb	5.38 9.66 110.1			
10 105 Toup - 17,7 Card - 645 Ph - 7,5	w ≠ 2 3.5 2.4				John Tuch	5.38 9.66 110.1			
10 105 Temp - 17,7 Card - 645 Ph - 7,5	w ≠ 2 3.5 2.4			, , , , , , , , , , , , , , , , , , , ,	Turb	110.1			
Toup - 17,2 Card - 645 Ph - 7,5	3.5				Turb	110.1			
Tonp - 17,2 Cand - 645 Ph - 7,5	7				Zap Turb				
land - 645 Ph - 7.5	7				Turb	3.5		-	A CONTRACTOR OF THE PARTY OF TH
land - 645 Ph - 7.5	7				1016	21)			
Ph - 7.5	7					114			
					12	1.10			
11 () and K () ()	110113				8	1124			
Turb - 0					Appendix of the last of the la	1230	4		++
Q-0.01-	1 . (1	i 1 .1	- 1	0.	Spc	-553			
9-0,01-	observed	DUT NOT	recorne	sic.	CK.	-7.21			
il					10	6.80			+
110	2 (5 7)	*			10 -	78.9			
0.20	0.25	PUP	-	1	(BUD -	- 20.13			++
pc 411	0 709,7		-	= 4	Turb	- 1.1			-
7.6	7.74				3				-
00 8.14	1 8.01					1+22-			+++
A 88.0	84.0					1320			++
2-0.23 pc 711. H 7.6 DO 8.14 7.6 88.9 7.7 2.6 17.2 2.6 0.0	217,11				50	365			++
orb 0.0	0.0				HA	8.41			
					PO	15.91			
					70	192.7			
	4				Tono	24.56			
					Turb	10.4			
					Q	- 0,01 -	on served	but no	Y State

5. C.			i i i i i i i i i i i i i i i i i i i			- united	resolution.		A STATE OF	- minted	10 TO THE ST		O POINT BOOK			1					- contra	14
1,																						Fain
																						lite in the Pain
40																						O3
										1												
										-												
				-			-															
								-														
		ika .							+	-							+					
		NE.	Disco	أقرن		ingly		Sili	Hi		61						Rich					
	118 7 H	17.	Nevi Pri		Charge of	Marie Con	-	HAR		growth)	1 10 10				M.		4.	150°0 to	KESI HA	100		and the same of
2		SS, Clear Wills												j								
5-2-17	X	, Cle															70-	3				
٧.	0	53										-				25	4.	ans seve				
																30000	T.	8				
																8	12	LUGS				
	のない。本つのと															70.01- algor + lag gens,	3	Cro				
,	ů															3	2	7-				
10/2/																Ö	3	2				
\mathcal{D}			10								e l					1						
			1030				1100	1	10	100	5/11/2	2,00	1	225						12	١,	15
5			201	W				1 1	~				-	-		kJ.				4 6 1 3		1 THE R. P.
Z.			2	3,12			7	1	7			1	- 1.						3	1	£	1
Care Fee		*1	4	(D - 19,12			3	-	0-0-05		# Y Y	7		1		7			457 158		f	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

														Some 4 square m
5-2-17 950 gu	CR-11 10209m	0,10 585	1	1.585 K/OW	Street or	SERVICE STATE		1000		400	444	444		Scale: 1 square =

班別編輯機能 對於

Management of 217

Cane Run Cont.		7		- too lew f		SPC - 5kg 6	tem p - 16.31	tub- 15.9	000										00
S/4/17 Ca	17)	100-67	3/	8	3-8.6	100-82.6	LD0-7.34	DH-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	C						4				
un Wet Weather		4:07 1871		too low flow to simple		50C -441.3	0		\$5.00 \$1.00		300 - 88,5	temp - 15:11	1	595		1.015 - 296.1	15.09	1 - 1 - 5	٦٠
24 5/4/17 Cane R	4-6:20		84:4 - HO	8	1-6:45	6.40 - 04.9	700 - 6.83	DH - 8.34	8	6-7:15	LD0-71.7	100-6,93	14-7,52	Ġ	07:2-3	200-71.5	100-6.91	OH - F. 64	3

9. re ta, 6 Card 950 on OLOGM Me/2 レチー Yere Scale: 1 square =

5. te 9, 5. 4-17

Tern 17.1

At 7.5

Solit 4.6 | 49.9.1.

Tens 2.9

Flower 88

Flower 88

Tens 3.0

Tens 3.0

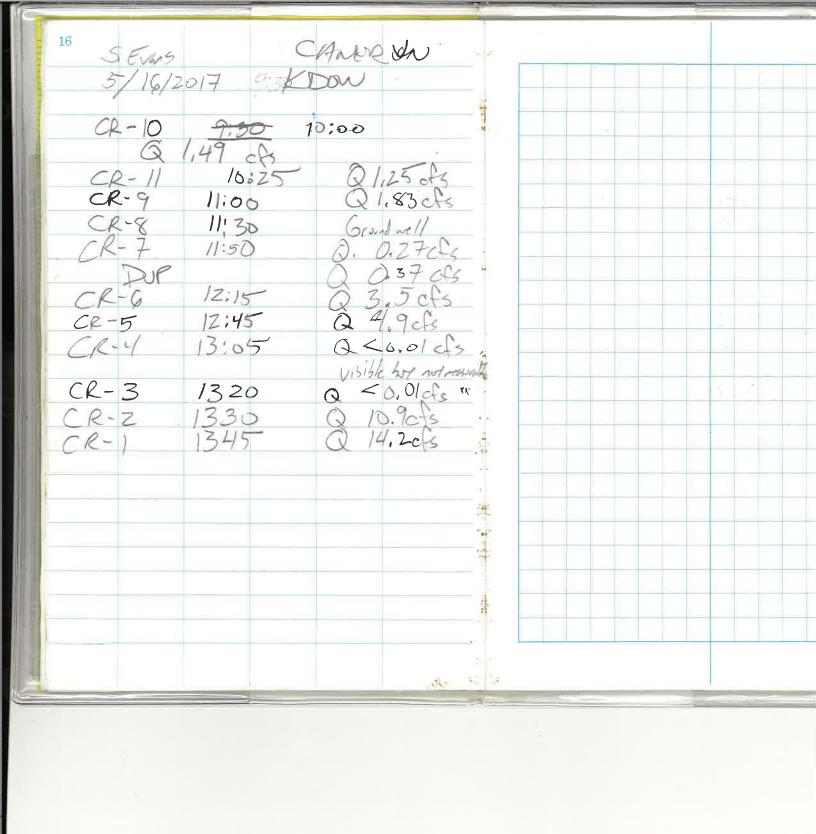
Tens 5. 417 0700 m

Tens 5. 417 0700 m

Solit 4.3 167.4 1.

8 A 2 3.3

Cand = 42.9


Scale: 1 square =

	272 B					53			2 KC													
Site 10 5.4-17 82084	Temp 15,2.	912, 110	00/1.80/83,4%	cond 467	Turn 1000 37	3		550 1104.5	6.50 K/g/m	71.16 3.4	Tero 15.9	011. 2.6	00/11 7,1 /25 2	(crd 571								
	 831.5	4.00	e = 75	ಕಾತ ಕ	-0		35 535 -	1	s. +8	* 145 2 14	-54	5 35	e) kiñ		1 381.	G. 276	E / C C	φro .	2 35	ento	 1 212	

Scale: 1 square =

Scale: 1 square =

		1			
5-9-17 CB 70' perty Play # 2	13/0	-7001 - observed but not recorded in	1350		
E.osir	3-13/0				\$0.0 L 0.04
Canol Rus	10 -0930	1 1	7-1130	6-1145 Q-4.78 5-1200	- 1245

46		
Cane Run	5-18-17	
	CB	
	80°. Clear	
10 1030	3-1400	
	3-1400 Q-0,01 not recordish	
Q-0.13 Flow #1		
11 - 1100	2-1415	
Q-0127 Flw #1		
9 - 1145 Flow #2	Q - 6.03	
Q = 0.36		
	1- 1980	
8-130 DUSA		
7 - 1295	W-8.68	
7 - 1245 Q - 0.07		
(p - 1305		
Q-3,34		
5- 1330		
Q-3.33		
4-1350		
Q-0,01 - observed but	not recordash	

1											*					ain.
																lite in the Ra
																Rite
-																-
					+											
												+				
*									1							
								_	_					*	*	
			35510		279		1	The same of the sa		4	5,85					
	6	1	1	00	2	-		Meas		75	2					
	7/2	0	0	2	, 0	07	82	000	12	7	20	4				
. 5	50	V	W	101	0 6 1		0	-	1	0	2:	370				
S	30	26/1	A	0,	V 2	Ni	0	V.0.	1,5	11	3	22/0				
Sur	EVANS 10 (CE)	Well A	V V	6	V 2	N	0.0	70°	1,5	ANC I	U See	22/0				
are Per	S, FVA	well a	N V	(3)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	N	0,0	V 0.	1	Staye = 0	V See J	2010				
Care Par	SEVA			,				,],	1	Stage		2010				
1 Core 10	ν)			,	120 <0			,],	1	Stage		2010				
1 Core 10	ν)	9:50 Well		,		1130 2.		١	1	Staren	1345 USE U	2019	-			
1 Core 10	5 700/	9:50						,],	1	Staye = (2019				
16-004 Care B	5 700/7	9:50	040/		4 1120	1130	1152	,],	1	Staye = C		2019	4.1			
16-004 Care B	5 700/		040/			5 1130		1215	1	Staye = C		2019				

APPENDIX J

Submitted to: Jennifer Carey, PE, MS4 Coordinator

Lexington-Fayette Urban County Government (LFUCG)

Division of Water Quality

Copied to: Richard Walker, PE

Tetra Tech, Inc.

Prepared by: Bert Remley

Subject: Cane Run Watershed-Focused Monitoring

Stream Corridor Characterization

Submitted on: January 16, 2018

BACKGROUND

LFUCG's Phase I MS4 Permit (KPDES No. KYS00002 AI No. 74551) was issued on May 1, 2015, with a five-year duration period effective June 1, 2015. One of the requirements of the permit is that "LFUCG shall begin to change its monitoring program to a watershed-focused monitoring program. In order to facilitate this process, monitoring should be conducted on a watershed basis with additional monitoring stations sampled for water chemistry, macroinvertebrates, microbial source tracking, hydrogeomorphic characterization, and habitat assessment."

The study area for LFUCG's Watershed-Focused Monitoring Program (WFMP) encompasses the seven major watersheds that drain LFUCG's Urban Service Area including Cane Run, South Elkhorn, West Hickman, East Hickman, Town Branch, North Elkhorn, and Wolf Run. Monitoring began in 2016 with the Cane Run Watershed, with monitoring to begin in South Elkhorn in 2017, West Hickman in 2018, and so on until each watershed is monitored and the results reported to the Kentucky Division of Water (KDOW).

The overall objective of the WFMP is to collect and generate data to identify and remediate sources of recreational and aquatic habitat impairments to streams within the Urban Service Boundary. Key monitoring elements include:

- I. Stream Corridor Characterization
- 2. Stream Biology
- 3. Water Quality Monitoring
- 4. Discharge Prevention Investigation
- 5. Priority Area Upland Visual Assessment

Third Rock Consultants, LLC (Third Rock) was retained as a subconsultant to Tetra Tech, Inc. to provide water quality consulting services in support of LFUCG's MS4 program, including conducting key monitoring elements required by LFUCG's WFMP. Results for each watershed will be used to compute and assess pollutant loading and ultimately summarized in a comprehensive, Watershed-Focused Monitoring Program Report for each of the seven watersheds.

As detailed in the WFMP Quality Assurance Project Plan (QAPP), stream corridors were characterized at half mile intervals of each reach of perennial stream in the watershed by Third Rock staff and volunteers. This Technical Memorandum documents the results of Third Rock's Stream Corridor Characterization (SCC) of the Cane Run Watershed.

METHODOLOGY

Thirty-two reaches were characterized within the Cane Run watershed as summarized in **Table I**, page 3; 26 by volunteers and 6 by Third Rock personnel. Of those, the majority (30) were headwater streams (drainage area < 5.0 mi²), with only two designated as wadeable (drainage area > 5.0 mi²). A third wadeable site (CR-2) was not surveyed due to stream restoration construction activities within the reach. Habitat, hydrogeomorphology, and macroinvertebrates were visually assessed along each reach during the respective sampling index period and data was recorded on field datasheets (**Appendix A**). A photo log of typical habitat and conditions for each survey reach is included in **Appendix B**.

Habitat parameters assessed included instream habitat, erosion and deposition, riparian zone condition, and channel stability. Habitat characteristics were scored on a high gradient habitat assessment field data sheet modified from US EPA 841-B-99-002 (Barbour et al., 1999). The score was then compared to regional criteria for the Bluegrass Bioregion based upon stream size (headwater or wadeable) to determine a habitat rating for each site (KDOW 2011).

The hydrogeomorphic condition of each reach was assessed by visual estimation of the percentage of substrate (silt, sand, gravel, cobble, boulders, and bedrock) within the reach's riffles, runs, and pools.

Macroinvertebrates were rapidly assessed and identified to order level to evaluate the macroinvertebrate community and identify potential locations of more sensitive taxa (mayflies, caddisflies, and stoneflies). Macroinvertebrates were sampled using methods described in the 2015 Kentucky Watershed Watch Biological Assessment SOP (WWSOP 03000).

As detailed in the WFMP Quality Assurance Project Plan (QAPP), at least 10% of the headwater sites and 10% of the wadeable sites sampled by volunteers were also sampled by Third Rock personnel as a means of quality assurance and are noted accordingly in **Table 1**.

RESULTS

Results of the stream corridor characterization are shown on **Exhibits I** through **7** (**Appendix C**) and summarized in **Tables 2** (Habitat Condition), **3** (Hydrogeomorphic Condition) and **Table 4** (Macroinvertebrate Abundance) on pages 4, 5, and 6, respectively.

Quality assurance data comparisons are discussed and summarized in **Table 5**, page 7.

Table I. Cane Run SCC Reaches

Reach ID	Drainage Area ¹	QA ²	Date	Width	Depth	Lat	Long
CRI	W	Х	9/7/2017	20	1.0	38.104337	-84.498901
CR3	W		9/14/2017	15	<1.5	38.091210	-84.501919
CR4	Н		3/22/17	14.5	0.3	38.08563	-84.49644
CR5	Н		3/27/2017	7	<1.5	38.079680	-84.492730
CR6	Н		2/23/2017	8	0.5	38.079446	-84.491493
CR7	Н		5/19/2017	8	0.67	38.072416	-84.476463
CR8	Н		5/19/2017	4	0.6	38.066776	-84.471221
CR9	Н	Χ	4/29/17	3	0.67	38.06216	-84.46856
ΑI	Н		4/21/2017	1.5	<1.5	38.116070	-84.527190
A2	Н		4/18/2017	3	<1.5	38.021800	-84.510350
ВІ	Н	Χ	3/25/17	3	0.33	38.11024	-84.50893
CI	Н		3/28/2017	5.2	1.3	38.104140	-84.505130
C2	Н		4/11/2017	6	<1.5	38.099530	-84.510650
DI	Н		4/24/2017	9	<1.5	38.102122	-84.492636
D2	Н		4/12/17	1.8	1.5	38.09922	-84.48968
D2-1	Н		4/25/2017	7	<1.5	38.093400	-84.482100
D3	Н		5/31/2017	4	0.33	38.09192	-84.487353
D4	Н		5/31/2017	7	0.5	38.087403	-84.484455
D5	Н		5/31/2017	2	0.33	38.086382	-84.481455
EI	Н		3/7/2017	12	0.6	38.084240	-84.499530
EI-I	Н		3/7/2017	8	<1.5	38.083400	-84.500200
E2	Н		3/12/2017	7	<1.5	38.078690	-84.498270
FI	Н	Χ	3/21/17	3	0.3	38.08699	-84.49461
GI	Н		4/19/2017	21	<1.5	38.071850	-84.486210
G2	Н		4/25/2017	5	<1.5	38.065770	-84.487720
HI	Н		4/19/2017	6	<1.5	38.077800	-84.481300
Ш	Н		4/27/2017	4.2	<	38.074200	-84.471800
JI	Н	Х	4/9/17	2.5	0.5	38.0663	-84.46212
KI	Н		4/1/2017	5	<1.5	38.088470	-84.468060
LI	Н		4/7/2017	10	<1.5	38.083900	-84.456500
MI	Н		4/18/2017	8	8	38.086900	-84.456400
NI	Н		3/28/2017	18	1.5	38.084900	-84.449900

Drainage Area < 5.0 mi² = Headwater (H), > 5.0 mi² = Wadeable (W)

Blue shading denotes collected by a volunteer. Green shading denotes QA data collected by Third Rock personnel.

The WFMP QAPP calls for at least 10% of the headwater sites and 10% of the wadeable sites sampled by volunteers to be sampled by Third Rock personnel as a means of quality assurance. Third Rock personnel sampled that number, as well as one additional site.

Table 2. Habitat Condition¹

Reach	На	abitat	Instream	Erosion /	Channel	Riparian
ID	Score	Rating	Habitat	Deposition	Stability	Zone
CRI	83	Poor	Marginal	Marginal	Marginal	Marginal
CR3	154	Good	Optimal	Optimal	Suboptimal	Suboptimal
CR4	104	Poor	Suboptimal	Marginal	Suboptimal	Marginal
CR5	107	Poor	Suboptimal	Marginal	Suboptimal	Marginal
CR6	84	Poor	Marginal	Marginal	Marginal	Marginal
CR7	105	Poor	Suboptimal	Suboptimal	Marginal	Poor
CR8	102	Poor	Marginal	Suboptimal	Suboptimal	Poor
CR9	79	Poor	Marginal	Marginal	Suboptimal	Poor
ΑI	42	Poor	Poor	Poor	Poor	Marginal
A2	70	Poor	Marginal	Marginal	Marginal	Poor
ВІ	116	Poor	Suboptimal	Suboptimal	Suboptimal	Suboptimal
CI	130	Poor	Suboptimal	Suboptimal	Optimal	Suboptimal
C2	155	Fair	Suboptimal	Optimal	Suboptimal	Optimal
DI	126	Poor	Optimal	Suboptimal	Suboptimal	Marginal
D2	171	Good	Optimal	Optimal	Optimal	Suboptimal
D2-1	47	Poor	Poor	Marginal	Poor	Poor
D3	116	Poor	Marginal	Suboptimal	Optimal	Poor
D4	136	Poor	Suboptimal	Optimal	Optimal	Poor
D5	99	Poor	Marginal	Marginal	Optimal	Marginal
EI	163	Good	Optimal	Optimal	Suboptimal	Suboptimal
EI-I	103	Poor	Suboptimal	Marginal	Suboptimal	Optimal
E2	133	Poor	Suboptimal	Suboptimal	Suboptimal	Optimal
FI	125	Poor	Suboptimal	Optimal	Suboptimal	Poor
GI	82	Poor	Marginal	Marginal	Suboptimal	Suboptimal
G2	123	Poor	Suboptimal	Suboptimal	Optimal	Poor
HI	73	Poor	Poor	Marginal	Suboptimal	Poor
П	48	Poor	Poor	Poor	Suboptimal	Poor
JI	79	Poor	Marginal	Marginal	Suboptimal	Poor
KI	143	Fair	Suboptimal	Suboptimal	Optimal	Optimal
LI	124	Poor	Suboptimal	Suboptimal	Suboptimal	Poor
MI	121	Poor	Suboptimal	Suboptimal	Suboptimal	Poor
NI	148	Fair	Optimal	Suboptimal	Optimal	Optimal

¹ RBP habitat parameters were grouped into four (4) categories: instream habitat (RBP parameters 1, 3, and 6), erosion/deposition (RBP parameters 2, 4, 5, and 7), channel stability (RBP parameters 8, 9), and riparian zone (RBP parameter 10).

Table 3. Hydrogeomorphic Condition

Reach	%	%	_ %		1	strate Ch		· · · · ·	
ID	Riffle	Run	Pool	Silt	Sand	Gravel	Cobble	Boulder	Bedrock
CRI	25	35	40	0	18	32	16	24	4
CR3	20	75	5	0	12	10	19	0	59
CR4		N/C		5	10	80	5	0	0
CR5	0	0	100	20	20	15	10	5	30
CR6	0	0	100	10	15	15	40	20	0
CR7	10	20	70	0	11	61	28	0	0
CR8	30	40	30	56	20	7	17	0	0
CR9	25	50	25	88	0	13	0	0	0
ΑI	0	100	0	70	10	10	5	4	I
A2	20	80	0	59	14	8	10	9	0
ВІ	20	20	60	86	5	6	0	0	3
CI	20	10	70	59	10	25	7	0	0
C2	65	25	10	7	17	11	23	24	21
DI	20	40	40	26	26	18	30	0	0
D2	15	35	50	7	19	29	44	0	2
D2-1	5	50	45	0	0	50	50	0	0
D3	25	25	50	0	0	5	95	0	0
D4	20	20	60	0	0	10	7	0	83
D5	10	80	10	88	6	7	0	0	0
ΕI	55	15	30	5	8	19	17	0	53
EI-I	0	0	100	40	40	10	5	5	0
E2	40	60	0	10	8	14	20	32	16
FI	70	15	15	2	14	17	67	0	0
GI	5	25	70	43	37	6	3	2	0
G2	20	80	0	8	42	40	10	0	0
ні	15	15	70	33	33	17	8	0	9
П	5	25	70	10	10	57	9	0	14
JI	25	50	25	98	0	3	0	0	0
ΚI	100	0	0	20	30	15	20	15	0
LI	60	25	15	18	30	27	8	I	18
MI	45	25	30	10	20	31	29	8	3
NI	30	25	45	19	32	29	17	2	0

N/C = data not collected.

Table 4. Macroinvertebrate Abundance

Reach	Kentucky Watershed Watch			
ID	Biotic Score	Biotic Rating ¹		
CRI	N	I/C ²		
CR3	8.1	Poor		
CR4	7.5	Poor		
CR5	7.8	Poor		
CR6	N	I/C		
CR7	8.4	Poor		
CR8	8.03	Poor		
CR9	١	I/C		
ΑI	7.25	Poor		
A2	8.33	Poor		
ВІ	N	I/C		
CI	6.5	Fair		
C2	6.9	Fair		
DI	7.08	Poor		
D2	7.0	Poor		
D2-I	8.8	Poor		
D3	7.19	Poor		
D4	6.75	Fair		
D5	6.86	Fair		
EI	8.14	Poor		
EI-I	9.0	Poor		
E2	8.1	Poor		
FI	8.0	Poor		
GI	8.25	Poor		
G2	6.62	Fair		
HI	8.25	Poor		
П	7.25	Poor		
JI	N	I/C		
KI	6.38	Fair		
LI	8.0	Poor		
MI	7.44	Poor		
NI	7.73	Poor		

¹ 2015 Kentucky Watershed Watch Biological Assessment SOP (WWSOP 03000) Rating for the Bluegrass Ecoregion: Good, ≤ 4.6; Fair, 4.7 – 6.9; Poor ≥ 7.0

 $^{^{2}}$ N/C = Data not collected due to low flow conditions.

Table 5. Quality Assurance Habitat Data Comparisons

Reach	QA	Ha	bitat	Instream	Erosion \	Channel	Riparian
ID	Date	Score	Rating	Habitat	Deposition	Stability	Zone
CRI	9-7-17	83	Poor	Marginal	Poor	Suboptimal	Marginal
CRI	9-27-17	83	Poor	Marginal	Marginal	Marginal	Marginal
CR9	4-29-17	9	Poor	Poor	Poor	Poor	Poor
CR9	5-19-17	79	Poor	Marginal	Marginal	Suboptimal	Poor
ВІ	3-25-17	45	Poor	Poor	Poor	Marginal	Marginal
ВІ	5-31-17	116	Poor	Suboptimal	Suboptimal	Suboptimal	Suboptimal
FI	3-21-17	83	Poor	Marginal	Marginal	Suboptimal	Poor
FI	5-31-17	125	Poor	Suboptimal	Optimal	Suboptimal	Poor
JI	4-9-17	34	Poor	Poor	Poor	Marginal	Poor
JI	5-19-17	79	Poor	Marginal	Marginal	Suboptimal	Poor

Blue shading denotes collected by a volunteer. Green shading denotes QA data collected by Third Rock personnel.

Habitat ratings were similar between volunteers and Third Rock personnel for most sites, with the scores varying substantially for a select few. Two of the larger discrepancies involved the same volunteers and dry conditions where the volunteer scored several habitat parameters much lower than Third Rock personnel due to dry conditions during time of survey. Differences in interpretation of how to evaluate parameters in the absence of water contributed to these differences.

LITERATURE CITED

Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency; Office of Water, Washington, D.C.

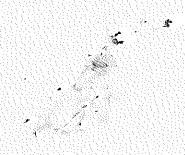
Kentucky Division of Water. 2011. Methods for assessing habitat in wadeable waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.

APPENDIX A-I VOLUNTEER SCC FIELD DATA

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	<u> </u>	DATE: 9/7	<u>lat:38 1048</u>	J róng: <u>-84 4989</u> 4
INVESTIGATOR(S)	aux toine	COWARDIN CLASS:	WATERSHED	
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	MAGE COMMENT:	
Width (Ft) 2 15 A	Perennial	IMG		
Depth (Ft) < 14		IMG		
Reach (Ft) 100 M	Intermittent	IMG		
westen (I-A 100)	Tree micent			
HABITAT	OPTIMAL	CONDITION SUBOPTIMAL	CATEGORY	HAA AMAA MAAAA
PARAMETER	20 19 18 17 (16)	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate /		40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
	banks, cobble or other stable	presence of additional substrate in		
	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score 710	logs/snags that are <u>not</u> new fall	rate at high end of scale).		A SAME AND A SAME AND A SAME AND A SAME AND A SAME AND A SAME AND A SAME AND A SAME AND A SAME AND A SAME AND A
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded by		particles are 50-75%	particles are more than 75%
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
Score 70	provides diversity of niche space.	A INTERNATION OF THE PARTY OF T	and TENNESSEE	
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).
	fast-deep, fast-shallow). (5low is <	than if missing other regimes).	shallow are missing, score low).	
Score C	0.3 m/s, deep is > 0.5 m.)	A STATE OF THE PARTY OF THE PAR		
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
		deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
2			moderate deposition of pools	
Score 2	Nelsteinigen (e. 6 e b. 100 e e e e e e		prevalent.	Tella Die von de van de verden de van
	t e e e e e e e e e e e e e e e e e e e		1	Very little water in channel and
			the season of the season to the season of	mostly present as standing pools.
Score	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	A STATE OF THE STA
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gablon or
		usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
	■ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.
		channelization, i.e., dredging.	both banks; and 40 to 80% of	Instream habitat greatly altered
		(greater than past 20 ут) may be	stream reach channelized and	or removed entirely.
11/1/11/12		present, but recent channelization	disrupted.	
Score / O		is not present.	**************************************	
		Occurrence of riffles infrequent;	1	Generally all flat water or shallow
			bottom contours provide some habitat; distance between riffles	
		化医疗 化环烷基 医电子电影 化电子电影		width of the stream is a ration of
	7); variety of habitat is key. In			> 25.
ana ang katalong kanalong katalong kanalong 🌉	streams where riffles are			
	continuous, placement of boulders			
	or other large, natural obstruction			
Score (/)			Hillian contra transcribe	

8. Bank Stability	ÖPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
	10 9 Banks stable; evidence of erosion	8 7 6 Moderately stable; infrequent,	5 4 3 Moderately unstable; 30-60% of	2 1 0		
	or bank failure absent or minimal;	I and the second	bank in reach has areas of	"raw" areas frequent along		
	little potential for future	healed over. S-30% of bank in	erosion; high erosion potential	straight sections and bends;		
LB Score C	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing: 60-100% of bank has erosional scars.		
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank		
Protection		covered by native vegetation, but		surfaces covered by vegetation;		
	zone covered by native vegetation,		disruption obvious; patches of	disruption of streambank		
	including trees, understory shrubs,		bare soil or closely cropped	vegetation is very high; vegetation has been removed to 5		
		but not affecting full plant growth potential to any great extent; more	vegetation common; less than	centimeters or less in average		
	The state of the s	than one-half of the potential plant	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	stubble height		
LB Score	evident; almost all plants allowed to grow naturally.	stubble height remaining.				
······································	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6		
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian		
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human		
LB Score	lawns, or crops) have not			activities.		


REMARKS / NOTES

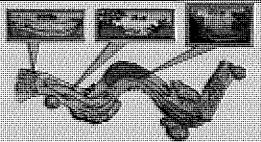
Witheam reach was dry on 9/7/17.

Blowment is moist, home patches of new exosion.

Pipe opened up into attream, accountiveam of that is the pools of water.

garrison present at avain pipe, also concrete structure present in stream as well, both accumented et in proto log.

alma Espekt



Substrate Characterization (Visual Estimate)

Estimate the percentage of reflection and receives the expersence.

Visually assess the percentage of each of these areas that has each of the percent areas. Use the Gravetometer to help gage.

3) IN OFFICE Calculate the reach totals by multiplying the % of NO COLUMN PRESENT OF RECENT

Substrate	Riffic % Buin <u>%</u> Pool	Reach total 11.
<u> </u>		
Gravel (2-64 mm)		
edibe (#4.45kmm)		
Boulders (2256mm)		<u> </u>

Benthic Macroinvertebrates	Reinlane Conta
Society Nymph	l d
Mussel (Native)	
True fly Lans - Watershipe Fly	
Caddisfly Larva (cere-building)	
Maythy Newmon	
Water Penny Lania	
Caddishy Larva (net-spinner)	
Riffie Beetle Larva	
Riffie Beetle Adult	
Operculate Shell	
Heligrammice (Dobsonfly Larva)	
True Ry Larva - Crane Ry True Ry Larva - Black Ry	
Dragonity Nymph	
Craylish	
Clams and Massels (non-narive)	
Alderly Larva	
True Fir Larva – Midge	
Historiam	
Damselfly Nymsh	
Triue Fly Larve - Other Soud	
Instruct	
Nich-operculate Snail	
Adult Bietles (non-riffe beetles)	
Bestit Larve (other than riffe beedles and water pennies)	
Aquati: Worm/Leedin	4,
Total	4
	PALÉS.

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1	CP1	Undercut bank / rootmots
2	CR1	Typical Substrate, Riffle
3	CR1	Typical substrate
Ч	CR1	Emergent Vegetation
6	LR1	Effinent Pipe, Stream Alterations (upstream Facing) Pool downstream of reach stream Alteration
6	CR1	Pool downstream of reach stream Alteration
7	CR1	Stream Alteration (Downstram Facing)
8	CR1	Under cut Banks
9	CR <u>1</u>	Undercut Bank/Rootingts
10	CR 1_	Typical Substrate, Pump Station?, Stream Overview (Upstream Facing)
l (CR1	Undercut Bank / Rootmats
12	CP <u>1</u>	Emergent Vegetation
13	CR1	Stream Overview (upstream Facing)
:		

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT) 29.0912 10 2

STREAM ID	R3		•	DATE: 9	-14-17	LAT:	1112102	LONG:	-84.4	501918
A-l	ex Eber	McHush	cow	ARDIN CLASS		WATERSHE	D C4	ne K	un	
10 1 A B	STREAM TY	σ	IMAG	iE ID:	MI	GE COMM!	iNT:			
	Ephemeral		IMG							
Reach (Ft) 100M	Intermittent		IMG						Mile angles	

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover Score 2-	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lac of habitat is obvious; substrate unstable or lacking.
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	The state of the state	Dominated by I velocity/depth regime (usually slow-deep).
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; mor than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
Channel Flow Status	banks, and minimal amount of	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25,75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools
Score 20	or minimal; stream with normal pattern.	(greater than past 20 yr) may be	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
o. Dain Sulpinty	10 9	8 7 6	5 4 3	1 2 1 0		
	Banks stable; evidence of erosion or bank failure absent or minimal;	Moderately stable: infrequent, small areas of erosion mostly	Moderately unstable; 30-60% of bank in reach has areas of	Unstable; many eroded areas; "raw" areas frequent along		
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;		
LB Score 7	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100% of bank has erosional scars.		
9. Vegetative Protection	surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through		surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.		
RB Score	to grow naturally.			/ 中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国中国		
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6		
Zone Width LB Score 7 RB Score 7 Total Score 0	meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	meters; human activities have impacted zone only minimally.	impacted zone a great deal.	meters: little or no riparian vegetation due to human activities.		

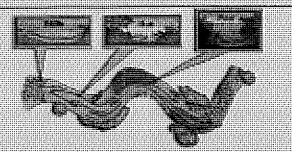
REMARKS / NOTES:

EBurnt pipe coming

Habitat tooks good but not very many bentine invertebrates present, tenere was a large turtle present

Stream has potential to bel a good nabitat.

Alex Eberie : Sampler: Mickelle : McHugla


Reach: (23

Substrate Characterization (Visual Estimate)

1) Estimate the percentage of relia, run, and pool in the asteroment react and record at the top of the tolumin

2) Westelly assess the percentage of such of these wests that has each of the particle sizes. Use the Gravelonester to help gree pinite siet.

2) the College E. Calculage the react establish making one 3. of

Sillistrate	RME <u>227 S. Run (17</u> 57 S.		Reach total
	<i>(</i>):	9	
		45%	
	(0)		
	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	5	- 51-57 ₄₋
program (m. 2016)		ď	9
Bas yara s	T/5/5/2	17763242	

Harringer carate Screening

Benthic Macroinvertebrates	L Austriance Crains
Stonelly Nymigh	G.
Mussel (Native)	j)
I (rue (), create Wateringe ()	(e)
Caddefly Larva (case-building)	9
Marily Hymph	0
Wester Berny Greek	9
Caddish: Lans (net spinner)	ja ja
Rang Sesses Carva	
Riffie Beetle Adult	y y
Openculate Shall	$[\qquad \ \underline{2} \qquad \qquad \underline{1} \\$
Hellerammite (Diobsonity Larva)	0
True fly Larve – Crane fly	
Time fly larm – Black fly	i g
Dragonly Nymph	
Crayleh	Q
Clams and Mussels (more-nature)	
Aithrily larve	ġ
True Ry Litro — Midge	
Flatiscom	
Charmethy Nymph	
True Fly Larva — Other	i i
Sout	
Propod	1234
Non-operculate Stall	<u> </u>
Adult Beatles (non-riffe beatles)	
Benetic Larve (other than riffic beciles and water penniss)	<u> </u>
Aquabic Worm/Leach	
Total San Newson's Agents Management of the Charles of Burning of these prepriers.	34

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
]	CR3	Riffle
2	CR3	Typical in-stream habitat
3	CR3	Riffle
4	CR3	Riffle
5	CR3	undercut bank
Ь	CR3	undercut bank (rootmat
7	LR3	Bedrock bottom
8	CR3	Bedrock Bottom
9	CRZ	Bediock Botton
10	CB3	Submigent Vegetation
11	CR3	Submergent vegetation
12	CP3	Efficient Pipe (upstream of)
13	CR3	Undercut BANK
i 4	CR3	Bedrock Bottom
15	CR3	Tributary formation
16	CR3	Channel Alteration

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

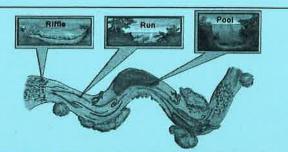
STREAM II	D	CR4		: DATE: 3 -2	22-17 LAT: 38,0563 LONG: 84,49644
INVESTIG	ATOR(S)	mdn,	Midelle	COWARDIN CLASS:	WATERSHED Cane Run
STREAM S	IZE:	STREAM T	YPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	1454	Perennial		IMG	
Depth (Ft)	254	Ephemeral	V	IMG	
Reach (Ft)	300A	Intermittent		IMG	

Reach (Ft) 30	Intermittent	IMG			
	CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
I. Epifaunal Substrate	/ Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; laci	
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate	
	colonization and fish cover; mix o	of potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.	
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.		
	banks, cobble or other stable	presence of additional substrate in			
	habitat and at stage to allow full	the form of new fall, but not yet			
	colonization potential (i.e.,	prepared for colonization (may			
Score 18	logs/snags that are <u>not</u> new fall	rate at high end of scale).			
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%	
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.	
(provides diversity of niche space.	1			
Score 10					
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if		Dominated by I velocity/depth	
Depth Regime	present (slow-deep, slow-shallow,				
	fast-deep, fast-shallow). (Slow is	than if missing other regimes).	shallow are missing, score low).		
Score 4	0.3 m/s, deep is > 0.5 m.)		7		
4. Sediment Deposition	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,	
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more	
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing	
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent	
		deposition in pools.	deposits at obstructions,	due to substantial sediment	
			constrictions, and bends;	deposition.	
			moderate deposition of pools		
Score 17	7		prevalent.		
. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and	
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.	
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.		
Score					
. Channel Alteration	Channelization or dredging absent		Channelization may be	Banks shored with gabion or	
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream	
	pattern.	No. 1940 Page	shoring structures present on	reach channelized and disrupted.	
		channelization, i.e., dredging,		Instream habitat greatly altered	
		(greater than past 20 yr) may be	TOTAL TOTAL	or removed entirely.	
Score 14		And the same of th	disrupted.		
Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend:	Generally all flat water or shallow	
or Bends)	frequent; ratio of distance			riffles; poor habitat; distance	
50.100)	between riffles divided by width of		habitat; distance between riffles	· ·	
	the stream < 7:1 (generally 5 to			width of the stream is a ration of	
	7); variety of habitat is key. In		400000	> 25.	
	streams where riffles are				
	continuous, placement of boulders				
	or other large, natural obstruction				
Score @	or other im Se, matter at obstruction				

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score				of bank has erosional scars.
	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
10.0	evident; almost all plants allowed	stubble height remaining.		
LB Score 7	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
A-27204	impacted zone.			
Total Score	HW			

REMARKS/NOTES: Stream was Dry with stream bed books exposed condetely until the end of the 300H Reach.
Bush noneysuckle was present.

Stream Wilth - 3.8m 6.1m 4.7m Agwith 4.86m


Sampler: Branda	Michelle
-----------------	----------

Reach: CRL

Date: 3-22-17

Substrate Characterization (Visual Estimate)

- I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle%	Run%	Pool	Reach total
Silt/Clay (<0.06 mm)			2-	5
Sand (0.06 – 2 mm)				10
Gravel (2-64 mm)				- KO
Cobble (64-256mm)				5
Boulders (>256mm)				
Bedrock		9		

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	No.
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	1
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
Isopod	30 +32 = 6
Non-operculate Snail	2
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	, , , , , , , , , , , , , , , , , , ,

Note: Stream was mostly Dry Aor entire Reach With whole Streambed exposed Unable to perform RAHLE, Run, and Pool percentage assessment. Substrate assessment performed for entire Reach.

Sampler(s): Wichell Mc Hugh Brandon Thorpe

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

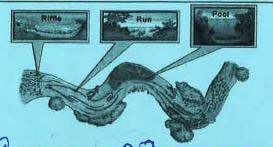
Photo ID	Reach / Site	Description
CR4-01	CR4.	control mats, looking downstream
C2402	CRH.	Shows clear view of evosion control mat
CR4-03	CRH,	Benunic sampling site at end of reach looking downstream,
CR4-04	CR4.	Benthic Sampling site at end of reach. 3000p of leaf pack
CR4-05	CR4.	End of reach looking downstream. pools Present in unis area
CR4-010	CR4.	Bottom of reach looking upstream, shows beginning of pools and
CR4-07	CR4.	Midreach, shows that from Fl veach
CRH-08	CR4.	Midveach, shows isolated pools of water. Benthic macroinvertebrates were found in these pools
CR4-09	CRH	clown stream
CR4-10	CR4 ·	Midreach looking downstream
CR4-11	C24	Mareach looking apoweam
CR4-12	CPH "	snows vipavian vegetation at midveach
CR4-13	CR4.	Top of yearn looking downstream, shows undercut banks on left bank
CR4-14	CR4	Top of reach looking upstream
CR4-15	CR4	3 nows undercut banks looking upstream at 10p of reach on left bank
CR4-11e	CP4	snows underent banks at top of reach

STREAM ID	if kunicko	DATE:	LAT: HI HONG: OBLANT
INVESTIGATOR(S	Joby + Michele	COWARDIN CLASS:	WATERSHED GAR ROW
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG	
Depth (Ft)	Ephemeral	IMG	
Reach (Ft)	Intermittent	IMG	

Reach (Ft)	Intermittent	IMG					
	CONDITION CATEGORY						
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR			
PARAMETER	20 19 18 (17 / 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
1. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack			
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate			
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.			
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	h .			
	banks, cobble or other stable	presence of additional substrate in		(***)			
	habitat and at stage to allow full	the form of new fall, but not yet					
	colonization potential (i.e.,	prepared for colonization (may		9			
Score 1	logs/snags that are not new fall	rate at high end of scale).					
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder			
-	particles are 0-25% surrounded by	l'	particles are 50-75%	particles are more than 75%			
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.			
Score	provides diversity of niche space.						
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth			
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).			
	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).				
Score 🚳	0.3 m/s, deep is > 0.5 m.)		- °				
	Little or no enlargement of Islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,			
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more			
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing			
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent			
		deposition in pools.	deposits at obstructions,	due to substantial sediment			
			constrictions, and bends;	deposition.			
			moderate deposition of pools				
Score 77			prevalent.				
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and			
<i>v</i>	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.			
PGPs	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.				
6. Channel Alteration	Chanalterias as desdeine abases	Come about alimatical account	Channellander may be	Deales should with soliton on			
	Channelization or dredging absent or minimal; stream with normal	usually in areas of bridge	Channelization may be extensive; embankments or	Banks shored with gabion or cement; over 80% of the stream			
		abutments; evidence of past	shoring structures present on	reach channelized and disrupted.			
	pattern,	channelization, i.e., dredging,		Instream habitat greatly altered			
19	<i>*</i>	(greater than past 20 yr) may be		or removed entirely.			
			disrupted.	o, . onovos enuroj.			
Score		is not present.					
		Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow			
	frequent; ratio of distance	distance between riffles divided by	bottom contours provide some	riffles; poor habitat; distance			
	between riffles divided by width of	the width of the stream is between	habitat; distance between riffles	between riffles divided by the			
	the stream < 7:1 (generally 5 to	7 to 15.	divided by the width of the	width of the stream is a ration of			
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.			
5	streams where riffles are						
c	continuous, placement of boulders						
	or other large, natural obstruction						
Score Core	s important.						

D. Bank Cookiling	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8. Bank Stability	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
-	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
100000000000000000000000000000000000000	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
1	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
100	evident; almost all plants allowed	stubble height remaining.	- d	
LB Score RB Score	to grow naturally.		1	
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
0	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.			
Total Score 0	(4)			
107				
REMARKS / NOTES:				
510	A.			
5.6 4.4				
97		*		
6 -				
9.7 62 8.85 702				
8.85				
7				
lod				

Sampler Carby Smith & Michelle Mchigh Reach Care Run (Chs)


Date: 3/17/17

Substrate Characterization (Visual Estimate)

 Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

 Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle / 9 %	Run	Pool%	Reach total
Silt/Clay (<0.06 mm)				DO SEE MAI
Sand (0.06 – 2 mm)			4	THE P
Gravel (2-64 mm)		4	73.	15
Cobble _r (64-256mm)				
Boulders (>256mm)		, A		9
Bedrock		+ < /),	30

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	A A
True Fly Larva – Watersnipe Fly	9
Caddisfly Larva (case-building)	
Mayfly Nymph	#
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	0
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva - Crane Fly	ay a second a second
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
Isopod	24
Non-operculate Snail	1
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	26

ABSIDIA SCUBLOS TO SCUBLOS TO SCUBLOS TO

Sampler(s): Will Mellingh & Corby
Photo Log

Date: 3/27/17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
(2501	CR5	deepest pool of reach
LE5-U2	CR5	Midpoint of reach looking apotream, shows bedrock and point war
US-03	CR5	undercut sales, point war, trospen bankerosion,
CR5-04	U25	Top of reach looking upstream, snows substrate characteristics
CR5-05	CR5	Top of reach, shows avainpipe, undercut bank, bearouts
US-010	CR5	Shows bedrock, sectiment deposition,
Cl5-07	CR5	Bottom of reach looking down stream, shows substrate characteristics, bedrack bottoms
UR13-08	CRS	Bottom of Reach upstream,
CR5-09	CR5	Bottom of Place looking upstream, snows beavack Bottom, substrate characterization
CR5-10	CR5	Shows hardening of stream to allow for benich wossing,
CR5-11	UR5	Divors undercut ranks and substrate characterist
Ce5-12	C25	Bedrock Sampling site, located at bottom of reach
CR513	CRS	Bedrock sampling site, located at watering reach
25-14	CR5	317+, sand, gravel sampling site
125-15	425	Drainage roles, this area contained water upon arribal put availed into holes in swiment, shows area of greatest experien
CR5-16	uls	leaf pack sanifiling she located at midveach also shows bedrock and undercert banks
25-17	U25	snows water availing into notes in stream

STREAM ID		V-9		DATE: 4		LAT: 38,0626 LONG: 084 46 856
INVESTIGAT	TOR(S)	Alex Ebrk	is thomas	COWARDIN CLASS:	WA	TERSHED CARE YUH
STREAM SIZ	Œ:	STREAM TYP	E:	IMAGE ID:	IMAGE	COMMENT:
Width (Ft)	0	Perennial		IMG		
Depth (Ft)	0	Ephemeral		IMG		
Reach (Ft)	100	Intermittent		IMG		

Reach (Ft) 100	Intermittent	IMG				
	CONDITION CATEGORY					
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
1. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lac		
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate		
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.		
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.			
	banks, cobble or other stable	presence of additional substrate in				
	habitat and at stage to allow full	the form of new fall, but not yet				
	colonization potential (i.e.,	prepared for colonization (may				
Score O	logs/snags that are not new fall	rate at high end of scale).				
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder		
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%		
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.		
6	provides diversity of niche space.					
Score (/						
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	,	Dominated by I velocity/depth		
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower		regime (usually slow-deep).		
	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).			
Score (2)	0.3 m/s, deep is > 0.5 m.)					
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,		
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more		
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing		
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent		
		deposition in pools.	deposits at obstructions,	due to substantial sediment		
			constrictions, and bends;	deposition.		
			moderate deposition of pools			
Score 0			prevalent.			
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and		
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.		
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.			
Score C		· ·				
6. Channel Alteration	CONTRACTOR OF CO	Some channelization present,	Channelization may be	Banks shored with gabion or		
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream		
	pattern.	abutments; evidence of past		reach channelized and disrupted.		
	1	channelization, i.e., dredging,		Instream habitat greatly altered		
		(greater than past 20 yr) may be		or removed entirely.		
		present, but recent channelization	disrupted.			
Score 0	Occurrence of alffine colors	Is not present	Occasional riffle or bend;	Generally all flat water or shallow		
Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	bottom contours provide some			
	10.000	MANAGE AND THE PERSON NAMED IN COLUMN TO SERVICE AND THE PERSON NAMED IN		between riffles divided by the		
	,	The state of the s		width of the stream is a ration of		
				> 25.		
	7); variety of habitat is key. In		stream is between 15 to 25.	43.		
	streams where riffles are					
	continuous, placement of boulders					
Score 6	or other large, natural obstruction					
Store	is important					

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
0.00	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 2				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
10 0000 10000	evident; almost all plants allowed	stubble height remaining.		
LB Score	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.			
Total Score 0				

REMARKS / NOTES:

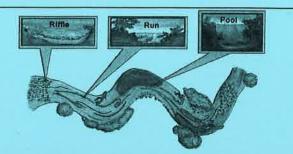
FLOWS TOWARDS GOLDEN COROL

NO WOTER PHEENT OF TIME OF CHARACTERIZATION

LOTS OF TROSH

SURROUNDING OREA IS MOVED.

Ground too Burren at end of reach


Sampler: Thomas you

Reach: CR 9

Date: 4/29/17

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle %	Run%	Pool%	Reach total
Silt/Clay (<0.06 mm)				
Sand (0.06 – 2 mm)	newater	Present		
Gravel (2-64 mm)	BOTTOM	Was Sand/ (Lax		
Cobble (64-256mm)				
Boulders (>256mm)				
Bedrock	Ú-		Į.	

Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	C
Mussel (Native)	Q
True Fly Larva – Watersnipe Fly	0
Caddisfly Larva (case-building)	Q
Mayfly Nymph	0
Water Penny Larva	0
Caddisfly Larva (net-spinner)	Q
Riffle Beetle Larva	0
Riffle Beetle Adult	0
Operculate Snail	c
Hellgrammite (Dobsonfly Larva)	0
True Fly Larva – Crane Fly	0
True Fly Larva – Black Fly	0
Dragonfly Nymph	0
Crayfish	0
Clams and Mussels (non-native)	c
Alderfly Larva	. 0
True Fly Larva – Midge	O
Flatworm	0
Damselfly Nymph	C
True Fly Larva – Other	0
Scud	0
Isopod	С
Non-operculate Snail	0
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	a
Aquatic Worm/Leech	C
Total	C

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Sampler(s): Alex Ebele & Thomas Boll

Photo Log

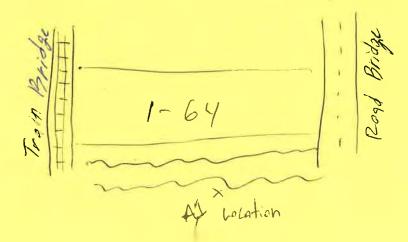
1. Sampling zone - In middle of reach — either direction

- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1	CR9	Thach Typical Substrate
2	CR9	Thish, Riffle, Typical substrate
3	CR9	averview of Reach
Ч	CR9	Strign dissappears under dist Rook.
5	CR9	culvert downstream of peach
Ь	CR9	Sanifary scarcy adjacent to stress
7	CR9	overview of Reguls
8	CR9	Overviews of Rench, Faing downstream
9	CR9	Trash, Typical Substrate
10	CR9	Undercut Bank
11	CR9	small stream south of reach Freaking
12	CR9	underout Bank / Rootingt
13	CR9	Trash Pollution
14	CR9	weriew of Reach
15	CR9	Trees in middle of stram-

±19F+

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

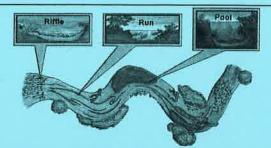

STREAM ID	A1	(()	DATE: 4/2	1/17 LAT: N	38.1160	LONG: W 74.52719
INVESTIGATOR	(s) Alex Eber4	e d Thomas con	WARDIN CLASS:	WATERSHED	Cane	Run
STREAM SIZE:	STREAM TYP	E: IM/	AGE ID:	IMAGE COMMEN	T:	
Width (Ft)5		IMC	<u> </u>			
Depth (Ft)	5M Ephemeral	IMO			14	
Reach (Ft) [QQ N	Intermittent	X IMC	i			

Reach (Ft) (QQ M		IMG			
	CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
PARAMETER 1. Epifaunal Substrate /	20 19 18 17 16 Greater than 70% of substrate	15 14 13 12 11 40-70% mix of stable habitat; well	10 9 8 7 6 20-40% mix of stable habitat;	Less than 20% stable habitat; lact	
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate	
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.	
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.		
	banks, cobble or other stable	presence of additional substrate in			
	habitat and at stage to allow full	the form of new fall, but not yet			
	colonization potential (i.e.,	prepared for colonization (may			
Score 5	logs/snags that are not new fall	rate at high end of scale).			
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	
	particles are 0-25% surrounded by	I'	particles are 50-75%	particles are more than 75%	
,	, ,	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.	
Score 1	provides diversity of niche space.				
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth	
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).	
	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).		
Score 4	0.3 m/s, deep is > 0.5 m.)		-		
	Little or no enlargement of Islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,	
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; moi	
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changin	
		the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent	
		deposition in pools.	deposits at obstructions,	due to substantial sediment	
			constrictions, and bends;	deposition.	
			moderate deposition of pools		
Score Z		Water fills > 75% of the available	prevalent. Water fills 25-75% of the	Very little water in channel and	
6. Channel Flow Status		channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools	
	Section Columnia Colu	substrate is exposed.	substrates are mostly exposed.	mostly present as standing pools	
Score 5	Channel subsulate is exposed.	subsulace is exposed.	substrates are mostly exposed.		
. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or	
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream	
	'			reach channelized and disrupted	
				Instream habitat greatly altered	
				or removed entirely.	
Score 6	1		disrupted.		
		ls not present. Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallo	
			bottom contours provide some		
	between riffles divided by width of	the width of the stream is between	habitat; distance between riffles	between riffles divided by the	
	the stream < 7:1 (generally 5 to	7 to 15.	divided by the width of the	width of the stream is a ration of	
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.	
	streams where riffles are				
	continuous, placement of boulders				
	or other large, natural obstruction				
Score	s.important				

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 2	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have		meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score 5	impacted zone.			
Total Score 0				

REMARKS / NOTES:

Right next to 1-64, Used railroad tracks
leading from Kearney Rd. to access location. Very
the unstable banks, closer channelization to high flooding
likely during min events. Steeper gradient on the
right bank with heavy sediment deposition. Heavy algable
algae (blue-green) in stream. Lots of thorns in anea.


Sampler: Alex Eberle ! Thomas Boll Reach:

Substrate Characterization (Visual Estimate)

1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of

Substrate	Riffle 0 %	-Run- 100 %	Pool %	Reach total
Silt/Clay (<0.06 mm)	0	70 %	0	
Sand (0.06 – 2 mm)	0	10 %	9	
Gravel (2-64 mm)	0	10 %	Q	
Cobble (64-256mm)	ů.	5 %	0	
Boulders (>256mm)	9	4 %	0	
Bedrock	0	2/0	Q	

alida

* Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	(,)
Mussel (Native)	2
True Fly Larva – Watersnipe Fly	Q
Caddisfly Larva (case-building)	0
Mayfly Nymph	0
Water Penny Larva	0
Caddisfly Larva (net-spinner)	0
Riffle Beetle Larva	0
Riffle Beetle Adult	0
Operculate Snail	739
Hellgrammite (Dobsonfly Larva)	0
True Fly Larva – Crane Fly	0
True Fly Larva – Black Fly	0
Dragonfly Nymph	O
Crayfish	0
Clams and Mussels (non-native)	0
Alderfly Larva	. 0
True Fly Larva – Midge	0
Flatworm	0
Damselfly Nymph	0
True Fly Larva – Other	0
Scud	730
Isopod	730
Non-operculate Snail	0
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	0
Aquatic Worm/Leech	730
Total See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Sampler(s): Alexander Robe Phonas Boll

Date: 4/21/17

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
/	Al	13ank underents (Rb)
2	Al	Bank Undercults 4/Rb)
3	Al	
4	Al	Centur of Reach, Culvert under 1-64 Facing downstream a upstream end of Peach, Leaf palks, submerged vegetation
5	Al	Facing upstream of reach
b	Al	High sediment deposition, Trash
7	Al	train bridge upstrem of reach
8	Al	Trash, submiged vegetation, leaf packs
9	Al	Typical bubshate
	*	
	an v	

STREAM ID CANE LAT: N38.02180 LONG: W74.51035 WATERSHED AND I INVESTIGATOR(S) COWARDIN CLASS: **IMAGE COMMENT:** STREAM SIZE: **STREAM TYPE: IMAGE ID: IMG** Width (Ft) IM **Perennial IMG** Depth (Ft) <.5M **Ephemeral** IMG Reach (Ft)

Reach (Ft)	INOW	Intermittent	IMG				
		CONDITION CATEGORY					
HABITA	Λ Τ	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
PARAMET	TER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
I. Epifaunal Sub	strate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack		
Available Cover	r	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate		
		colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.		
		snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.			
		banks, cobble or other stable	presence of additional substrate in				
		habitat and at stage to allow full	the form of new fall, but not yet				
		colonization potential (i.e.,	prepared for colonization (may				
Score	0	logs/snags that are not new fall	rate at high end of scale).				
2. Embeddednes		Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder		
		particles are 0-25% surrounded by		particles are 50-75%	particles are more than 75%		
1		fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.		
	(provides diversity of niche space.	,	, mo occiniona	, Joannena		
Score	5	p. 51.265 diversity of findic space.					
3. Velocity /		All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth		
Depth Regime		present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).		
		fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).			
	A	0.3 m/s, deep is > 0.5 m.)	100				
Score 4 Sediment Der		Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,		
i. dediritere Dep	,03,00,1	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more		
		the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing		
		deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent		
		a opesico	deposition in pools.	deposits at obstructions,	due to substantial sediment		
ł .			dependent in peers.	constrictions, and bends;	deposition.		
				moderate deposition of pools			
	7			prevalent.			
5. Channel Flow		Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and		
5. Channel Flow		banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.		
		channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	mostly present as standing pools.		
Score	7	criaimer subsulate is exposed.	subsulate is exposed.	subsulates are mostly exposed.			
6. Channel Alter	ation	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or		
		or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream		
		pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.		
			channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered		
			(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.		
			present, but recent channelization	disrupted.			
Score			is not present.				
7. Frequency of P			Occurrence of riffles infrequent;		Generally all flat water or shallow		
(or Bends)				the state of the s	riffles; poor habitat; distance		
	- 1	and the second s			between riffles divided by the		
li e	t	he stream < 7:1 (generally 5 to		CHANGE OF THE CONTROL	width of the stream is a ration of		
(Control of the Control 7	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.			
	5	treams where riffles are					
		continuous, placement of boulders	5				
. г		or other large, natural obstruction					
Score	11 1	simportant					

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
1	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 2				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have		meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.		vegetation due to human
LB Score 2	lawns, or crops) have not			activities.
RB Score Z	impacted zone.			

ME 6:18 PM

Has been raining recently

REMARKS / NOTES:

culvert N35 n wide Lots of undercut banks high embededness

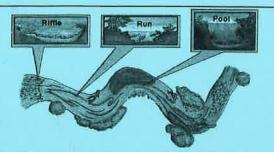
Broken SIL Fence

Evidence

Nien Donal ad Jacent

OPStress OF Georgetown RD/US25

STREAM ID 0


Sampler	Car	6	14 A	PX
15.00		∇T		The second secon

Reach: Cant RIN (A)

Date: 4 | 8 | 7

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 20 %	Run <u>%</u> %	Pool %	Reach total
Silt/Clay (<0.06 mm)	15°6	70%	0	
Sand (0.06 – 2 mm)	10% 30%	18.16	()	
Gravel (2-64 mm)	20% 20%	50/0	0	
Cobble (64-256mm)	5% 30%	5%	Q	
Boulders (>256mm)	Tela 20 50%	10%0	0	
Bedrock	@yo 0%	0%	Q	

Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	0
Mussel (Native)	9
True Fly Larva – Watersnipe Fly	9
Caddisfly Larva (case-building)	5
Mayfly Nymph	Ü
Water Penny Larva	i)
Caddisfly Larva (net-spinner)	(j
Riffle Beetle Larva	9
Riffle Beetle Adult	Q
Operculate Snail	9
Hellgrammite (Dobsonfly Larva)	O
True Fly Larva - Crane Fly	0
True Fly Larva – Black Fly	Q
Dragonfly Nymph	0
Crayfish	9
Clams and Mussels (non-native)	Ó
Alderfly Larva	. Q
True Fly Larva – Midge	0
Flatworm	0
Damselfly Nymph	0
True Fly Larva – Other	0
Scud	381
Isopod	130+
Non-operculate Snail	0 /
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	1
Aquatic Worm/Leech	THUIT
Total See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	11 3/11

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Sampler(s): CON TALEY

Date:

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1	A2	Aquatic Vegetation in Riffle
2	A2	Bank Undercuts (Rb)
3	AZ	Bank Undercute 2(26)
4	AZ	Culvert filter Facing Downstream, left Packs
5	A2	culvert filter Facing Upstream
6	AZ	Erosian Control on Rb of right
7	A2	Failed 51/t Kence on Lb near reach
8	AZ	Log in Stream, leaf packs
9	AZ	Riffle Z
10	AZ	Riffle, Drainage from adjacent Neighborhood
- 11	AZ	Ripgrian Zone, Bank Cut
12	AZ	Road above Culvert Z
13	AZ	Rogal above Culvert
14	AZ	Sewer Pressure Pipe worning 2
15	AZ	sever pressure pipe woning
16	AZ	Typical substrate
	*	

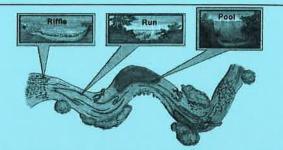
STREAM ID	B1		25/17 LAT: N 38,11024 LONG: W 084,50893
INVESTIGATOR(S	Alex Eberle	COWARDIN CLASS:	WATERSHED Cape Run
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG	
Depth (Ft)	Ephemeral	IMG	
Reach (Ft) 100 N	Intermittent	IMG	

Reach (Ft) 100 M	Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
	banks, cobble or other stable	presence of additional substrate in		
	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score /	logs/snags that are <u>not</u> new fall	rate at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
(provides diversity of niche space.			
Score 2			0.1.0.6.1.41.11	Description of the desired
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if		Dominated by I velocity/depth
Depth Regime		fast-shallow is missing, score lower	I'	regime (usually slow-deep).
1	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	
Score O	0.3 m/s, deep is > 0.5 m.)		•	
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
-		deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
	1		moderate deposition of pools	
Score			prevalent	
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
Score O		Constitution of the second	Channelinetten man ha	Banks shored with gabion or
6. Channel Alteration		Some channelization present,	Channelization may be extensive; embankments or	cement: over 80% of the stream
		usually in areas of bridge		reach channelized and disrupted.
		abutments; evidence of past	shoring structures present on both banks; and 40 to 80% of	Instream habitat greatly altered
			stream reach channelized and	or removed entirely.
		(greater than past 20 yr) may be		or ranored endrery.
Score 13		present, but recent channelization	disrupted.	
	Occurrence of riffles relatively	is not present. Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
		The state of the s		riffles; poor habitat; distance
Γ ' Ι		*	ll '	between riffles divided by the
	, , , , , , , , , , , , , , , , , , , ,	7 to 15.		width of the stream is a ration of
	7); variety of habitat is key. In			> 25.
	streams where riffles are			
	continuous, placement of boulders			
	or other large, natural obstruction		The state of the s	
Second O	is important			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 3	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 3				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score 7	evident; almost all plants allowed	stubble height remaining.		
RB Score 7	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
11 AE	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
4 LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.			
Total Score 0				

REMARKS / NOTES:

Stream Bed was dry at the time of Characterization. More Notes in digital excel copy.


Stream Bed was pry of time of sampling

Sampler: Alex Ebeck & Theras Boll Reach: B1

Date: 3/25

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle Q %	Run / %	Pool%	Reach total
Silt/Clay (<0.06 mm)	2	Q	Q	Q
Sand (0.06 – 2 mm)	9	9	Ó	9
Gravel (2-64 mm)	0	()	Q	0
Cobble (64-256mm)	Q	9	Ô	0
Boulders (>256mm)	Q	Ô	Ž	Q
Bedrock	9			0

* Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	0
Mussel (Native)	O O
True Fly Larva – Watersnipe Fly	0
Caddisfly Larva (case-building)	Ŏ
Mayfly Nymph	Q
Water Penny Larva	0
Caddisfly Larva (net-spinner)	Ó
Riffle Beetle Larva	Ô
Riffle Beetle Adult	O
Operculate Snail	Č
Hellgrammite (Dobsonfly Larva)	ð
True Fly Larva - Crane Fly	Š
True Fly Larva - Black Fly	Õ
Dragonfly Nymph	Ö
Crayfish	0
Clams and Mussels (non-native)	0
Alderfly Larva	Ô
True Fly Larva – Midge	S S
Flatworm	()
Damselfly Nymph	0
True Fly Larva – Other	0
Scud	Q.
Isopod	0
Non-operculate Snail	Q
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	0
Aquatic Worm/Leech	Q
T	otal O

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Sampler(s): Alex Eberle & Thomas Boll

Photo Log

1. Sampling zone - In middle of reach — either direction

- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
/	32	Upstream End of Reach, Facing Downstream
2	B1	Center of Reach, Facing Downstream AE upstream
3	<i>B</i> 1	Center of Reach, Facing Down stram
4	B2	Evidence of drainage from agriculture field. Flows into reach on left bank.
5	B1	Evidence of Vegetative Buffer restoration
6	<i>B</i> 2	Downstream End of Reach facing upstream
7	B1	Downstream End of Peach Facing Downstream \$ 5 hows Highway & curvert.
	+	
		/

STREAM ID	C.I	• DATE: 3-28-1	7 LAT: 38.10414	LONG: \$4.505/3
INVESTIGATOR(S)	Brandon Michell	COWARDIN CLASS:	WATERSHED Cane A	105
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IAGE COMMENT:	
Width (Ft) 5-164	Perennial	IMG		
Depth (Ft) 1,3f	Ephemeral	IMG		
Reach (Ft) 300 f	Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 18	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0

Reach (Ft) 300 f	1 Intermittent	IMG				
		CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0		
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lac		
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate		
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.		
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.			
	banks, cobble or other stable	presence of additional substrate in				
	habitat and at stage to allow full	the form of new fall, but not yet				
	colonization potential (i.e.,	prepared for colonization (may				
Score 6	logs/snags that are not new fall	rate at high end of scale).		'		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder		
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%		
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.		
1	provides diversity of niche space.	·		ms .		
Score 7				13.1		
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	'	Dominated by I velocity/depth		
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	l'	regime (usually slow-deep).		
	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	4		
Score 13	0.3 m/s, deep is > 0.5 m.)					
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,		
		formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; mor		
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changin		
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent		
		deposition in pools.	deposits at obstructions,	due to substantial sediment		
			constrictions, and bends;	deposition.		
			moderate deposition of pools			
. [4			prevalent.	1.7		
Score 9	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and		
. Chamier Flow Status	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools		
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Score 20	Charmer substitute is exposed.	3050 200 is Especial.				
. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or		
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream		
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted		
	1	channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered		
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.		
		present, but recent channelization	disrupted.			
Score 5		is not present.				
. Frequency of Riffles		Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallo		
1 2	A Section 1	, ,	· ·	riffles; poor habitat; distance		
	between riffles divided by width of			between riffles divided by the		
16m	the stream < 7:1 (generally 5 to		divided by the width of the	width of the stream is a ration o		
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.		
	streams where riffles are					
<u>36.1÷3</u> 12.26	continuous, placement of boulders					
	or other large, natural obstruction	-E				
Score 13	is important					

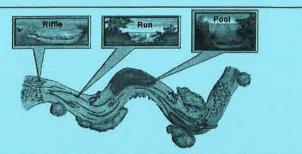
8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 9	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score q				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score 7	evident; almost all plants allowed	stubble height remaining.		
RB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,			meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.		vegetation due to human
LB Score 7	lawns, or crops) have not			activities.
	impacted zone.			
Total Score 0				

REMARKS / NOTES:

Width

Lots of Recent (past 5 years) and On going Contruction near Reach.

6.3m/4=1.575m=5.46ft


12.26 \$1.575 . 8:1

STREAM ID 0

Sampler: Brandon Michelle	Reach: <u>1</u>	Date: 3-28-77
---------------------------	-----------------	---------------

Substrate Characterization (Visual Estimate)

- I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 20 %	Run 10 %	Pool 70 %	Reach total
Silt/Clay (<0.06 mm)	400	25	80	59%
Sand (0.06 – 2 mm)	20	25	5	10%
Gravel (2-64 mm)	80	50	5	25%
Cobble (64-256mm)			10%	7.9%
Boulders (>256mm)				0%
Bedrock	, N			0%

Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	1
Dragonfly Nymph	
Cráyfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	4
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	Ž.
Isopod	
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Date: 3/28/17

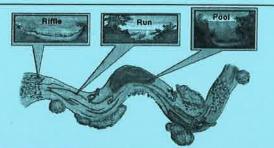
- Photo Log
- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
C1-01		Top of reach locking upstream, wo shows
C1-02		Middle of reach looking upstream, snows riparian vegetation zones
(1-03		Middle of reach looking down stream, shows possible remeandering of stream ripatement ripatement
C1-641		Bottom of reach looking clown stream,
CHO5		Shows substrate covered in sediment, this was agratest area of embeddedness, located at rop of reach.
4-06		shows site for scop sample
01-07		Riffle sampling site, width of stream is very narrow through here, mix of washe and gravel substracte and regetation
11-08		Riffle sampling site, substrate neve is mostly gravel with some sand
U-09		Riffle sampling site, 5 a 03 tracts here was
01-10		liffle sampling site 4, shows some point har formation.
01-11		Picture was taken at grass line arend of water way overlooking top of reach
	N. S. C. C. C.	

STREAM ID		COVENTRY T		7 LAT: N 38,09953 LONG: W 084,51065
INVESTIGAT	TOR(S) And	du Stephens by Smith	COWARDIN CLASS:	WATERSHED Come Run
STREAM SIZ		EAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	1.47m Pere	nnial 🗡	IMG	
Depth (Ft)	4.5m Ephe	meral	IMG	
Reach (Ft)	Inter	mittent	IMG	

Reach (Ft)	Intermittent	IMG			
	CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack	
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate	
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.	
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.		
	banks, cobble or other stable	presence of additional substrate in			
	habitat and at stage to allow full	the form of new fall, but not yet			
	colonization potential (i.e.,	prepared for colonization (may			
Score 15	logs/snags that are <u>not</u> new fall	rate at high end of scale).			
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%	
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.	
To the second	provides diversity of niche space.				
Score 146	And the state of t		Only 2 of the 4 habitat regimes	Dominated by I velocity/depth	
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	,	Y	
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	shallow are missing, score low).	regime (usuany slow-deep).	
1	fast-deep, fast-shallow). (Slow is <	than it missing other regimes).	SHAHOW ATE THISSING, SCOTE TOW).		
Score 11	0.3 m/s, deep is > 0.5 m.)		•		
4. Sediment Deposition	Little or no enlargement of islands		Moderate deposition of new	Heavy deposits of fine material,	
		formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more	
	the bottom affected by sediment	sand or fine sediment; 5-30% of		than 50% of the bottom changing	
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent	
		deposition in pools.	deposits at obstructions,	due to substantial sediment	
			constrictions, and bends;	deposition.	
			moderate deposition of pools		
Score 14			prevalent.	M. Pode and to describe	
		Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and	
			available channel, and/or riffle	mostly present as standing pools.	
Score 14	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.		
	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or	
		usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream	
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.	
1		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered	
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.	
		present, but recent channelization	disrupted.		
Score 14		is not present.			
	·	Occurrence of riffles infrequent;		Generally all flat water or shallow	
l' '			bottom contours provide some		
			·	between riffles divided by the	
				width of the stream is a ration of	
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.	
	streams where riffles are				
	continuous, placement of boulders				
Score 14	or other large, natural obstruction				
Score 11	is important				

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
, , , , , , , , , , , , , , , , , , , ,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 7				of bank has erosional scars.
	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score 9	lawns, or crops) have not			activities.
RB Score 9	impacted zone.			
Total Score 0				
155				


REMARKS / NOTES:

majority Long Riffles

Reach: C2(Cane Run) Date: 4/11/14

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 65 %	Run 15 %	Pool 10 %	Reach total
Silt/Clay (<0.06 mm)	5	920-10	15	
Sand (0.06 – 2 mm)	15	20	25	
Gravel (2-64 mm)	10	15	10	
Cobble (64-256mm)	20	10	15	
Boulders (>256mm)	30	15	LD .	
Bedrock	10	20	25	

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	30+
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	30+
Isopod	30+
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	2
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1	CZ	End of Reach facing Downstream
2	CZ	middle of stream facing upstream/ overhang vegetation. Start of reach facing upstream
3	CZ	Start of reach facing upstream
4	CI	Hom mark/ end of viffle / and sample spot
6000	Masm	AN LA BUNGS DESD SOUTH AND ONE
® 5	CZ	64m mark 3rd sample area/right bank
6 0	CZ	Dom mark + up / long, 25m length riffle facing upstream I mostly unbedded
		, pe
,		

LONG: STREAM ID WATERSHED COME INVESTIGATOR(S) CONTROL MICHEL COWARDIN CLASS: **IMAGE COMMENT:** STREAM SIZE: STREAM TYPE: IMAGE ID: Width (Ft) **IMG** Perennial **IMG** Depth (Ft) Ephemeral IMG Reach (Ft) Intermittent

	CONDITION CATEGORY			
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 1 0
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
	banks, cobble or other stable	presence of additional substrate in	-	
*	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score 13	logs/snags that are not new fall	rate at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded by		particles are 50-75%	particles are more than 75%
	ľ.	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
9	provides diversity of niche space.	ĺ		
Score ++				
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if		Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	l'	regime (usually slow-deep).
1	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	
Score 15	0.3 m/s, deep is > 0.5 m.)			
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
8	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
		deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
			moderate deposition of pools	
Score 9		-2	prevalent.	
	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
15	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
6. Channel Alteration	Changelization or deadeling about	Some channelization present,	Channelization may be	Banks shored with gabion or
	Channelization or dredging absent or minimal; stream with normal	usually in areas of bridge	extensive: embankments or	cement: over 80% of the stream
			shoring structures present on	reach channelized and disrupted.
			both banks; and 40 to 80% of	Instream habitat greatly altered
		,	stream reach channelized and	or removed entirely.
		(8) 0200. Dian passas (1) 111-1	disrupted.	·
Score ZO		is not present.		
	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
	frequent; ratio of distance	distance between riffles divided by		riffles; poor habitat; distance
14.5	between riffles divided by width of		·	between riffles divided by the
24.2	the stream < 7:1 (generally 5 to			width of the stream is a ration of
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.
	streams where riffles are			
	continuous, placement of boulders			
6. 110	or other large, natural obstruction			
Score 10	is important			

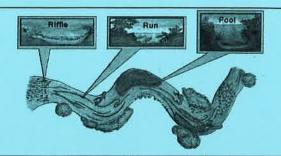
27 27 31

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
100	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 4				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	
	zone covered by native vegetation,	one class of plants is not well-		disruption of streambank
	including trees, understory shrubs,	represented; disruption evident		vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth		has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant		stubble height.
LB Score [0	evident; almost all plants allowed	stubble height remaining.		-
RB Score 10	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have		meters: little or no riparian
	parking lots, roadbeds, clear-cuts,		1	vegetation due to human
LB Score 5	lawns, or crops) have not			activities.
RB Score 3	impacted zone.			777 (.T. 1972)
Total Score 0				

126

REMARKS / NOTES:

Bush honeysuckle present algal present involgnant reach


Sample	r:Carbi	Julys	170

Reach:

Date: 4/24

Substrate Characterization (Visual Estimate)

- I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle_20 %	Run <u>40 %</u>	Pool_ 40 %	Reach total
Silt/Clay (<0.06 mm)	10	30	80	
Sand (0.06 – 2 mm)	し	30	30	
Gravel (2-64 mm)	50	10	-5 10	
Cobble (64-256mm)	30	30	25 30	
Boulders (>256mm)	0	0	100	
Bedrock	0	0	0	

mage from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	1
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	1 14
Clams and Mussels (non-native)	14
Alderfly Larva	
True Fly Larva – Midge	2
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
Isopod	10 10 10
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	10 1
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Sampler(s): Michell Covby

McHugh Smith Photo Log

1. Sampling zone - In middle of reach - either direction

- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
	1 (-) - (-)	Bottom of reach, Stream goes
01-01	DILCOCASTVEAM	through a floodgate
)1-02	Dilard Stream	Top of reach
01-03	DI CORDSTRUM TOND	Scoop sampling site, shows hypical bank evosion, looking upstream
DI-04	DI Clastream	undercut bank present as well
D1-05	DI Carastream Trib	Jab sampling site
D1-66	DI Corastream	Typical vegetation cover, bush honey- succe provided predominant cover
DI-07	DI COLDSTVEAM	Point war formation, located directly after bank evosion in photo DI-04
01-08	DI Corastream	midreach upstream, viffle sampling site
DI-09	DI Corastream Trib	midveach down stream, jab site at undercut bank and point bar for mati
DI-10	DI CROISTURAM TYMO	Riffle sampling site
	-	
		X X

STREAM HABITAT ASSESSMENT (HIGH GRADIENT) DATE: 4-12-17 LAT: 38,09922 LONG: 84.48468 STREAM ID COWARDIN CLASS: WATERSHED Cano Run INVESTIGATOR(S) Brandon, Corby STREAM TYPE: **IMAGE COMMENT:** STREAM SIZE: IMAGE ID: Perennial **IMG** Width (Ft) **IMG** Depth (Ft) **Ephemeral** IMG Reach (Ft) Intermittent CONDITION CATEGORY MARGINAL POOR HABITAT **OPTIMAL** SUBOPTIMAL 3 **PARAMETER** 13 12 11 8 18 17 Less than 20% stable habitat; lack 40-70% mix of stable habitat; well 20-40% mix of stable habitat; Greater than 70% of substrate I. Epifaunal Substrate / habitat availability less than of habitat is obvious; substrate suited for full colonization Available Cover favorable for epifaunal desirable: substrate frequently unstable or lacking. potential; adequate habitat for colonization and fish cover; mix of disturbed or removed. snags, submerged logs, undercut maintenance of populations; presence of additional substrate in banks, cobble or other stable the form of new fall, but not yet habitat and at stage to allow full prepared for colonization (may colonization potential (i.e., rate at high end of scale). logs/snags that are not new fall Score Gravel, cobble, and boulder Gravel, cobble, and boulder Gravel, cobble, and boulder Gravel, cobble, and boulder 2. Embeddedness particles are more than 75% particles are 25-50% surrounded particles are 50-75% particles are 0-25% surrounded by surrounded by fine sediment. surrounded by fine sediment. by fine sediment. fine sediment. Layering of cobble provides diversity of niche space. Score Dominated by I velocity/depth Only 2 of the 4 habitat regimes Only 3 of the 4 regimes present (if 3. Velocity / All four velocity/depth regimes regime (usually slow-deep). present (if fast-shallow or slowpresent (slow-deep, slow-shallow, fast-shallow is missing, score lower Depth Regime fast-deep, fast-shallow). (Slow is < than if missing other regimes). shallow are missing, score low). 0.3 m/s, deep is > 0.5 m.) Score VQ Heavy deposits of fine material, 4. Sediment Deposition Little or no enlargement of islands Moderate deposition of new Some new increase in bar increased bar development; more gravel, sand or fine sediment or point bars and less than 5% of formation, mostly from gravel, on old and new bars; 30-50% of than 50% of the bottom changing the bottom affected by sediment sand or fine sediment; 5-30% of frequently; pools almost absent the bottom affected; sediment the bottom affected; slight deposition. due to substantial sediment deposits at obstructions, deposition in pools. deposition. constrictions, and bends; moderate deposition of pools prevalent. Very little water in channel and Water fills 25-75% of the Water fills > 75% of the available 5. Channel Flow Status Water reaches base of both lower mostly present as standing pools. channel; or <25% of channel available channel, and/or riffle banks, and minimal amount of substrates are mostly exposed. substrate is exposed. channel substrate is exposed. Score [Banks shored with gabion or Channelization or dredging absent | Some channelization present, Channelization may be 6. Channel Alteration cement; over 80% of the stream usually in areas of bridge extensive; embankments or or minimal; stream with normal reach channelized and disrupted. shoring structures present on abutments; evidence of past pattern. Instream habitat greatly altered both banks; and 40 to 80% of channelization, i.e., dredging, or removed entirely. (greater than past 20 yr) may be stream reach channelized and disrupted. present, but recent channelization Score 15 is not present. Generally all flat water or shallow Occurrence of riffles infrequent; Occasional riffle or bend; 7. Frequency of Riffles Occurrence of riffles relatively riffles; poor habitat; distance bottom contours provide some distance between riffles divided by (or Bends) frequent; ratio of distance

between riffles divided by width of the width of the stream is between

7 to 15.

the stream < 7:1 (generally 5 to

 rariety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction between riffles divided by the

> 25.

width of the stream is a ration of

habitat: distance between riffles

divided by the width of the

stream is between 15 to 25.

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
<u> </u>	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 9				of bank has erosional scars.
	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
100-195	evident; almost all plants allowed	stubble height remaining.		
LB Score C	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.	+		

Pipe Running agross stream

with with

Sampler(s): Brandon, Corby

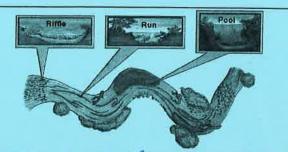
Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
D2-Rord Bogin	D2	Start of Rosely Upstrain
DZ-Mill Danghe	m DZ	mil Reach Downstream
DZ-Reach stream		End of Reach Dan Steam
De- pipe crossy	DZ	Pipe crossy strem collects desors
DZ-RAPPLE	D2	only Rolling Reach, Kith taken
D2-bank/Rootest	DL	WinderCut Banks and host mats Job Sample taken
DL-3000pinhe	22	gravel and Ane sourcement grab gample taken
		+
		*
1.1		

Sampler:_	Brandon	Corby	
The state of the s			_

Reach: 12


Date: "1-12-17

Substrate Characterization (Visual Estimate)

I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle_15 %	Run <u>3</u> 5 %	Pool_50 %	Reach total
Silt/Clay (<0.06 mm)		5%	10%	
Sand (0.06 – 2 mm)	5%	10%	30%	
Gravel (2-64 mm)	25%	35	25	
Cobble (64-256mm)	70%	15%	35	
Boulders (>256mm)				
Bedrock		5%		

ge from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

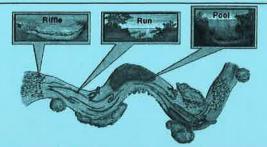
Benthic Macroinvertebrates	Abundance Counts	
Stonefly Nymph		
Mussel (Native)		
True Fly Larva – Watersnipe Fly		
Caddisfly Larva (case-building)		
Mayfly Nymph	·	
Water Penny Larva		
Caddisfly Larva (net-spinner)		
Riffle Beetle Larva		
Riffle Beetle Adult		
Operculate Snail	1	
Hellgrammite (Dobsonfly Larva)		
True Fly Larva - Crane Fly	P.	
True Fly Larva - Black Fly	11111	
Dragonfly Nymph	11111	
Crayfish		
Clams and Mussels (non-native)		
Alderfly Larva		
True Fly Larva – Midge		
Flatworm		
Damselfly Nymph		
True Fly Larva – Other		
Scud .	S/	
Isopod	WHILL WIT 20=	90
Non-operculate Snail	1 College A	
Adult Beetles (non-riffle beetles)		
Beetle Larva (other than riffle beetles and water pennies)		
Aquatic Worm/Leech	111	
Tota	1 //	

STREAM ID 2	1-1 Stributary John Bernardo	DATE: 3/7/17	LAT: N 34.0834	LONG: W-84.500Z		
INVESTIGATOR(S)	John Bernardo	COWARDIN CLASS:	WATERSHED Can	Run		
STREAM SIZE:	JSTREAM TYPE:	IMAGE ID: IMAGE COMMENT:				
Width (Ft) 1.50	Perennial	IMG				
Depth (Ft)	Ephemeral	IMG				
22.000		IMG		50		
Mescrifich DO La mescriment V						
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
PARAMETER	20 19 18 17 16	15 (14) 13 12 11	10 9 8 7 6	5 4 (3) 2 1 0		
1. Epifaunal Substrate /		40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack		
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate		
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.		
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.			
	banks, cobble or other stable	presence of additional substrate in		0.00		
	habitat and at stage to allow full	the form of new fall, but not yet		1 - 31		
r-a	colonization potential (i.e., logs/snags that are not new fall	prepared for colonization (may				
Score	Gravel, cobble, and boulder	rate at high end of scale). Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder		
Z. Embeddedness	particles are 0-25% surrounded by		particles are 50-75%	particles are more than 75%		
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.		
L	provides diversity of niche space.	,	,	- V		
Score 17						
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	F 98 10 6 76		
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow- shallow are missing, score low).	regime (usually slow-deep).		
1	fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	than if missing other regimes).	Shahow are missing, score low).	sunthered pools		
Score 3						
4. Sediment Deposition	Little or no enlargement of islands	formation, mostly from gravel,	Moderate deposition of new gravel, sand or fine sediment	Heavy deposits of fine material, increased bar development; more		
	or point bars and less than 5% of the bottom affected by sediment	sand or fine sediment: 5-30% of		than 50% of the bottom changing		
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent		
8 ,	- Coposido	deposition in pools.	deposits at obstructions,	due to substantial sediment		
	^ 1		constrictions, and bends;	deposition.		
			moderate deposition of pools			
Score W			prevalent.			
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and		
	banks, and minimal amount of		available channel, and/or riffle	mostly present as standing pools.		
Score O	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.			
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or		
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream		
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.		
		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered		
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.		
Score 18		,	disrupted.			
	Occurrence of riffles relatively	is not present. Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow		
001	frequent; ratio of distance		bottom contours provide some	riffles; poor habitat; distance		
	between riffles divided by width of		habitat; distance between riffles			
	the stream < 7:1 (generally 5 to		,	width of the stream is a ration of		
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.		
	streams where riffles are					
	continuous, placement of boulders					
Cenera	or other large, natural obstruction					
	CONTRACTOR OF THE PARTY OF THE					

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
ľ í	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 5	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 2				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
,	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
130	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
Xe.	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
~	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 10	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
×	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score 10	lawns, or crops) have not			activities.
RB Score 10	impacted zone.			
Total Score 0				

Lack of flow
Still pools

All water within reach still, non moving. Broke off into sporadic pools. Never very deep.


Sampler:	Ano	nda	Ste	dus	0
1 - Circle And Brown	-	0			

Reach: Care har

Date: 3/7/17

John Bernado Substrate Characterization (Visual Estimate)

- I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle O %	Run <u> </u>	Pool 100 %	Reach total
Silt/Clay (<0.06 mm)			40	
Sand (0.06 – 2 mm)			110	
Gravel (2-64 mm)			lo l	
Cobble (64-256mm)			5	
Boulders (>256mm)			5	
Bedrock				

Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	0
Mussel (Native)	0
True Fly Larva – Watersnipe Fly	2
Caddisfly Larva (case-building)	0
Mayfly Nymph	0
Water Penny Larva	O
Caddisfly Larva (net-spinner)	Ó
Riffle Beetle Larva	0
Riffle Beetle Adult	0
Operculate Snail	0
Hellgrammite (Dobsonfly Larva)	٥
True Fly Larva – Crane Fly	0
True Fly Larva – Black Fly	
Dragonfly Nymph	0
Crayfish	0
Clams and Mussels (non-native)	O
Alderfly Larva	. 6
True Fly Larva – Midge	0
Flatworm	Ó
Damselfly Nymph	0
True Fly Larva – Other	6
Scud	0
Isopod	0
Non-operculate Snail	0
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	0
Aquatic Worm/Leech	# 1
Total	1
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Date: 3/7/17

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

	CANE RUN	
Photo ID	Reach / Site	Description
1	E1-1	middle Downston
2	F2-1	Middle Uprtroom
3	E2-1	Middle Upstroom Againing facing downstroom All pends Upstrooms 1st simpling area kick 1508
4	21-1	35 m from start of Peach Streem logins to die off downstream A End of Peach pointury upstream and fab Dupest when pool statem picks up stylenter
5	RI-1	A End of Reach pointing upstream in 50%
	- +-	
		,

STREAM ID	D2-1 Winham +	DATE: 4/25	117 LAT: 38 0934 LONG: -84 482	Į
INVESTIGATOR(S)	Tony & Michale	COWARDIN CLASS:	WATERSHED Cane Run	
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:	
Width (Ft) 2M	Perennial	IMG		
Depth (Ft) 4.57	//Ephemeral	IMG		
Reach (Ft)	Intermittent	IMG		s.

Reach (Ft)	Intermittent X	IMG				
we m	CONDITION CATEGORY					
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR		
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0 Less than 20% stable habitat; lack		
Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	of habitat is obvious; substrate unstable or lacking.		
Score 2. Embeddedness	colonization potential (i.e., logs/snags that are <u>not</u> new fall Gravel, cobble, and boulder	prepared for colonization (may rate at high end of scale). Gravel, cobble, and boulder particles are 25-50% surrounded	Gravel, cobble, and boulder	Gravel, cobble, and boulder		
Score Score	fine sediment. Layering of cobble provides diversity of niche space.	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.		
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).		regime (usually slow-deep).		
		Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.		
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.		
6. Channel Alteration		Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.		
7. Frequency of Riffles (or Bends)		Occurrence of riffles infrequent;	divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.		

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
1	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.			
Total Score 0				

- Not enough space for 100m reach

- Not enough space for 100m reach

- Storm water pipe present in middle of mach

(pieture enclosed)

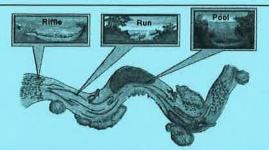
- Most of Creek Bottom covered in agree

- Calium makes up mest & if not all of

the stream

- Evidence of past flooding

Evident of fight 11000mg


	Tony of
Sampler:	Michele

Reach: D2-1 Winburn trib Date: 4/25/17

leech

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of

Substrate	Riffle 5 %	Run _ 5 0 %	Pool 45 %	Reach total
Silt/Clay (<0.06 mm)	3	0	0	
Sand (0.06 – 2 mm)		0	0	
Gravel (2-64 mm)	50	50	50	
Cobble (64-256mm)	50	50	50	
Boulders (>256mm)	6	0	0	
Bedrock	0	O	0	

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	The state of the s
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	Total Control
Hellgrammite (Dobsonfly Larva)	1
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
Isopod	
Non-operculate Snail	1
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	30+ Only or
Tot	

Date: 4/25/17

Photo Log

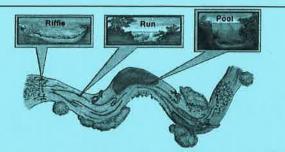
- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
D2-1-01	D2-11 Windown trib	Midriach upstream snows entire upstream reach, lack of viparian zone, bank stabilization measures
D2-1-02	D2-1 Winform Hib	Midreach downstream, lack of viparian zone, bank stabilization masures
02-1-03	D2-11 Winsom Anib	reach. agae surrounded substrate
D2-1-04	D2-11 CVINGOUTH FIND	Buttom of reach, down stream
D2-1-05	D2-11 Winburn trib	510 vm water inlet
D2-1-04	D2-11 Winturn trib	upstream of 12p of reach
D2-1-07	DZ-1 Winham Int	Stream bank stabilization
D2-1-08	D2-1 Windum took	Riffle sampling site
	1	

STREAM ID E1		. DATE: 3-	7-17 LAT.38.08424°	LONG: 0841.49953°
Brandon T INVESTIGATOR(S) Corby Sx	nith	COWARDIN CLASS:	WATERSHED Cane	Run
STREAM SIZE: STREAM T	YPE:	IMAGE ID:	IMAGE COMMENT:	10
Width (Ft) 23 A Perennial		IMG		
Depth (Ft) Ephemeral		IMG		
Reach (Ft) / OO The Intermittent		IMG	_	

HABITAT PARAMETER OPTIMAL SUBDIFINAL HABIGINAL POOR 1. Epifurual Substrate Carceter than 170% of subcretate 40-70% mix of stable habitat will adequate habitat of target than 170% of subcretate 40-70% mix of stable habitat will adequate habitat of target than 170% of subcretate 40-70% mix of stable habitat and colonization and fish covery mix of target to subcretate 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target to substance 40-70% mix of stable habitat of target target target 40-70% mix of stable habitat of target target target 40-70% mix of stable habitat of target target 40-70% mix of stable habitat of target target 40-70% mix of stable habitat of target target 40-70% mix of stable habitat of target target 40-70% mix of stable habitat of target target 40-70% mix of stable habitat of target 40-70% mix of stable habitat of target 40-70% mix of stable habitat 40-70% mix of stable habitat 40-70% mix of stable habitat 40-70% mix of stable habitat 40-70% mix of stable habitation 40-70% m	Reach (Ft) /00 PA	Intermittent	IMG		
PARAMETER 20 10 18 17 15 15 14 13 12 11 10 0 0 8 7 0 5 4 3 2 1 C			CONDITION	CATEGORY	
Content than 70% of substrate Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Cover Available Availabl	HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
Available Cover Normalize for epifamal condination and fish cover; mix of properties of possible strates and strate of possible strates of possible strates to the patients and strate of the patients and strate of the patients and strate of the patients and strate to allow full colonization potential (i.e., prepared for colonization (may particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space) Score 76 Soprimage that are not going exhibit to the form of new fall, but not yet prepared for colonization (may particles are 0-25% surrounded by fine sediment.	PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	
colorization and fish cover; mix of sings, submerged logs, undercut banks, cobble or other states in a stage to allow full colorization porential (i.e., presence of additional substrate in the form of new full, but not yet prepared for colonization (may rare at high end of scale). 2. Embeddedness Carvel, cobble, and boulder particles are 0.25% surrounded by fine sediment. Lyvering of cobble particles are 0.25% surrounded by fine sediment. Lyvering of cobble particles are 2.5% of surrounded by fine sediment. Provides diversity of niche space. 3. Velocity / Depth Regime present (flow-deep, slow-shallow, fisst-shallow is missing, score lower shallow are missing, score lower than if missing other regimes). 5. Score 1	1. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well		
srags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., and at stage to allow full colonization potential (i.e., area thigh end of scale). 2. Embeddedness Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Lyvering of cobble by fine sediment. Lyvering of cobble by fine sediment. Lyvering of cobble by fine sediment. Lyvering of cobble by fine sediment. Lyvering of cobble by fine sediment. Lyvering of cobble by fine sediment. 3. Velocity / All four velocity/depth regimes present (if stat-shallow, fiast-deep, fast-shallow), (Slow is status fine to point bars and lest than 5% of the bottom affected by sediment deposition. 4. Sediment Deposition 4. Sediment Deposition 5. Score 1	Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
banks, cobble or other stable habitat and a stage to allow full colonization potential (Le., Score 76 78 187 198 187 198 188		colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
habitat and at stage to allow full colonization potential (i.e., Score 1/6 colonizatio	1	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
Colonization potential (i.e., area thigh end of scale). Colonization (may area thigh end of scale). Colonization (incle scalement. Colonization (may area thigh end of scale). Colonization (may area thigh end of scale). Colonization (may area thigh end of scale). Colonization (may area thigh end of scale). Colonization (may area thigh end of scale). Colonization (may area thigh end of scale). Colonization (may are		banks, cobble or other stable	presence of additional substrate in		
Score Scor		habitat and at stage to allow full	the form of new fall, but not yet		
2. Embeddedness Gravel, cobble, and boulder particles are 0.25% surrounded by fine sediment. Layering of cobble provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 3. Velocity / Depth Regime Provides diversity of inche space. 4. Sediment Deposition Deposition		colonization potential (i.e.,	prepared for colonization (may		
2. Embeddedness Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. Some 1/2 3. Velocity / Depth Regime All four velocity/depth regimes present (iflow-deep, slow-shallow, fast-deep, slow-shallow, fast-deep, slow-shallow, fast-deep, slow-shallow, fast-deep, slow-shallow, fast-deep, slow-shallow is missing, score lower whan if missing other regimes). 4. Sediment Deposition or point bars and less than 5% of the bottom affected by sediment deposition. 5. Cone 1/2 5. Channel Riow Status Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. 6. Channel Alteration or minimal; stream with normal pattern. 5. Sore 1/2 7. Frequency of Riffles (or Bends) 5. Courrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream is between riffles divided by width of the stream is between riffles divided by width of the stream is between riffles divided by the width of the stream is a ration of stream other large, natural obstruction or other large	Score 18	logs/snags that are <u>not</u> new fall	rate at high end of scale).		
fine sediment. Layering of cobble provides diversity of niche space. Score 177 3. Velocity / Depth Regime Present (slow-deep, slow-shallow, fast-deep, slow-shallow in missing, score low-shallow are missing		Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
Score 7 Negime 17 Negime 18 Score 19 All four velocity/depth regimes present (slow-deep, slow-shallow, fast-shallow is missing, score lower than if missing other regimes). Score 19 Negime 19 A. Sediment Deposition 1 deposition. Score 19 Score 19 Score 19 Channel Row Status Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Score 19 Channel Alteration Channel Existance or minimal, stream with normal pattern. Score 17 Negretare than past 20 yr) may be present, but recent channelization is not present. Score 17 Channel Row Status Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Score 17 Negretare than past 20 yr) may be present, but recent channelization is not present. Score 17 Negretare than past 20 yr) may be present, but recent channelization is not present. Score 17 Negretare than past 20 yr) may be present, but recent channelization is not present. Score 17 Negretare than past 20 yr) may be present, but recent channelization is not present. Score 17 Negretare than past 20 yr) may be present, but recent channelization of the stream is between riffles divided by width of the stream is between riffles divided by the width of the stream is between list are accontinuous, placement of boulders or other large, natural obstruction or ot		particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%
Score 1/2 3. Velocity / Depth Regime Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposit		fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
Score 1/2 3. Velocity / Depth Regime Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposition Deposit	L.	provides diversity of niche space.			
present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < or with an if missing other regimes). 3. and s, deep is > 0.5 m.) 4. Sediment Deposition Little or no enlargement of islands or point bars and leas than 5% of the bottom affected by sediment deposition. 4. Sediment Deposition. 4. Sediment Deposition. 4. Sediment Deposition. 4. Sediment Deposition. 5. Channel Row Status between 15 to 25. 5. Channel Row Status between 15 to 25. 5. Channel Alteration or minimal; stream with normal pattern. 5. Channel Atteration 6. Channel Atteration 7. Frequency of Riffles or Ends) 6. Channel Status between riffles are continuous, placement of boulders or other large, natural obstruction of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction of stands and solution of the stream is between 15 to 25. 5. Channel Row Status between 15 to 25. 5. Channel Row Status between 15 to 25. 5. Channel Atteration of the Status between 15 to 25. 5. Channel Atteration or dredging absent or minimal; stream with normal pattern. 5. Channel Row Status between 15 to 25. 5. Channel Row Status between 1				0.1.0.4.1.1	Developed by Lender devider of
fast-deep, fast-shallow). (Slow is score 200.3 m/s, deep is > 0.5 m.) 4. Sediment Deposition or point bars and less than 5% of the bottom affected by sediment deposition. Score 16 5. Channel Row Status Start substrate is exposed. Score 17 6. Channel Ateration or minimal; stream with normal pattern. Score 17 7. Frequency of Riffles (or Bends) 8. Some than if missing other regimes (in the bottom affected; salight (or Bends) (or Heat and or fine sediment; 5-30% of the bottom affected; sediment deposition of pools prevalent. Water fills > 75% of the available channel, and/or riffle substrates are mostly exposed. Some channelization present, but recent channelization present, but recent channelization on the extensive embankmats or shoring structures present on both banks; and 40 to 80% of the stream reach channelized and disrupted. Intervent (or Bends) (or Bends) 8. Some channelization in policy (or Pends) 8. Some channelization in policy (or Pends) 8. Some channelization presen	The state of the s				
4. Sediment Deposition 4. Sediment Deposition 4. Sediment Deposition 4. Sediment Deposition 5. Channel Row Status 6. Channel Alteration 6. Channel Atteration 6. Channel Atteration 7. Frequency of Riffles 6. Cocurrence of riffles relatively 7. Frequency of Riffles 6. Decurrence of riffles relatively 7. Frequency of Riffles 6. Decurrence of riffles relatively 7. Frequency of Riffles 6. The sediment on old and new bars; 30-50% of the bottom affected; sediment deposition in pools. Score 7. State 8. Some 1. State 9. Some 1. State 9. Some 1. State 1. Sediment Deposition 1. Little or no enlargement of islands or point bars and less than 5% of the bottom affected; sediment deposition on old and new bars; 30-50% of the bottom affected; sediment deposition. 9. Water fills > 75% of the available channel, and/or riffle substrate is exposed. 9. Score 1. State 9. Score 1. State 1. Sediment Deposition 1. Little or no enlargement of islands or point bars and less than 5% of the bottom affected; sediment deposition on old and new bars; 30-50% of the bottom affected; sediment deposition. 9. Water fills > 75% of the available channel, and/or riffle substrate is exposed. 9. Score 1. State 9. Channel Atteration 1. Channel Atteration 1. Channel Atteration 1. Channelization or dredging absent or minimal; stream with normal pattern. 9. Score 1. State 1. Channelization or dredging absent or minimal; stream with normal pattern. 9. Score 1. State 1. Channelization and the set of bridge abstrates are mostly exposed. 9. Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of the stream reach channelized and disrupted. 9. Score 1. State 1. Channelization and the set of the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between the stream is between th	Depth Regime	· · · · · · · · · · · · · · · · · · ·			t ·
4. Sediment Deposition Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Score 1/4 4. Sediment Deposition Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Score 1/4 4. Sediment Deposition Little or no enlargement of islands or point bars and less than 5% of the bottom affected; slight deposition in pools. Score 1/4 5. Channel Flow Status Score 1/5 6. Channel Alteration Channelization or dredging absent or minimal; stream with normal pattern. Channelization or dredging absent corminimal; stream with normal pattern. Score 1/7 7. Frequency of Riffles Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction or other large, natural obstruction or other large, natural obstruction or other large, natural obstruction or other large, natural obstruction or or fine sediment on on old and new bars; 30-50% of the bottom affected; sediment deposition of new gravel, sand or fine sediment on on old and new bars; 30-50% of the bottom affected; sediment deposition in pools. Water fills 25-75% of the valiable channel, and/or riffle substrates are mostly exposed. Very little water in channel and mostly present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization disrupted. Score 1/7 7. Frequency of Riffles Occurrence of riffles infrequent; and of the stream is between habitat; distance between riffles divided by the width of the stream is between 15 to 25.	1		than if missing other regimes).	shallow are missing, score low).	
A. Sediment Deposition or point bars and less than 5% of the bottom affected by sediment deposition. Score	Score 20	0.3 m/s, deep is > 0.5 m.)			
the bottom affected by sediment deposition. sand or fine sediment; 5-30% of the bottom affected; selight deposition in pools. Score 6 Score 7 Channel Flow Status Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channel Alteration or minimal; stream with normal pattern. Cocurrence of riffles relatively (or Bends) Cor Bends) Cor Bends) Cor Bends) Cor Pands Cor Pan		Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
deposition. the bottom affected; sediment deposits at obstructions, and bends; moderate deposition of pools prevalent. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Score 5 Channel Alteration Channelization or dredging absent or minimal; stream with normal pattern. Commission Channelization or dredging absent or minimal; stream with normal pattern. Score 7 Score 7 Trequency of Riffles (or Bends) 5 Tripical or generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction in pools. The bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Were fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. Coccurrence of riffles divided by both width of the stream is between riffles divided by the width of the stream is between 15 to 25. Some La or status deposition. Very little water in channel and mostly present as standing pools. Some channelization present, usually in areas of bridge abutments; evidence of past channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. Coccurrence of riffles divided by bottom contours provide some habitat; distance between riffles divided by the width of the stream is a ration of \$25. Some La or structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habita		or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
deposition in pools. deposition in pools. depositis at obstructions, constrictions, and bends; moderate deposition. Score 5 5. Channel Flow Status		the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
Score 16 Score 17 Channel Flow Status banks, and minimal amount of channel substrate is exposed. Score 15 Channel Alteration or minimal; stream with normal pattern. Score 17 Score 17 Cocurrence of riffles relatively (or Bends) Trequency of Riffles (or Bends) Score 17 Cocurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream synchroling or other large, natural obstruction of the stream is between 15 to 25. Score 16 Channel Flow Status Water reaches base of both lower banks, and minimal amount of channel, or <25% of channel available channel, and/or riffle available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available available channel, and/or riffle substrates are mostly exposed. Channelization or dredging absent or minimal; stream with normal pattern. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization disrupted. Score 17 Cocurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream is between habitat; distance between riffles divided by the width of the stream is between 15 to 25. Score 17 Trequency of Riffles or bend; other stream is between 15 to 25. Score 17 Trequency of Riffles or bend; other width of the stream is between 15 to 25. Score 17 Trequency of Riffles or bend; other width of the stream is between 15 to 25.		deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
Mater reaches base of both lower banks, and minimal amount of channel substrate is exposed. Water fills > 75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. Generally all flat water or shallow the width of the stream of 7.1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction To 15.			deposition in pools.	deposits at obstructions,	due to substantial sediment
Score 16 S. Channel Flow Status Score 17 Channel Status Score 17 Channel Alteration Channel Stream with normal pattern. Score 17 Score 17 Channel Stream with normal pattern. Score 17 Score 18 Channel Stream with normal pattern. Score 17 Score 18 Channel Stream with normal pattern. Score 18 Score 18 Score 19 Channel Stream with normal pattern. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Coccurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction Score 18 Water fills > 75% of the available channel, and/or riffle substrates are mostly exposed. Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed. Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Coccurrence of riffles infrequent; distance between riffles divided by the width of the stream is between habitat; distance between riffles divided by the width of the stream is between 15 to 25. Score 18 Some channelization present. Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Score 19 Score 10 Score 19 Coccurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 15 to 25. Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 Score 19 S				constrictions, and bends;	deposition.
Score 1/2 5. Channel Flow Status Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Score 5 6. Channel Alteration or minimal; stream with normal pattern. Channel Status Channel Substrate is exposed. Score 1/2 7. Frequency of Riffles (or Bends) Core Bends) Core Bends) Water fills > 75% of the available channel, and/or riffle substrates are mostly exposed. Water fills > 75% of the available channel, and/or riffle substrates are mostly exposed. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction				moderate deposition of pools	
Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Score 5	Score 76			prevalent	
channel substrate is exposed. Score 5 Channel Alteration or dredging absent or minimal; stream with normal pattern. Score 7 Frequency of Riffles (or Bends) Occurrence of riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction channel substrate is exposed. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Occurrence of riffles infrequent; distance between riffles divided by width of the stream is between the stream is between the stream is between 15 to 25. Score 16 Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly all flat water or shallow distance between riffles divided by bottom contours provide some between riffles divided by the width of the stream is between 15 to 25. Score 17 Therefore the stream with normal pattern. Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly all flat water or shallow ottom contours provide some between riffles divided by the width of the stream is between the stream is between 15 to 25. Score 17 Therefore the stream with normal pattern. Occurrence of riffles infrequent; distance between riffles of the stream is between the bottom contours provide some between riffles divided by the width of the stream is between 15 to 25.		Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
6. Channel Alteration or dredging absent or minimal; stream with normal pattern. Score 7 7. Frequency of Riffles (or Bends) Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or or other large, natural obstruction Score 10 Channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream is between babitat; distance between riffles divided by the width of the stream is between 15 to 25. Score 10 Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. Generally all flat water or shallow to the width of the stream is between riffles divided by the width of the stream is between 15 to 25. Score 10 Occurrence of riffles relatively frequent; ratio of distance between riffles divided by the width of the stream is between 15 to 25. To 15.		banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
Channel Alteration Channel Alteration Channel Alteration Channel Alteration Channel Alteration Channelization or dredging absent or minimal; stream with normal pattern. Score Score Channelization or dredging absent or minimal; stream with normal pattern. Score Channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Coccurrence of riffles relatively frequent; ratio of distance between riffles divided by the width of the stream of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization both banks; and 40 to 80% of stream reach channelized and disrupted. Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization disrupted. Score Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely. Generally all flat water or shallow bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.		channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
or minimal; stream with normal pattern. usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Score 1/2 7. Frequency of Riffles (or Bends) Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. Occurrence of riffles infrequent; distance between riffles divided by bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25. Seen 1/2 Occurrence of riffles relatively distance between riffles divided by the width of the stream is between 15 to 25. Seen 1/2 Occurrence of riffles relatively bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	SCOTE			Character may be	Banks shored with online or
abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. 7. Frequency of Riffles (or Bends) Occurrence of riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction abutments; evidence of past channelized and disrupted. Instream habitat greatly altered or removed entirely. Score 7 Score 8 Score 8 Score 8 Score 9 S	1 1		· ·		
channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present. 7. Frequency of Riffles (or Bends) Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization disrupted. Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between habitat; distance between riffles divided by the width of the stream is between 15 to 25. Seem 16.					
(greater than past 20 yr) may be present, but recent channelization is not present. 7. Frequency of Riffles Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction some of the stream of the		r			·
present, but recent channelization is not present. Occurrence of riffles relatively (or Bends) Occurrence of riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction Occurrence of riffles infrequent; distance using the stream is between riffles divided by the width of the stream is between l5 to 25. Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between l5 to 25. Seem 160				· ·	
Score 7					or ranoved entirely.
7. Frequency of Riffles (or Bends) Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction Occurrence of riffles infrequent; distance under the stream is between riffles divided by the width of the stream is between thabitat; distance between riffles divided by the width of the stream is a ration of the stream is between 15 to 25. Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is a ration of the stream is between 15 to 25. Seem 160	Sem 1/2			disrupted.	
frequent; ratio of distance between riffles divided by bottom contours provide some between riffles divided by width of the stream is between habitat; distance between riffles divided by the width of the stream is between riffles divided by the width of the stream is a ration of 5 /1; variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction				Occasional riffle or bend:	Generally all flat water or shallow
between riffles divided by width of the stream is between habitat; distance between riffles divided by the width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction	100	Contract of the contract of th	· · · · · · · · · · · · · · · · · · ·		·
the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction		C. C. C. C. C. C. C. C. C. C. C. C. C. C	· ·	· · · · · · · · · · · · · · · · · · ·	
7); variety of habitat is key. In stream is between 15 to 25. > 25. streams where riffles are continuous, placement of boulders or other large, natural obstruction	5 11				
streams where riffles are continuous, placement of boulders or other large, natural obstruction				-	> 25.
continuous, placement of boulders or other large, natural obstruction	1	000			
or other large, natural obstruction					
Score 10		0.00 (0.00)			
July lis important	Score 19	is important			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 7	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 4				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 6	to grow naturally.			*
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score 10	lawns, or crops) have not			activities.
RB Score 5	impacted zone.			
Total Score 0	1			


Sampler:	Brandon 7	Thorpe
	och. 6	

Reach: E1

Date: 3-7-17

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle <u>55 %</u>	Run 15 %	Pool 30 %	Reach total
Silt/Clay (<0.06 mm)	0	/ O 2 2 3 3	15%	
Sand (0.06 – 2 mm)	B	10%	20	
Gravel (2-64 mm)	10%	10%	40	
Cobble (64-256mm)	15%	5%	25	
Boulders (>256mm)	G	B	O	
Bedrock	75 %	75%		

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva - Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	13
Isopod	16
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	3
Total	32
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Sampler(s) Coch Smith & Brandon Thope

Date: 7/17

Photo Log

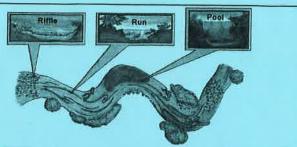
- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
2	El	DOWNSHAM RECOM-BELLE (KICK)
3	(6)	Down Stream Reach Shock/ Kit
4	61	mid stream 5a of under cot Bg.
5	Ei	mid sweem (Ecopp) Fine se
6	Ei	SIPSTIEM RIFFIE (KICK)
7	E1	Upsylaam LEGE (KICK)
8	G1	UPStram Rittle (Rick)
9	E)	inpersean leaves (Scoop)
10.	El	Upstream Reach Bandes
- 1,	Gl	Downstream feach Board CX
<i>V</i>		

STREAM ID		EZ	DATE: 3-12-20	17 LAT: N 37.07.269	LONG: W084, 49827
INVESTIGAT	OR(S)	Alex & Thomas	COWARDIN CLASS:	WATERSHED Cally	run -
STREAM SIZE	E:	STREAM TYPE:	IMAGE ID:	MAGE COMMENT:	
Width (Fp)	2m	Perennial	IMG		
	>350	n Ephemeral	IMG		
,	100M		IMG		
9,	10.00		CONDITION	CATECORY	
HABITAT	т	OPTIMAL	CONDITION	MARGINAL	POOR
PARAMET		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Subs	trate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover		favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
		colonization and fish cover; mix o	f potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
		snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
		banks, cobble or other stable	presence of additional substrate in		
		habitat and at stage to allow full	the form of new fall, but not yet		
		colonization potential (i.e.,	prepared for colonization (may		
Score	16	logs/snags that are <u>not</u> new fall	rate at high end of scale).		
2. Embeddedness	•	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
		particles are 0-25% surrounded by	ľ	particles are 50-75%	particles are more than 75%
	ý.	fine sediment. Layering of cobble	by fine sediment	surrounded by fine sediment.	surrounded by fine sediment.
Score	13	provides diversity of niche space.			
3. Velocity /	17	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
Depth Regime		present (slow-deep, slow-shallow,	fast-shallow is missing, score lower		
		fast-deep, fast-shallow). (Slow is <		shallow are missing, score low).	
- 5	-7	0.3 m/s, deep is > 0.5 m.)			
Score	Peition	Little or no enlargement of islands	Some new increase in har	Moderate deposition of new	Heavy deposits of fine material,
4. Sediment Depo		or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
14		the bottom affected by sediment	sand or fine sediment: 5-30% of		than 50% of the bottom changing
		deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
			deposition in pools.	deposits at obstructions,	due to substantial sediment
				constrictions, and bends;	deposition.
				moderate deposition of pools	
Score	13			prevalent.	
5. Channel Flow St	tatus	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
		banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
		channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
Score 5. Channel Alterat		Channelization or dredging absent	Some channelization present	Channelization may be	Banks shored with gabion or
- Commission of Autor at	- 1	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
		pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.
	- 1		i i		Instream habitat greatly altered
			(greater than past 20 yr) may be		or removed entirely.
-			700 (20020)	disrupted.	
Score	-		is not present.		
Frequency of Rif	- 1-	Occurrence of riffles relatively	Occurrence of riffles infrequent;		Generally all flat water or shallow
or Bends)		114-00#X74450VWC		bottom contours provide some	
			Market Ma	Philosophia	between riffles divided by the
		(6	7 to 15.	1100000-1011	width of the stream is a ration of > 25.
); variety of habitat is key. In		su eam is between 15 to 25.	43.
		treams where riffles are ontinuous, placement of boulders			
	1	r other large, natural obstruction			
Score		important			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score S				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
N	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score 8	evident; almost all plants allowed	stubble height remaining.		_
RB Score 9	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width				meters: little or no riparian
	parking lots, roadbeds, clear-cuts,			vegetation due to human
LB Score 9	lawns, or crops) have not			activities.
RB Score 10	impacted zone.			
Total Score 0				

Sampler: Alex & Thomas


Reach: E2 Date: 3/12/17

Substrate Characterization (Visual Estimate)

1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 40 %	Run <u>60 %</u>	PoolO %	Reach total
Silt/Clay (<0.06 mm)	10%	100%		
Sand (0.06 – 2 mm)	50/2	10%	1014	
Gravel (2-64 mm)	20%	10%	184	
Cobble (64-256mm)	5%	30%	/ LAK	
Boulders (>256mm)	50%	20%	12/01	
Bedrock	; C°/0	29 %	AE	

ervation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	0
Mussel (Native)	0
True Fly Larva – Watersnipe Fly	0
Caddisfly Larva (case-building)	Ö
Mayfly Nymph	0
Water Penny Larva	0
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	o o
Riffle Beetle Adult	0
Operculate Snail	O
Hellgrammite (Dobsonfly Larva)	0
True Fly Larva - Crane Fly	0
True Fly Larva – Black Fly	0
Dragonfly Nymph	0
Crayfish	0
Clams and Mussels (non-native)	O O
Alderfly Larva	O O
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	0
True Fly Larva – Other	
Scud	17
Isopod	95 93 94 AE
Non-operculate Snail	0
Adult Beetles (non-riffle beetles)	Õ
Beetle Larva (other than riffle beetles and water pennies)	0
Aquatic Worm/Leech	2
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these operations	

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Date: 3/12/17

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
/	EZ	Upstream End of Reach Facing Counstream
2	F2	Upstream End of Reach Facing Counstream Center of Reach Facing Upstream
3	FZ	Center of Reach Facing Downstown
y	FZ	Downstram End of Reach Exing Upstrem.
	34	
		Note: Discussed Photos - will
	-	take additional in Liture. JW
		to the American Commence of the Commence of th

STREAM IE	FI			•	DATE: 3-21	-17	N LAT: 356.05	8699LONG: US	54. 49 ⁴ 10
INVESTIGA	ATOR(S)	vandon:	Michele	COWAR	DIN CLASS:	WAT	ERSHED COM	e Rien	
STREAM SI	IZE:	STREAM TYP	E:	IMAGE	ID:	IMAGE (COMMENT:		
Width (Ft)	4.7x+	Perennial		IMG					
Depth (Ft)	Zin.	Ephemeral	X	IMG					
Donal (Sa)	2/1/2/1		im	IMC					

Reach (Ft) 300	fl Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full	maintenance of populations; presence of additional substrate in the form of new fall, but not yet	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
To-	colonization potential (i.e.,	prepared for colonization (may		
Score (O	logs/snags that are not new fall	rate at high end of scale).	Court public and boulder	Carrel askbla and bandes
2. Embeddedness Score 19	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).		
4. Sediment Deposition	Little or no enlargement of Islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status Score	banks, and minimal amount of	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6. Channel Alteration	or minimal; stream with normal pattern.	abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be	both banks; and 40 to 80% of	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	bottom contours provide some habitat; distance between riffles divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o. Dank Stability	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 8	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 8				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score L	impacted zone.			
Total Score 0				

bery little water was present in this stream.

Bush honeysuckle was the predominant regulation.

Half of the reach was a concrete steel culvert.

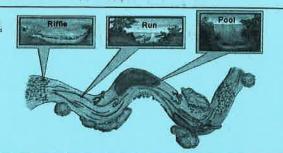
argae was present at the 10p of the reach at the culvert outlet.

ati ati

18000 4/4/4 4/4/4

Michell McHugh Sampler: Wandon Thripl

Reach:


Date: 3-21-17

Substrate Characterization (Visual Estimate)

1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Note on back	1	Stol	ON	vac	L
--------------	---	------	----	-----	---

Substrate	Riffle_O %	Run <u>O</u> %	Pool_ O %	Reach total
Silt/Clay (<0.06 mm)				50/10
Sand (0.06 – 2 mm)				5%
Gravel (2-64 mm)				10
Cobble (64-256mm)				60%
Boulders (>256mm)				1000 0°/0
Bedrock				

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	1
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
Isopod	(0
Non-operculate Snail	3
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Total See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms	9

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Note: This reach was dry The substrate
assessment was for entire reach
excluding the areas that are culrerts.

Sampler(s): Michelle Me Hugh Brandon Thompe Date: 3/21/17
Photo Log

1. Sampling zone - In middle of reach - either direction

- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
F101	FI	Bottom of Reach, ends in a colvert, looking
F102	Fl	Bottom of Reach upstveam, most of whalf of veach was calvert
F103	FI	Midpoint of reach, down stream, runs through culvert
F104	FI	Mid point apstream, very little water, most
F105	FI	Sampling site, very shallow poul, looking upstream
Flou	FI	Sampling site, looking clownstream
FIOT	FI	sampling site, greatest amount of pould water in 300 ft-reach shown
F108	FI	of algae Top of reach looking apstream, alga
F109	PI	Top of reach looking downstream
+		

STREAM ID	(2)	Loudon T	v.b 1	DATE:	19/17 LAT: N34.07H5 LONG: W044.45 62/
INVESTIGAT	OR(S)	Bundon Thor Armula Step	per	COWARDIN CLASS:	WATERSHED Cone fun
STREAM SIZE	E:	STREAM TYPE	E:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	5.8	Perennial	<u>X</u>	IMG	
Depth (Ft)	4.5n	Ephemeral		IMG	
Reach (Ft)	100 m	Intermittent		IMG	

Reach (Ft)	ntermittent	IMG			
		CONDITION	CATEGORY		
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
1. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack	
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate	
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.	
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.		
	banks, cobble or other stable	presence of additional substrate in			
	habitat and at stage to allow full	the form of new fall, but not yet			
	colonization potential (i.e.,	prepared for colonization (may			
Score 3	logs/snags that are <u>not</u> new fall	rate at high end of scale).			
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%	
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.	
L	provides diversity of niche space.				
Score 3					
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	,	Dominated by I velocity/depth	
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	F		
1	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).		
Score 4	0.3 m/s, deep is > 0.5 m.)		*		
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,	
·	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more	
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing	
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent	
	·	deposition in pools.	deposits at obstructions,	due to substantial sediment	
			constrictions, and bends;	deposition.	
			moderate deposition of pools		
Score 4			prevalent.		
Some	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and	
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.	
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	7.	
Score 17	charmer substitute is exposed.				
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or	
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream	
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.	
		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered	
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.	
		present, but recent channelization	disrupted.		
Score 12		is not present.			
7. Frequency of Riffles	Occurrence of riffles relatively		Occasional riffle or bend;	Generally all flat water or shallow	
,	frequent; ratio of distance	C. C. C. C. C. C. C. C. C. C. C. C. C. C	·	riffles; poor habitat; distance	
	Production of the second	CITATION OF THE PARTY OF THE PA		between riffles divided by the	
	the stream < 7:1 (generally 5 to		'	width of the stream is a ration of	
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.	
	streams where riffles are				
	continuous, placement of boulders				
	or other large, natural obstruction				
Score	is important				

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o, same seasone,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 2	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 4				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 4	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score 6	lawns, or crops) have not			activities.
RB Score 5	impacted zone.			
Total Score 0				

- Honey suchle present.

- Riffles

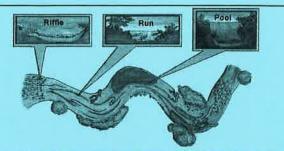
I burelay at beginning of reach + 1 right after
the end of Reach. 100 mt distance difference
between Riffle

- Mostly deep 1 stagnant pools, very fine
Seliment

- Street sums dend of life (vasides isopods + Gresse

Sampler: Amanda Stephas

Reach: G


_____ Date: 4/19/17

Substrate Characterization (Visual Estimate)

I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

 Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 5 %	Run <u>16 %</u>	Pool 💤 %	Reach total
Silt/Clay (<0.06 mm)	25	40	45	
Sand (0.06 – 2 mm)	25	Ц	\$ 60	
Gravel (2-64 mm)	5	iD .	£ 5	
Cobble (64-256mm)	40	5	2	
Boulders (>256mm)	5	5	36	1
Bedrock	0			

age from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	The second second
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	1
Isopod	30+
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Tota See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Date: 4/11/17

Photo Log

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

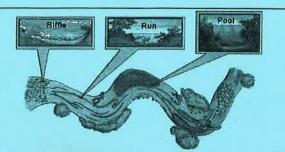
Photo ID	Reach / Site	Description
I A	GI	start of Reach fungry upstream
2 0	G	and of fruct training upstoen away
3 A	Gl	and of funct training upstoen away from reach 1st sample Top of only riffle (looks man mula)
4 8	Gl	and simple under cut
53	41	middle of reach friing upstream
PROBA	anger .	

	STREAM ID		62		DAT	E: 4/25/17	LAT: <u>N38.0657</u>	LONG: W 84.48772
	INVESTIGA	TOR(S)	Hex Eberle	& thomas	COWARDIN C	LASS: WA	TERSHED	
	STREAM SIZ	ZE:	STREAM TYP	E:	IMAGE ID:	IMAGE	COMMENT:	
M.	Width (Ft)	1.6M	Perennial	*	IMG			
1	Depth (Ft)	4.5M	Ephemeral		IMG			
	Reach (Ft)	(00M	Intermittent		IMG			

Reach (Ft) (OOM	Intermittent	IMG					
/		CONDITION CATEGORY					
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR			
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0			
1. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack			
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate			
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.			
97	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.				
	banks, cobble or other stable	presence of additional substrate in					
	habitat and at stage to allow full	the form of new fall, but not yet					
	colonization potential (i.e.,	prepared for colonization (may					
Score 12	logs/snags that are not new fall	rate at high end of scale).					
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder			
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%			
4	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.			
_ (provides diversity of niche space.						
Score 6							
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if					
F (2004) 600 (1004)	' '	fast-shallow is missing, score lower		regime (usually slow-deep).			
f		than if missing other regimes).	shallow are missing, score low).				
Score 6	0.3 m/s, deep is > 0.5 m.)	-	-				
The Particular Property of the Particular Pa	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,			
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more			
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing			
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent			
		deposition in pools.	deposits at obstructions,	due to substantial sediment			
			constrictions, and bends;	deposition.			
			moderate deposition of pools				
Score 15			prevalent.				
The second secon	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and			
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.			
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.				
Score 9							
		Some channelization present,		Banks shored with gabion or			
	****	1954C111116.0	extensive; embankments or	cement; over 80% of the stream			
F		September 1997	e constitue de la constitue de la constitue de la constitue de la constitue de la constitue de la constitue de	reach channelized and disrupted.			
	· ·		1	Instream habitat greatly altered			
		. , ,	2007 - 100 PM	or removed entirely.			
Score 15			disrupted.				
		is not present. Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow			
and the second s	and the second s	Management of the contract of	bottom contours provide some	Land To the Control of the Control o			
		TO THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUM		between riffles divided by the			
	be stream < 7:1 (generally 5 to			width of the stream is a ration of			
				> 25.			
U P	(); variety of habitat is key. In treams where riffles are		ou earn is between 13 to 23.	4J.			
	continuous, placement of boulders						
The state of the s	SELECTION OF PERSONS						
Score 1/	or other large, natural obstruction						
lis lis	- Indicated the second						

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 6	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 7				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score 9	evident; almost all plants allowed	stubble height remaining.		
RB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score 2	impacted zone.			
Total Score 0				

Near LEX 18 nows station down gream From train curvert UPSTRam Frem Read 1 brigg Surreunding trees (ASh, sikur meple) are 20+ years inege, so stream has been in Existant For awhile.


Sampler	: Alex Eberle	E Thomas	Boll	Reach:	G2	Date: 4/	25	17

Substrate Characterization (Visual Estimate)

I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 20 %	Run 80 %	Pool 0 %	Reach total
Silt/Clay (<0.06 mm)	O	١٥		
Sand (0.06 – 2 mm)	50	40		
Gravel (2-64 mm)	50 40	40		
Cobble (64-256mm)	0 10	10	**	
Boulders (>256mm)	Q	0		
Bedrock	0	0		

alido

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	C
Mussel (Native)	0
True Fly Larva – Watersnipe Fly	0
Caddisfly Larva (case-building)	0
Mayfly Nymph	0
Water Penny Larva	0
Caddisfly Larva (net-spinner)	0
Riffle Beetle Larva	0
Riffle Beetle Adult	٥
Operculate Snail	30+
Hellgrammite (Dobsonfly Larva)	0
True Fly Larva – Crane Fly	O
True Fly Larva – Black Fly	30+
Dragonfly Nymph	0
Crayfish	0
Clams and Mussels (non-native)	0
Alderfly Larva	9
True Fly Larva – Midge	Q
Flatworm	0
Damselfly Nymph	4
True Fly Larva – Other	0
Scud	•
Isopod	q
Non-operculate Snail	Q
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	9
Aquatic Worm/Leech	30+
Tota See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms	l u

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Sampler(s): Alex Eberle thans Boll Date: 4/25/17

Photo Log

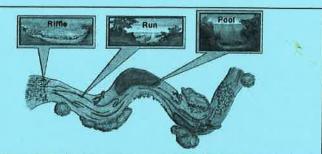
- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1	62	under out bank front mat
2	62	Typical substrate
3	62	undercut band front myt
4	62	Undercut bank, sediment disostion
5	62	Typical Riffle
6	62	
7	62	Eiparian Zane, Facing downstram of reach
7	62	Ripacian Zone, facing upstheam
9	62	The livey
10	62	Riffle
4		

STREAM ID H1		CK . DATE: 4/19	//7 LAT: 38.	0778 L	ONG: -84.4813
INVESTIGATOR(S)	Nichelle Helpes	COWARDIN CLASS:	WATERSHED	(ane	Run
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:		
Width (Ft) 1.7 m	Perennial	IMG			
Depth (Ft) 21m	Ephemeral	IMG			
Reach (Ft) 100 m	Intermittent	IMG			

Reach (Ft) 100 m	Intermittent X	IMG			
	CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack	
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate	
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.	
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.		
	banks, cobble or other stable	presence of additional substrate in			
_	habitat and at stage to allow full	the form of new fall, but not yet			
5	colonization potential (i.e.,	prepared for colonization (may			
Score	logs/snags that are not new fall	rate at high end of scale).			
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	
122	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%	
	The state of the s	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.	
16	provides diversity of niche space.				
Score	W	A g L			
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	T .	, , ,	
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).	
1 2	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).		
Score	0.3 m/s, deep is > 0.5 m.)				
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ATTACAS -	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more	
		sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing	
	·	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent	
	-	deposition in pools.	deposits at obstructions,	due to substantial sediment	
			constrictions, and bends;	deposition.	
13			moderate deposition of pools		
1			prevalent.		
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and	
S. Chamic How Sales	The Contract of the Contract o	ATTEMPTON TO THE PERSON TO THE	available channel, and/or riffle	mostly present as standing pools.	
10		substrate is exposed.	substrates are mostly exposed.	, present a alliante present	
Score	chainer subsulate is exposed.	substitute is exposed.	sassa accor as o mosa, asperso.		
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or	
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream	
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.	
		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered	
6		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.	
		present, but recent channelization	disrupted.		
Score		is not present.			
7. Frequency of Riffles		Occurrence of riffles Infrequent;		Generally all flat water or shallow	
' '	200 20 d and a not of the second	- Parking Co.	· ·	riffles; poor habitat; distance	
				between riffles divided by the	
	E/A			width of the stream is a ration of	
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.	
	streams where riffles are	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			
J	continuous, placement of boulders				
Corro	or other large, natural obstruction				
Score	is important.				

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
0, 5	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
9	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 9				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
6	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 5	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.			
Total Score 0				


- Overflow tank for Sombry sewer system at top and bottom of Reach

	10ny 2
Sampler:_	Michele Michele

Reach: 41 Hollow Creck Date: 4/19/17

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of

Substrate	Riffle 15 %	Run 15 %	Pool_70 %	Reach total
Silt/Clay (<0.06 mm)	5	50	40	1
Sand (0.06 – 2 mm)	5	30	40	
Gravel (2-64 mm)	40	25	10	No.
Cobble (64-256mm)	AD	10	0	
Boulders (>256mm)	0	0	0	
Bedrock	10	5	10	

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva - Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	70
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	-30r
Isopod	30°
Non-operculate Snail	5
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	30 10
Aquatic Worm/Leech	9
Tota	

ee Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Date: 4/19/17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
41-01	HI HOUR CVECK	down stream of middle of reach
HI-02	HII Horlow Creek	upstream of middle of reach
H1-03	HI HOROW CVERK	upstream of 10p of reach
H1-04	HI Hellow Ever	snows possible channelization at right wank of stream, underweter straight slabs of concrete present
H1-05	HI Houce Evelk	Sanitary sewer at top of reach
H1-02e	HI Horan Everx	Bank evosion
H1-07	HIT HOLLOW CVELL	Possible channetization on vight bank, sanitary slut in background at bottom of reach
H1-08	HI Hollow Creek	Battom of reach closur stream
HI-09	HU HOROW CHEE	Stabilization evosion Control mats at
H1-10	HI Hollow Cruk	Eiffu sampling site
H1-11	HI HONOW CHEK	Jab sampling site.
H1-12	HI HOVON CNELL	eiffle sampling 3td 2
H1-13	on Halow Creek	Scoop sampling ste

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID 1	Dover Trib	. DATE: 4/27/19	LAT: N 34.0742	LONG: W-84.4718
INVESTIGATOR(S)	John Bernardo Amala Stephens	COWARDIN CLASS:	WATERSHED Care 2	un.
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	AGE COMMENT:	
Width (Ft)	Perennial	IMG		
Depth (Ft) <.5 m	Ephemeral	IMG		
Reach (Ft) [D0 M	Intermittent 1	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR

	(00 M		COMPLETION	CATEGORY	
HABITA	\T	OPTIMAL	CONDITION	MARGINAL	POOR
PARAME		20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Sub			40-70% mix of stable habitat: well	20-40% mix of stable habitat;	Less than 20% stable habitat; lac
Available Cover		favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious: substrate
Available Cove		colonization and fish cover; mix of		desirable; substrate frequently	unstable or lacking.
		snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
		banks, cobble or other stable	presence of additional substrate in		
		habitat and at stage to allow full	the form of new fall, but not yet		
		colonization potential (i.e.,	prepared for colonization (may		
C	14	logs/snags that are not new fall	rate at high end of scale).		
Score 2. Embeddedne	-	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
Z. Embeddedne		particles are 0-25% surrounded by		particles are 50-75%	particles are more than 75%
		l'	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
	1	provides diversity of niche space.	,	1	
Score	5	The state of the space.			
3. Velocity /		All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
Depth Regime		present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).
		fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	
Score	9	0.3 m/s, deep is > 0.5 m.)		- Y	
4. Sediment De		Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	ALTERNATION OF THE PARTY OF THE	The state of the s	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; mor
		the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
		deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
			deposition in pools.	deposits at obstructions,	due to substantial sediment
			-	constrictions, and bends;	deposition.
				moderate deposition of pools	
Score	4			prevalent.	
. Channel Flow	Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
		banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools
		channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
Score	3			Characteristics would	Dealer shared with selice as
. Channel Alter	ation	Environmental Control	Some channelization present,	Channelization may be	Banks shored with gabion or
			usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
				shoring structures present on	reach channelized and disrupted.
			Manual and the control of the contro		Instream habitat greatly altered or removed entirely.
			AND PROPERTY OF THE PARTY OF TH		or removed enurely.
Score	2			disrupted.	
Frequency of F			is not present. Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
or Bends)	- 1			bottom contours provide some	SEGMANN COMMEN
		between riffles divided by width of		Charles and Charle	
					width of the stream is a ration of
		7); variety of habitat is key. In		stream is between 15 to 25.	> 25.
		streams where riffles are			
		continuous, placement of boulders			
-		or other large, natural obstruction			
Score	3	simportant			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
, , , , , , , , , , , , , , , , , , , ,	10 9	8 7 6	5 4 3	2 1 0	
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;	
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along	
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;	
LB Score 2	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%	
RB Score 3				of bank has erosional scars.	
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank	
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;	
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank	
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation	
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5	
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average	
ald	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.	
LB Score	evident; almost all plants allowed	stubble height remaining.			
	to grow naturally.				
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6	
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian	
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human	
LB Score 0	lawns, or crops) have not			activities.	
RB Score O	impacted zone.				
Total Score 0					

REMARKS / NOTES:

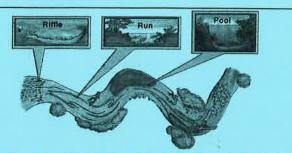
- Stoemer very unhealthy, summer time smells terrible

1065 quito hopport

- 2 raybe 3 very shallow riffles

- water stagment + shallow

- many invasive horry suckle


Sampler: Amarda Stephens Reach: Il Ciare hun Date: 4/27/17

Substrate Characterization (Visual Estimate)

Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 5 %	Run <u>2.5 %</u>	Pool 10 %	Reach total
Silt/Clay (<0.06 mm)	10	10	10	
Sand (0.06 – 2 mm)	10	10	10	
Gravel (2-64 mm)	50	50	(a)	
Cobble (64-256mm)	DES 30	30	D	
Boulders (>256mm)	0	D	0	
Bedrock	0	0	20	

tment of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
Isopod	3
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	Ц
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Date: 4/77/17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
TA	II	Stort of Fruch Surry Downstream
2 18	11	37 mont Agreers to be small rottle facing O in stream/1st SAMie Area middle of read stream narrows significantly
3 N	II	
4 5	II	Bottom of reach Boog taing upstream
5 5	Fl	point source
(a	II	(e) man's 2nd Simple aren despit point of reach
	»	

1 17F7

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID _	g			•	DATE: 4-	7-17	LAT: <u>// 38</u>	1.0663 LONG	W084, 46 212
INVESTIGATOR	R(S) A	HX-1 Day	mas	COWARI	DIN CLASS:	WA	TERSHED	(ane ru	1
STREAM SIZE:	S	TREAM TYP	E:	IMAGE I	D:	IMAGE	COMMENT:		
Width (Ft)	16 m P	erennial		IMG					
Depth (Ft)	5m E	phemeral		IMG					
Reach (Ft)	gem lr	ntermittent	$\overline{}$	IMG					

Reach (Ft)	n Intermittent	IMG		
		CONDITION	CATEGORY	N.
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
	banks, cobble or other stable	presence of additional substrate in		
	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score 3	logs/snags that are not new fall	rate at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%
* 1	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
L	provides diversity of niche space.			
Score 2				
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	,	Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower		
1	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	
Score	0.3 m/s, deep is > 0.5 m.)			
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
	i i	deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
			moderate deposition of pools	
Score 3	l l		prevalent.	
	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
Score 2				
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.
		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.
		present, but recent channelization	disrupted.	
Score 7		is not present.	0 1 1 100	C 11 11 (1) 11 11 11 11 11 11 11 11 11 11 11 11 1
100	The state of the s	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
, ,	SECRETARISE SECRETARIA	distance between riffles divided by	bottom contours provide some	· ·
N .				between riffles divided by the
		7 to 15.	,	width of the stream is a ration of
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.
1	streams where riffles are			
	continuous, placement of boulders			
Coorn (i	or other large, natural obstruction			
Score ()	is important			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
, , , , , , , , , , , , , , , , , , , ,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
LB5	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
BB5	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
0.0	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
LBZ BB2	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
13.13.2	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
10 C	evident; almost all plants allowed	stubble height remaining.		
LB Score RB Score	to grow naturally.			
WILL STREET, COLUMN TO STREET,	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
1/11	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
15/41	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
10 C	lawns, or crops) have not	, ,		activities.
	impacted zone.			
Total Score 0	W. H. W. W. C. C. C. C. C. C. C. C. C. C. C. C. C.			

REMARKS / NOTES:

Sampler: Allx + Themos

Reach:

Date: 49

Substrate Characterization (Visual Estimate)

I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 3 %	Run Cob %	Pool @ %	Reach total
Silt/Clay (<0.06 mm)				
Sand (0.06 – 2 mm)				
Gravel (2-64 mm)				
Cobble (64-256mm)				
Boulders (>256mm)				
Bedrock				

Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	0
Mussel (Native)	C
True Fly Larva – Watersnipe Fly	0
Caddisfly Larva (case-building)	2
Mayfly Nymph	9
Water Penny Larva	0
Caddisfly Larva (net-spinner)	a
Riffle Beetle Larva	0
Riffle Beetle Adult	0
Operculate Snail	0
Hellgrammite (Dobsonfly Larva)	0
True Fly Larva Crane Fly	0
True Fly Larva – Black Fly	0
Dragonfly Nymph	0
Crayfish	0
Clams and Mussels (non-native)	0
Alderfly Larva	. 0
True Fly Larva – Midge	0
Flatworm	0
Damselfly Nymph	C
True Fly Larva – Other	S
Scud	0
Isopod	0
Non-operculate Snail	ð
Adult Beetles (non-riffle beetles)	0
Beetle Larva (other than riffle beetles and water pennies)	O
Aquatic Worm/Leech	0
Total See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these permises	Ó

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

Date: 4/9/17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

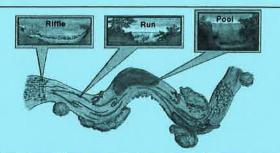
Photo ID	Reach / Site	Description
(51	Center of Pench
2	71	Unknown Drainage Pipe (source)
3	71	Typical Riffle habitat
l/	71	emergent vege-14tion
5	71	4pstream substrate
6	51	Upstream, facing downstream, vegetation
7	71	Stream cutting Through yard
8	51	Stream dissippears downstream
9	5	typical substrate
10	71	typical substrate Ganitary sever martiale dawnstram
//	JI	Energent vegetation
12	J	Gulvert downstream
	ř	

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT) 4-2-17

	STREAM ID	K1		DA	TE: 41 AE	LAT: N 38,0784	LONG: W34,463V
	INVESTIGATO	DR(S) Alex Eberle	Thomas Boll co	OWARDIN (CLASS: WAT	ERSHED Cane	Run
.7m	STREAM SIZE	STREAM TY	PE: II	MAGE ID:	IMAGE (COMMENT:	
1.2m	Width (Ft) X= 1	5M Perennial	× II	1G			
	Depth (Ft)	Ephemeral		1G			
	Reach (Ft)	00M Intermittent	11	1G			

Reach (Ft) 1000		IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
1. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
	banks, cobble or other stable	presence of additional substrate in		
	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score 15	logs/snags that are <u>not</u> new fall	rate at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
L.	provides diversity of niche space.			
Score 14	All from uple should not be a plant	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by 1 velocity/depth
3. Velocity /	All four velocity/depth regimes	fast-shallow is missing, score lower		
Depth Regime	present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is <	•	shallow are missing, score low).	
	0.3 m/s, deep is > 0.5 m.)	that it missing outer regimes).	Shallow are missing, seere low).	
Score 8			*	
4. Sediment Deposition		Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	'	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
		deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
			moderate deposition of pools	
Score 11			prevalent.	
		Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
		channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
Score 17	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
	pattern.		shoring structures present on	reach channelized and disrupted.
		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.
		present, but recent channelization	disrupted.	
Score 16		is not present.		
7. Frequency of Riffles		Occurrence of riffles infrequent;		Generally all flat water or shallow
	CAC COMPLETE COOK	•	bottom contours provide some	
	(21)	the width of the stream is between		between riffles divided by the
		1		width of the stream is a ration of
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.
	streams where riffles are			
	continuous, placement of boulders			
Conno M	or other large, natural obstruction			
Score 0	is important			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 7				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score 10	lawns, or crops) have not			activities.
RB Score 10	impacted zone.			
Total Score 0				


143

REMARKS / NOTES:

the reach was fed by a large stammwater drain at the upstream and of our reach. We were located in an area that looks like it becomes a floodplain during heavy nainfall events. There were large amounts of trash pollution seen throughout the reach that's likely brought there from the drain during flooding. At the end of our reach there was a sewer overflow station, with a warning sign. there seemed to be ample vegetation, however.

Substrate Characterization (Visual Estimate)

- I) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 100 %	Run 💟 %	Pool%	Reach total
Silt/Clay (<0.06 mm)	20%	Q	Q	20%
Sand (0.06 – 2 mm)	30%	0	0	3040
Gravel (2-64 mm)	15%	0	Q	15%
Cobble (64-256mm)	20%	0	Q	20%
Boulders (>256mm)	15%	0	Q	15%
Bedrock	Q	0	9	0

from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Roser

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	Q
Mussel (Native)	0
True Fly Larva - Watersnipe Fly	0
Caddisfly Larva (case-building)	
Mayfly Nymph	0
Water Penny Larva	O
Caddisfly Larva (net-spinner)	Q
Riffle Beetle Larva	Q
Riffle Beetle Adult	0
Operculate Snail	AR # 18
Hellgrammite (Dobsonfly Larva)	Ö
True Fly Larva – Crane Fly	0
True Fly Larva – Black Fly	9
Dragonfly Nymph	0
Crayfish	2
Clams and Mussels (non-native)	Q
Alderfly Larva	. 0
True Fly Larva Midge	0
Flatworm	0
Damselfly Nymph	9
True Fly Larva – Other	9
Scud	7100
Isopod	0
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	Ō
Beetle Larva (other than riffle beetles and water pennies)	0
Aquatic Worm/Leech	2
Total	120
Aquatic Worm/Leech	120

Date: 4-1-17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

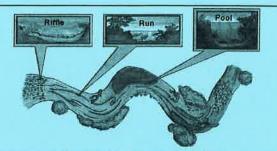
Photo ID	Reach / Site	Description
j	K1	upstream end of reach facing- upstream, (stormdrain)
2	K1	Evidence of trash 1
3	K 2	Evidence of Hash 2
4	K1	Evidence of Hysh 3
5	K2	Evodence of trash 4
Ь	K1	Center of Reach Garage upstream
7	K1	culvert Burng underseath paved road
7	K2	
9	K1	Downstram End of nech Packing upstream on top of culvert
10	K2	Evidence of sever overflow Drain
11	K1	server overflow warqing sign.

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

CTDEAM ID	Freeman	• DATE 4/7/17	LAT:N 38.0839	10NG41-44 4565
STREAM ID	John Bendo	DATE: TITLE	- DATE WITH	LONG N - 5 (i
INVESTIGATOR(S)	Amanda Stephens	COWARDIN CLASS:	WATERSHED Cane	40
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IAGE COMMENT:	
Width (Ft) 3,2	Perennial	IMG		
Depth (Ft)	^ Ephemeral	IMG		
Reach (Ft) 100 m	-	IMG		
CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate /	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack of habitat is obvious; substrate
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than desirable; substrate frequently	unstable or lacking.
	colonization and fish cover; mix of	II .	disturbed or removed.	unstable of lacking.
	snags, submerged logs, undercut banks, cobble or other stable	maintenance of populations; presence of additional substrate in	disturbed of Tellioved.	
	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score 17	logs/snags that are not new fall	rate at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
Z. Embeddedness	particles are 0-25% surrounded by		particles are 50-75%	particles are more than 75%
	T .	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
{{\xi}}	provides diversity of niche space.	,		·
Score 9				
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	present (if fast-shallow or slow-	regime (usually slow-deep).
ì	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	
Score 13	0.3 m/s, deep is > 0.5 m.)		•	
4. Sediment Deposition	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
		deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
			moderate deposition of pools	
Score 10			prevalent.	V
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the available channel, and/or riffle	Very little water in channel and
	banks, and minimal amount of	channel; or <25% of channel	substrates are mostly exposed.	mostly present as standing pools.
Score 16	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or
	or minimal; stream with normal	usually in areas of bridge	extensive; embankments or	cement; over 80% of the stream
	pattern.	abutments; evidence of past	shoring structures present on	reach channelized and disrupted.
		channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered
		(greater than past 20 yr) may be	stream reach channelized and	or removed entirely.
		present, but recent channelization	disrupted.	
Score 14	One was a fall of the sale of the	is not present. Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
1,000	Occurrence of riffles relatively		bottom contours provide some	
	Polent Bern 20045	distance between riffles divided by the width of the stream is between	habitat; distance between riffles	
		7 to 15.		width of the stream is a ration of
	7); variety of habitat is key. In	7.00 10.	·	> 25.
	streams where riffles are			2
	continuous, placement of boulders			
	or other large, natural obstruction			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
,	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 7		1		of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 7	to grow naturally.			
	Width of riparian zone > 18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	meters: little or no riparian
-	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	vegetation due to human
LB Score	lawns, or crops) have not			activities.
RB Score	impacted zone.			
Total Score 0				

124
REMARKS / NOTES:


Water very clear Active discharge pipe & storm drain (NOTE: PICTURES) John Bernardo

Sampler: Amunda Stephas

Reach: Core Pun (MI) Date: 4/7/17

Substrate Characterization (Visual Estimate)

- Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- 3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 60 %	Run <u>25 %</u>	Pool15 %	Reach total
Silt/Clay (<0.06 mm)	10	40	01	
Sand (0.06 – 2 mm)	30	36	10	
Gravel (2-64 mm)	36	ID	20	
Cobble (64-256mm)	6	5	25	
Boulders (>256mm)			5	
Bedrock	Vo	10	20	

Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	30+++
Isopod	30+++
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Date: 4/7/17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1 A	11	Start of fach formy Durastrem
2 J	LI	Note aischage file (achive) on left for astrone and of Renen laing upstream
3 5	Ll	middle of thech facily upstream
4 A	41	middle of Rever Durgest point
5 A	LI	9m nork second simple areal winder bunk
6 A	Ll	60 month Overling registation facing perspection
7,0	11	get mark gloren derin on eight

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	1-1 Lucledy TV.	DATE: 4/18/19	LAT: N 34.0801 LONG: W-81 . 4564
INVESTIGATOR(S)	John Berner do Amade Stephens	COWARDIN CLASS:	WATERSHED Care Run
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft) 2.3	Perennial	IMG	
Depth (Ft) 2.5	m Ephemeral	IMG	
Reach (Ft)	Intermittent	IMG	
	+1	CONDITION	CATEGORY
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL POOR
PARAMETER	20 10 18 17 16	15 14 13 12 11	10 9 8 7 6 5 4 3 2 1 0

Reach (Ft)	Intermittent	IMG			
	CONDITION CATEGORY				
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR	
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0	
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut	maintenance of populations;	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.	
Score \(\(\tau_i\)	banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall	presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).			
2. Embeddedness	,	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.	
3. Velocity / Depth Regime 10 V	fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)		present (if fast-shallow or slow- shallow are missing, score low).	regime (usually slow-deep).	
4. Sediment Deposition	•	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.	
5. Channel Flow Status	banks, and minimal amount of	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.	
6. Channel Alteration	or minimal; stream with normal pattern.	channelization, i.e., dredging, (greater than past 20 yr) may be	extensive; embankments or shoring structures present on both banks; and 40 to 80% of	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.	
7. Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of	Occurrence of riffles Infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	bottom contours provide some habitat; distance between riffles divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.	

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
'	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas:
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score 7				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	The state of the s
	zone covered by native vegetation,	one class of plants is not well-		disruption of streambank
	including trees, understory shrubs,	represented; disruption evident		vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth		has been removed to 5
	vegetative disruption through	potential to any great extent; more		centimeters or less in average
	grazing or mowing minimal or not			stubble height.
LB Score 7	evident; almost all plants allowed	stubble height remaining.		in in its
RB Score 9	to grow naturally.			
	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
	meters; human activities (i.e.,	Market .		meters: little or no riparian
	parking lots, roadbeds, clear-cuts,			vegetation due to human
In C.	lawns, or crops) have not	, , , , , , , , , , , , , , , , , , , ,		activities.
	impacted zone.			acuviues.
Total Score 0	and a second		1	

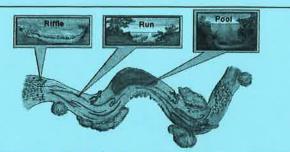
REMARKS / NOTES:

Plenty of water skaters again Shallow

Out of feach :- pstr under pass, street really picks up

- storm drain before under pass.

John Burnado Sampler: Anada Stephas


Reach: M CANGRUN Date: 4/18/17

Substrate Characterization (Visual Estimate)

Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 45 %	Run 25 %	Pool 30 %	Reach total
Silt/Clay (<0.06 mm)	10	(0)	10	
Sand (0.06 – 2 mm)	10	25	30	
Gravel (2-64 mm)	35	30	25	
Cobble (64-256mm)	40	1.0	20	
Boulders (>256mm)	5	10	10	
Bedrock	0	5	5	

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	3
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva Black Fly	
Dragonfly Nymph	
Crayfish	1
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	3044
Isopod	30 + +
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	1+2
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Date: 4/18/17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1 A	MI	start of reach facing upstream
2 5	٨(End of reach freing downstream
3 5	MI	middle of reach facing upstrawn
4	MI	94 n north 1 1st sample spot 1 Kick and of fiftle 80 on mark 2 sample spot 1 pond deepest print 24 m nork right bank 3rd sample spot under out
5	nl =	30 in mark 2 sample spit pond deepest print
10	MI	24 m nork right bank 3rd simple spit
		•
	₩	

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	N)	Mury Toda tribular	4	DATE: 3-7	8-17 LAT: N 38.0849L	ong: W-84.4499
INVESTIGA	TOR(S)	John Berndi Amanda Ste		COWARDIN CLASS:	WATERSHED Cane B	un
STREAM SIZ	ZE:	STREAM TYP	E:	IMAGE ID:	IMAGE COMMENT:	
Width (Ft)	Sa	Perennial	X	IMG		
Depth (Ft)	5.5m	Ephemeral		IMG		
Reach (Ft)	40 <u>0</u> ~	Intermittent		IMG		

Reach (Ft) 100 ~	Intermittent	IMG -		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate	Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover	favorable for epifaunal	suited for full colonization	habitat availability less than	of habitat is obvious; substrate
	colonization and fish cover; mix of	potential; adequate habitat for	desirable; substrate frequently	unstable or lacking.
	snags, submerged logs, undercut	maintenance of populations;	disturbed or removed.	
	banks, cobble or other stable	presence of additional substrate in		
	habitat and at stage to allow full	the form of new fall, but not yet		
	colonization potential (i.e.,	prepared for colonization (may		
Score 15	logs/snags that are <u>not</u> new fall	rate at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
	particles are 0-25% surrounded by	particles are 25-50% surrounded	particles are 50-75%	particles are more than 75%
	fine sediment. Layering of cobble	by fine sediment.	surrounded by fine sediment.	surrounded by fine sediment.
(provides diversity of niche space.			
Score 17			0 1 0 64 41 11	Device and Australia is the st
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if		
Depth Regime	present (slow-deep, slow-shallow,	fast-shallow is missing, score lower	l' ·	regime (usually slow-deep).
ŕ	fast-deep, fast-shallow). (Slow is <	than if missing other regimes).	shallow are missing, score low).	
Score 12	0.3 m/s, deep is > 0.5 m.)			
4. Sediment Deposition	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
	or point bars and less than 5% of	formation, mostly from gravel,	gravel, sand or fine sediment	increased bar development; more
	the bottom affected by sediment	sand or fine sediment; 5-30% of	on old and new bars; 30-50% of	than 50% of the bottom changing
	deposition.	the bottom affected; slight	the bottom affected; sediment	frequently; pools almost absent
-		deposition in pools.	deposits at obstructions,	due to substantial sediment
			constrictions, and bends;	deposition.
			moderate deposition of pools	
Score 11			prevalent.	
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
	banks, and minimal amount of	channel; or <25% of channel	available channel, and/or riffle	mostly present as standing pools.
	channel substrate is exposed.	substrate is exposed.	substrates are mostly exposed.	
Score 10 6. Channel Alteration	Channelization or dredging absent	Some channelization present,	Channelization may be	Banks shored with gabion or
o, Chairie Alteration	or minimal; stream with normal	usually in areas of bridge	extensive: embankments or	cement: over 80% of the stream
			shoring structures present on	reach channelized and disrupted.
	Patterin	channelization, i.e., dredging,	both banks; and 40 to 80% of	Instream habitat greatly altered
		And the state of t		or removed entirely.
		Maria de la companya	disrupted.	
Score 19		is not present.		
7. Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
	frequent; ratio of distance	distance between riffles divided by	bottom contours provide some	riffles; poor habitat; distance
	between riffles divided by width of	the width of the stream is between	habitat; distance between riffles	between riffles divided by the
	the stream < 7:1 (generally 5 to	7 to 15.	divided by the width of the	width of the stream is a ration of
	7); variety of habitat is key. In		stream is between 15 to 25.	> 25.
	streams where riffles are			
	continuous, placement of boulders			
. [19	or other large, natural obstruction			
Score 13	is important			

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent,	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	small areas of erosion mostly	bank in reach has areas of	"raw" areas frequent along
	little potential for future	healed over. 5-30% of bank in	erosion; high erosion potential	straight sections and bends;
LB Score 4	problems. < 5% of bank affected.	reach has areas of erosion.	during floods.	obvious bank sloughing; 60-100%
RB Score (a				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	but not affecting full plant growth		has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
LB Score	evident; almost all plants allowed	stubble height remaining.		
RB Score 9	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6
Zone Width	meters; human activities (i.e.,	meters; human activities have		meters: little or no riparian
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.		vegetation due to human
LB Score 10	lawns, or crops) have not			activities.
RB Score Le	impacted zone.			

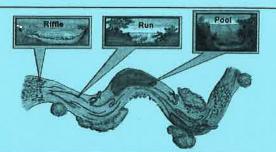
PREMARKS / NOTES:

Bunks show definite signs of becoming inundated.

Rain yesterday and stream is surrounded by very muddy,

wet turvain.

Sampler: Anada Styling


Reach: NI Conc Run Date: 3-28-17

Substrate Characterization (Visual Estimate)

1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 30 %	Run 25 %	Pool_ 45% %	Reach total
Silt/Clay (<0.06 mm)	35 v	15 25	1.5	
Sand (0.06 – 2 mm)	20 20	50	50	
Gravel (2-64 mm)	45	15	25	
Cobble (64-256mm)	10	10	15	
Boulders (>256mm)		*	5	
Bedrock				

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	1
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	1 (600)
Clams and Mussels (non-native)	- (x- y
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	30+
Isopod	30 t
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	Ю
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Total	
See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.	

Date: 3-28-17

- 1. Sampling zone In middle of reach either direction
- 2. Upstream Stand at upstream point of reach and photograph upstream of the sampling zone
- 3. Downstream Stand at downstream end of reach and photograph downstream of the sampling zone
- 4. One each of any "Typical in-stream habitats": (a) riffles, (b) undercut banks/rootmats, (c) submerged and emergent vegetation, (d) bedrock bottoms, (e) leaf packs & (f) large submerged wood.

Photo ID	Reach / Site	Description
1	NI	starting point/Downstream Around Durtial Exhaud
2	pl	ending of reach up strem
3	N)	middle of Stream I facing Down stream
4	N	25 m nork Jupstrem 2: ffeet vegetation gave
5	14	upstream Island Vegetation
6	NI	water skaters
7	NI	Surple Site (Riffle + Pro)
S.	Apply	
4		

APPENDIX A-2 THIRD ROCK SCC FIELD DATA

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	Ca	re Run	- CX	-6 DATE: 2	23-17 LAT: 38,07946LONG: -84,49)493
INVESTIGAT	TOR(S)	B Remley	1001	COWARDIN CLASS:	Stycam WATERSHED: Ky
STREAM SIZE	E:	STREAM TYPE:		IMAGE ID:	IMAGE COMMENT:
Width (Ft)	8	Perennial		IMG	See Photolog
Depth (Ft)	611	Ephemeral		IMG	
Reach (FC) ^	150	Intermittent		IMG	

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 1 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover Score 7	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness Score 12	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep)
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools,	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status Score	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6 Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	channelization, i.e., dredging, (greater than past 20 yr) may be	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8. Bank Stability	10 9	8 7 6	5 4 3	2 1 0
LB Score 3	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank In reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative Protection LB Score	More than 90% of the streambank surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through grazing or mowing minimal or not evident; almost all plants allowed to grow naturally.	covered by native vegetation, but one class of plants is not well- represented; disruption evident but not affecting full plant growth	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
RB Score 3 10. Riparian Vegetative Zone Width LB Score RB Score F	Width of riparian zone > 18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters little or no riparian vegetation du to human activities.

REMARKS/NOTES: LOW Flow Probably does not flow you

Lots of truch a Stream

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	CR	7	DATE: 5-19-17 LAT: 35,07246 LONG: - 64,47646
INVESTIGA	TOR(S)	C. Blayd	COWARDIN CLASS: WATERSHED Cane Cin
STREAM SI	ZE:	STREAM TYPE:	IMAGE ID: IMAGE COMMENT:
Width (Ft)	8:10	Perennial	IMG
Depth (Ft)	10"	Ephemeral	IMG
Reach (Ft)	300	Intermittent	IMG

Intermittent	IIYIG									
1 meerineesie										
			DOOR							
	1		POOR 5 4 3 2 1 0							
Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks,	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations;	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.							
at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	the form of new fall, but not yet		1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							
Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded fine sediment.	Gravel, cobble, and boulder by particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.							
All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	fast-shallow is missing, score lower	1								
Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.		Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.							
Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.							
	usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.							
riffles divided by width of the	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	1	Generally all flat water or shallov riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.							
	OPTIMAL 20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Occurrence of riffles relatively frequent; ratio of distance betweer riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders	OPTIMAL 20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow), (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Water reaches base of footh lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders	Greater than 70% of substrate favorable for epifusual colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In stream withon of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In stream withon fare continuous, placement of boulders are continuous, placement of boulders							

CR-7

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o, bank stability	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent, small	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	areas of erosion mostly healed	bank in reach has areas of	"raw" areas frequent along
	little potential for future problems.	over. 5-30% of bank in reach has	erosion; high erosion potential	straight sections and bends;
7	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100%
LB Score 7				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident but	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	not affecting full plant growth	vegetation common; less than	has been removed to 5
l V	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
	evident; almost all plants allowed	stubble height remaining.		
LB Score 3	to grow naturally.			***************************************
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	little or no riparian vegetation due
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	to human activities.
LB Score	lawns, or crops) have not			
RB Score /	impacted zone.			
Total Score 0				

REMARKS / NOTES:

European of record Mouring-gross allyring in creek

	General
Site ID	Stream Name
CR 7	Cane Run
Date	Sampler(s)
5-19-17	C, Blayd
Si dia di Manda di Manda	Substrate Characterization

NOTE: Enter percentages as whole numbers

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	16	20	70	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)				0%	NOTE: Each
Sand (0.06 – 2 mm)	20	10	16	0%	column must total
Gravel (2-64 mm)	70	60	60	0%	to 100.
Cobble (64-256mm)	10	30	30	0%	
Boulders (>256mm)				0%	
Bedrock				0%	
	Ma	acro Screen	ing		

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or 1 based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and 1-4 orgs = 1
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies		0	6	0
Damselflies		0	8	0
Riffle beetles (adults & larvae)		0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

Integrity Rating:	#DIV/0!			
Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches		0	9	0
Aquatic worms		0	9	0
Aquatic sowbugs	30	0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)		0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies		0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies		0	5	0
True Flies - Midges		0	7	0

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

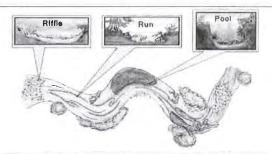
STREAM ID CIC-9			DATE: 5-/	9-17 LAT: 38,066/16 LONG: - 84,47/22
INVESTIGA	TOR(S)	C. Bloyd	COWARDIN CLASS:	WATERSHED (are Run
STREAM SI	ZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	2-4	Perennial	IMG	
Depth (Ft)	6"	Ephemeral	IMG	
Reach (Ft)	2 11	Intermittent	IMG	

HABITAT PARAMETER	CONDITION CATEGORY							
	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR				
	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0				
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lacl of habitat is obvious; substrate unstable or lacking.				
2. Embeddedness Score 12	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.				
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by 1 velocity/depth				
Depth Regime	present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	fast-shallow is missing, score lower than if missing other regimes).	present (if fast-shallow or slow- shallow are missing, score low).	regime (usually slow-deep).				
	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition				
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.				
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely				

7. Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallov
(or Bends)	frequent; ratio of distance between	distance between riffles divided by	bottom contours provide some	riffles; poor habitat; distance
	riffles divided by width of the	the width of the stream is between	habitat; distance between riffles	between riffles divided by the
	stream < 7:1 (generally 5 to 7);	7 to 15.	divided by the width of the	width of the stream is a ration of
	variety of habitat is key. In streams		stream is between 15 to 25.	> 25.
	where riffles are continuous,			
	placement of boulders or other			
	large, natural obstruction is			
Score 14	important.			

8. Bank Stability	OPTIMAL		SUBOPTIMAL		MARGINAL			POOR		
	10	9	8 7	6	5	4	3	2	1	0
LB Score 7 RB Score	Banks stable; evidence or bank failure absent of little potential for futures 5% of bank affected.	or minimal; a e problems, c	Moderately stable; infre areas of erosion mostly over 5-30% of bank in areas of erosion.	healed		ch has areas gh erosion p	of	Unstable; mai "raw" areas fi straight section obvious bank of bank has e	requent alor ons and ben sloughing; 6	ng ds; 50-100%
9. Vegetative Protection LB Score	More than 90% of the s surfaces and immediate zone covered by native including trees, underst or non-woody macroph vegetative disruption th grazing or mowing mini evident; almost all plant to grow naturally.	riparian c vegetation, c ory shrubs, r nytes; n rough p mal or not ti	70-90% of the streamba covered by native vegets one class of plants is no represented; disruption not affecting full plant grootential to any great exhan one-half of the potubble height remaining	ation, but t well- evident but owth stent; more ential plant	surfaces co disruption of bare soil or vegetation of one-half of	vered by verobvious; pater closely crocommon; le	getation; ches of pped ss than al plant	Less than 50% surfaces cove disruption of vegetation is has been rem centimeters of stubble height	red by vege streambank very high; ve oved to 5 or less in ave	tation; egetation
IO. Riparlan Vegetative Zone Width LB Score RB Score Total Score Compared to the score Compar	Width of riparian zone meters; human activities parking lots, roadbeds, of lawns, or crops) have no zone	s (i.e., n clear-cuts, in	Vidth of riparian zone neters; human activities npacted zone only mini	have	Width of rig meters; hun impacted zo	nan activitie	s have	Width of ripa little or no rip to human acti	oarian veget	

REMARKS / NOTES:


Sampler: C Blogd*

Reach: CR-8

Date: 5-19-17

Substrate Characterization (Visual Estimate)

- 1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns
- 2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.
- IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 30 %	Run 40 %	Pool 30 %	Reach total
Silt/Clay (<0.06 mm)	50	50	70	
Sand (0.06 – 2 mm)	20	20	20	
Gravel (2-64 mm)	10	/ 0		
Cobble (64-256mm)	20	20	10	
Boulders (>256mm)	1			
Bedrock				

Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	2
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
sopod	>30
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	3
Total	35

See Kentucky Aquatic Macroinvertebrate Checklist of pictures of these organisms.

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	3	DATE: 5231-17	LAT: 36,09192	LONG: -84, 487353					
INVESTIGATOR(S)	C.Blad , H. Hall	COWARDIN CLASS:	WATERSHED COMO	Va					
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	AGE COMMENT:						
Width (Ft)	Perennial	IMG ()∃ d-							
Depth (Ft)	- Ephemeral	IMG 13							
		IMG I							
Reach (Ft) 300	Intermittent								
		CONDITION CATEGORY OPTIMAL SUBOPTIMAL MARGINAL POOR							
HABITAT	OPTIMAL	SUBOPTIMAL		5 4 3 2 1 0					
PARAMETER 1. Epifaunal Substrate /	20 19 18 17 16 Greater than 70% of substrate	15 14 13 12 11 40-70% mix of stable habitat; well	10 9 8 7 6 20-40% mix of stable habitat;	Less than 20% stable habitat; lack					
Available Cover	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks,	1	habitat availability less than desirable; substrate frequently disturbed or removed.	of habitat is obvious; substrate unstable or lacking.					
2. Embeddedness		Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.					
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).						
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new grayel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.					
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.					
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.					
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction is important.	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.						

1	
	5
10	

2 p. 1 p. 1 m.	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8. Bank Stability	10 9	8 7 6	5 4 3	2 1 0
LB Score RB Score	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative Protection LB Score	surfaces and immediate riparian zone covered by native vegetation,	covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more	50-70% of the streambank surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant stubble height remaining.	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
RB Score X 10. Riparian Vegetative Zone Width LB Score RB Score	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters little or no riparian vegetation due to human activities.

REMARKS / NOTES:

Charity adject! In the

THE PART OF SERVICE	General		
Site ID	Stream Name		
03	Cane Ru		
<u>Date</u>	Sampler(s)		
5-31-17	C. Blayd, M. Hall		
THE SAME	Substrate Characterization		

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	25	25	50	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)				0%	NOTE: Each
Sand (0.06 – 2 mm)				0%	column must total
Gravel (2-64 mm)			10	0%	to 100.
Cobble (64-256mm)	100	100	90	0%	
Boulders (>256mm)				0%	
Bedrock		150		0%	
	Ma	cro Screen	ing		J. Series

- I. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or 1 based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and 1-4 orgs = 1
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies	12	0	6	0
Damselflies	10	0	8	0
Riffle beetles (adults & larvae)	2	0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

D	3

Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches	20	0	9	0
Aquatic worms	5	0	9	0
Aquatic sowbugs	30+	0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)		0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies		0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies	TO I	0	5	0
True Flies - Midges		0	7	0

#DIV/0!

Integrity Rating:

STREAM ID	_0	4	DATE: 5.3	1-17 LAT: 38,087403 LONG: - 84, 484455
INVESTIGAT	OR(S)	Bland M. Hal	COWARDIN CLASS:	WATERSHED: COMP Phy
STREAM SIZE	E:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	7	Perennial	IMG CAS OF	
Depth (Ft)	6"	Ephemeral	IMG Dyward	
Reach (Ft)	300.	Intermittent	IMG habit	1

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER		15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate /	20 19 18 17 16 Greater than 70% of substrate	40-70% mix of stable habitat; well	20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks,		1	habitat availability less than desirable; substrate frequently disturbed or removed.	of habitat is obvious; substrate unstable or lacking.
Score 1	not new fall and not transient.)	at high end of scale).		
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
Score 16	N. 1		Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
3. Velocity / Depth Regime Score 13	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	1	present (if fast-shallow or slow-shallow are missing, score low).	
	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
Score 6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction	Occurrence of riffles infrequent; distance between riffles divided by	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

α	. 1
1	11
V	

O. D. J. Co. Library	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8. Bank Stability LB Score	10 9	8 7 6 Moderately stable; infrequent, small areas of erosion mostly healed	5 4 3	2 1 0 Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
RB Score 9. Vegetative Protection	including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	vegetation common; less than one-half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
RB Score 10. Riparian Vegetative Zone Width LB Score RB Score Total Score 0	Width of riparian zone > 18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters little or no riparian vegetation due to human activities.

REMARKS / NOTES:

and the second of the second o

General		
Site ID	Stream Name	
04	Cane Run	
Date	Sampler(s)	
5-31-17	Ciblaid, Mitall	
Elfan Santa	Substrate Characterization	

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	20	90	60	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)				0%	NOTE: Each
Sand (0.06 – 2 mm)				0%	column must total
Gravel (2-64 mm)	20	15	5	0%	to 100.
Cobble (64-256mm)	10	10	5	0%	
Boulders (>256mm)				0%	
Bedrock	70	75	90	0%	
OK DESCRIPTION	Ma	cro Screeni	ng	TA THE	

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or 1 based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and 1-4 orgs = 1
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies	7	0	6	0
Damselflies		0	8	0
Riffle beetles (adults & larvae)	5	0	4	0
Water pennies		0	3	0
Other beetles	2	0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

i.	1
(P
	1

Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches	30+	0	9	0
Aquatic worms	10	0	9	0
Aquatic sowbugs		0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)		0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies		0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies	304	0	5	0
True Flies - Midges		0	7	0

Biotic Index: #DIV/0!
Integrity Rating: #DIV/0!

STREAM ID	05	DATE: 5-3/	-17 LAT: 36,086342LONG: -64, 48/455
INVESTIGATOR(S	C. Bland, H. tioi	COWARDIN CLASS:	WATERSHED: C. / C / L
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG 05 45 07	
Depth (Ft) 4 "	Ephemeral	IMG	
Reach (Ft) 30() Intermittent	IMG	

Depth (Ft)	Ephemeral	IMG		
Reach (Ft) 300	Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover Score	cobble or other stable habitat and at stage to allow full colonization	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness		Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	fast-shallow is missing, score lower	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	regime (usually slow-deep).
	or point bars and less than 5% of the bottom affected by sediment	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
Score \ \(\frac{\gamma}{\gamma} \) 5. Channel Flow Status Score \ \(\frac{\gamma}{\gamma} \)	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6. Channel Alteration	ľ		Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
7. Frequency of Riffles (or Bends)	frequent; ratio of distance between riffles divided by width of the	Occurrence of riffles infrequent; distance between riffles divided by	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

_	
\cap	1
11	5
1/	
//	

O. D. al. Cashilian	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8. Bank Stability	10 9	8 7 6	5 4 3	2 1 0
LB Score	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative Protection LB Score RB Score	surfaces and immediate riparian zone covered by native vegetation,	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	vegetation common; less than one-half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
	Width of riparian zone > 18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters little or no riparian vegetation due to human activities.

REMARKS / NOTES:

Karst

Site ID	Stream Name	
05	Care Run	
<u>Date</u>	Sampler(s)	
5-31-17	C. Bloyd, M. Hall	

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	lo	30	10	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)	90	90	70	0%	NOTE: Each
Sand (0.06 – 2 mm)	5	5	10	0%	column must total
Gravel (2-64 mm)	5	5	20	0%	to 100.
Cobble (64-256mm)				0%	
Boulders (>256mm)				0%	
Bedrock				0%	
	Ma	acro Screeni	ing	· 数值 · 取分数	

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or 1 based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and 1-4 orgs = 1
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies		0	6	0
Damselflies		0	8	0
Riffle beetles (adults & larvae)		0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

Integrity Rating:	#DIV/0!			
Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches		0	9	0
Aquatic worms	1	0	9	0
Aquatic sowbugs	90	0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)		0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies	A	0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies	5	0	5	0
True Flies - Midges		0	7	0

APPENDIX A-3 THIRD ROCK SCC QA FIELD DATA

QA

STREAM ID	R. 156C) DATE: 9-	77-17 LAT: 38,104337 LONG: -84,498901
INVESTIGATOR(S)	BRIER	COWARDIN CLASS:	WATERSHED Care Run
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft) 20	Perennial	IMG	See photo log
Depth (Ft)	Ephemeral	IMG	
Reach (Ft) 3000	1 Intermittent	IMG	

	CONDITION CATEGORY											
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR								
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0								
1. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.								
Score 2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment,								
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).								
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.								
Score	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed,	Very little water in channel and mostly present as standing pools.								
	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.								

Evaluated From I-75 TO Start of Restoration

7. Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallov
(or Bends)	frequent; ratio of distance between	distance between riffles divided by	bottom contours provide some	riffles; poor habitat; distance
	riffles divided by width of the	the width of the stream is between	habitat; distance between riffles	between riffles divided by the
	stream < 7:1 (generally 5 to 7);	7 to 15.	divided by the width of the	width of the stream is a ration of
	variety of habitat is key. In streams		stream is between 15 to 25.	> 25.
	where riffles are continuous,			
	placement of boulders or other			
	large, natural obstruction is			-
Score 12	important.			

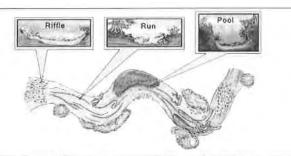
8. Bank Stability	OPTIMA	L	SUBOP	TIMAL	MARGII	VAL		POOR	
5. Dank Stability	10	9	8 7	6	5 4	3	2	1	0
LB Score 5	Banks stable; evidence or bank failure absent little potential for futu < 5% of bank affected.	or minimal; re problems.	areas of erosion m	ostly healed	Moderately unstab bank in reach has a erosion; high erosi during floods.	areas of	"raw" areas straight sec obvious bar	nany eroded a frequent alon tions and ben nk sloughing; (erosional sca	ng nds; 60-100%
RB Score 9	More than 90% of the	streamhank	70-90% of the stre	ambank surfaces	50-70% of the stre	ambank	Less than 5	0% of the stre	eambank
Protection LB Score 5 RB Score 5	surfaces and immediat zone covered by nativincluding trees, undersor non-woody macropy vegetative disruption to grazing or mowing milevident; almost all planto grow naturally.	e riparian e vegetation, story shrubs, ohytes; hrough nimal or not	covered by native one class of plants represented; disrul not affecting full plants potential to any graphs.	vegetation, but is not well- otion evident but ant growth eat extent; more e potential plant	surfaces covered b disruption obvious	y vegetation; ; patches of v cropped n; less than tential plant	surfaces co disruption o vegetation i has been re	vered by vege of streambank is very high; ver emoved to 5 is or less in ave	etation; < regetation
10. Riparian Vegetative	Width of riparian zone	e >18	Width of riparian 2	one 12-18	Width of riparian a	zone 6-12	Width of ri	parian zone <	<6 meters:
Zone Width LB Score	width meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted		meters; human activities have impacted zone only minimally		meters; human activities have impacted zone a great deal		little or no riparian vegetation di to human activities.		
RB Score Total Score 0 G7 REMARKS / NOTES:	Zone	4 N	a Flow				1		

REMARKS / NOTES:

Legacy + co.

Sampler: B. Remley

Reach: (2-)


Date: 9-27-17

Substrate Characterization (Visual Estimate)

1) Estimate the percentage of riffle, run, and pool in the assessment reach and record at the top of the columns

2) Visually assess the percentage of each of these areas that has each of the particle sizes. Use the Gravelometer to help gage particle sizes.

3) IN OFFICE: Calculate the reach totals by multiplying the % of each

Substrate	Riffle 25 %	Run 35 %	Pool_ 40 %	Reach total
Silt/Clay (<0.06 mm)				
Sand (0.06 – 2 mm)	10 (15)	10 (35)	30 (12)	18
Gravel (2-64 mm)	10 (25)	55 (1925)	40 (16)	37.75
Cobble (64-256mm)	20 (5)	20 (7)	10 (4)	16
Boulders (>256mm)	60 (15)	15 (5,25)	10 /4)	24.25
Bedrock			10 (4)	4

^{*} Image from Missouri Department of Conservation, Texas Parks and Wildlife Department, The Meadows Center for Water and the Environment, Rudolph Rosen

Macroinvertebrate Screening No water

Benthic Macroinvertebrates	Abundance Counts
Stonefly Nymph	
Mussel (Native)	
True Fly Larva – Watersnipe Fly	
Caddisfly Larva (case-building)	
Mayfly Nymph	
Water Penny Larva	
Caddisfly Larva (net-spinner)	
Riffle Beetle Larva	
Riffle Beetle Adult Operculate Snail	
Operculate Snail	
Hellgrammite (Dobsonfly Larva)	
True Fly Larva – Crane Fly	
True Fly Larva – Black Fly	
Dragonfly Nymph	
Crayfish	
Clams and Mussels (non-native)	
Alderfly Larva	
True Fly Larva – Midge	
Flatworm	
Damselfly Nymph	
True Fly Larva – Other	
Scud	
sopod	
Non-operculate Snail	
Adult Beetles (non-riffle beetles)	
Beetle Larva (other than riffle beetles and water pennies)	
Aquatic Worm/Leech	
Total	

STREAM ID	1	DATE:	9-17 LAT: 18 16 LONG: -44, 4645 6
INVESTIGATOR(S)	C. Bloyd	COWARDIN CLASS:	WATERSHED COAR RUM
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft) 3	Perennial	IMG	
Depth (Ft)	Ephemeral	IMG	
Reach (Ft)	Intermittent	IMG	

			_					CON	DITION	CATEG	ORY								
HABITAT		0	PTIMA		1	SU	JBOP			MARGINAL POOR							R		
PARAMETEI	R	20 19			15	14	_	12	11	10	9	8	7	6	5	4	3	2 1	0
Epifaunal Substrate / Available Cover		Greater than favorable for and fish cover submerged lo cobble or othat stage to all	70% of sepifaunal e; mix of gs, unde er stable ow full c	of substrate 40-70% mix of stable unal colonization suited for full colonization potential; adequate had presence of additional the form of new fall, leading to the form of colonization prepared for colonization.				ple habitat; well 20-40% mix of stable habitat availability les desirable; substrate for pulations; disturbed or remove onal substrate in ll, but not yet aization (may rate			ble habitat; Less than 20% stable less than of habitat is obvious; te frequently unstable or lacking.			s; subs	habitat; lack				
Score 2. Embeddedness		Gravel, cobbl particles are (fine sediment provides dive)-25% su Layerir	rrounded by ng of cobble		es are				Gravel, particle surrou	es are !	50-75	%		partic	les are	ble, and more by fine	than 7	5%
3. Velocity / Depth Regime	Q Q	All four veloc present (slow fast-deep, fast 0.3 m/s, deep	-deep, sl -shallow	ow-shallow,). (Slow is <	fast-sh	allow	is miss	ing, sc		Only 2 presenting shallow	t (if fas	t-shal	low o				by I ve ally slov	-	
4. Sediment Deposition		Little or no e or point bars the bottom addeposition.	and less	than 5% of	formation fine	tion, m e sedin n affec	nostly f nent; 5	from gr -30% c	ravel, sand	Modera gravel, old and the bot deposit constri modera prevale	sand on the same of the same o	or fine pars; 3 ffected pstruc and b	seding 30-50 d; sed tions, pends	nent on % of iment	increa than 5 freque	sed bi i0% of ently; o subs		ttom o	nt; more :hanging absent
Score 5. Channel Flow St		Water reache banks, and mi channel subst	nimal am	ount of	channe	el; or •	• 75% c <25% c expose	of chan	available nel	Water availabl substra	le chan	nel, a	nd/or	riffle	1		ater in		el and g pools.
Score O 6. Channel Alteration		Channelization or dredging absent or minimal; stream with normal pattern.		usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization			Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.			nt on)% of	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.								
Score 5 7. Frequency of Riffles (or Bends)		Occurrence of frequent; ration riffles divided stream < 7:1 variety of hab streams when continuous, por other large is important.	o of dista by width (generall itat is ke e riffles a acement	nce between of the y 5 to 7); y. In are of boulders	distan	rence ce beto dth of	of riffloween r	iffles d	equent; ivided by s between	Occasion bottom habitat divided stream	o conto ; distar by the	ours p nce be e widt	rovid twee h of t	e some n riffles he	riffles; betwe	poor en rif	habitat fles divi	; distar ded by	

1	2-9	
6	1	

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o, bank stability	10 9	8 7 6	5 4 3	2 1 0
LB Score CO	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection LB Score	surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through grazing or mowing minimal or not	covered by native vegetation, but	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant	surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
RB Score 7	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
10. Riparian Vegetative Zone Width LB Score RB Score	meters; human activities (i.e.,	meters; human activities have impacted zone only minimally.	meters; human activities have impacted zone a great deal.	little or no riparian vegetation due to human activities.

REMARKS / NOTES:

Lots of trasis. Dry. Thick projected as along strongs

	General
Site ID	Stream Name
CR9	Cane Run
Date	Sampler(s)
5-19-17	C.Blayd
	Substrate Characterization

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	25	50	25	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)	70	90	100	0%	NOTE: Each
Sand (0.06 – 2 mm)				0%	column must total
Gravel (2-64 mm)	30	10		0%	to 100.
Cobble (64-256mm)				0%	
Boulders (>256mm)				0%	
Bedrock				0%	
A PERCONSTRUCTION	Ma	cro Screen	ing		10000000000000000000000000000000000000

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or I based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and I-4 orgs = I
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)	10	0	4	0
Dragonflies	MH	0	6	0
Damselflies		0	8	0
Riffle beetles (adults & larvae)		0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

CR-9

Integrity Rating:	#DIV/0!			
Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches		0	9	0
Aquatic worms		0	9	0
Aquatic sowbugs	Part of the second	0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)		0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies		0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies		0	5	0
True Flies - Midges		0	7	0

STREAM ID	B-11-QA	DATE: 5	31.17 LAT: 38 11024 LONG: - 44,50893
INVESTIGATO	R(S) C.Bloyd . 11.	COWARDIN CLASS:	WATERSHED CARE LUA
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG	
Depth (Ft)	Ephemeral	IMG	
Reach (Ft)	Intermittent	/ IMG	

Depth (Ft)	Ephemeral	IMG		
Reach (Ft) 300	Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)		Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	regime (usually slow-deep).
	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
Score	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.		Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
7. Frequency of Riffles (or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the	Occurrence of riffles infrequent; distance between riffles divided by	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

BI QX

8. Bank Stability	OPTIMAL			SUBOPTIM	1AL	MARGINAL			POOR		
o, bank scaomey	10	9	8	7	6	5	4	3	2	1	0
	Banks stable; evidence		1	-	equent, small				1	many erodeo is frequent a	
	or bank failure absent o		4	rosion most	•		reach has ar		İ	•	•
	little potential for futur	e problems.	over. 5-3	0% of bank i	n reach has	erosion	; high erosio	n potential	1	ctions and b	
LB Score 5	< 5% of bank affected.		areas of e	rosion.		during f	loods.		1	ank sloughing is erosional s	
9. Vegetative	More than 90% of the s	streambank	70-90% o	f the streamb	ank surfaces	50-70%	of the strea	mbank	Less than	50% of the s	treambank
Protection	surfaces and immediate	e riparian	covered b	y native vege	etation, but	surfaces	covered by	vegetation;	surfaces c	overed by ve	getation;
	zone covered by native		one class	of plants is n	ot well-	disrupti	on obvious;	patches of	disruption	of streamba	nk
	including trees, underst	tory shrubs,	represent	ed; disruptio	n evident but	bare so	il or closely	cropped	vegetation	is very high;	vegetation
	or non-woody macrop	hytes;	not affect	ing full plant	growth	vegetati	on common	less than	has been r	emoved to 5	5
10	vegetative disruption th	nrough	potential	to any great	extent; more	one-hal	f of the pote	ntial plant	centimete	rs or less in	average
	grazing or mowing min	imal or not	than one-	half of the po	otential plant	stubble	height rema	ining.	stubble he	eight.	
	evident; almost all plant	ts allowed	stubble he	eight remaini	ng.						
LB Score G	to grow naturally.										
10. Riparian Vegetative	Width of riparian zone	>18	Width of	riparian zone	e 12-18	Width	of riparian zo	one 6-12	Width of	riparian zone	< 6 meters:
Zone Width	meters; human activitie	es (i.e.,	meters; h	uman activiti	es have	meters;	human activ	ities have	little or no	o riparian veg	getation due
	parking lots, roadbeds,	clear-cuts,	impacted	zone only mi	inimally.	impacte	ed zone a gre	at deal.	to human	activities.	
LB Score	lawns, or crops) have n	not									
RB Score 5	impacted zone.										
Total Score 0											

REMARKS / NOTES:

	General			
Site ID	Stream Name			
B-1-QA	Cane Kun trib			
Date	Sampler(s)			
5-31-17	C.Blord, M. Hall			
	Substrate Characterization			

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	20	20	60	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)	80	80	90	0%	NOTE: Each
Sand (0.06 – 2 mm)	5	5	5	0%	column must total
Gravel (2-64 mm)	15	15		0%	to 100.
Cobble (64-256mm)				0%	
Boulders (>256mm)				0%	
Bedrock			5	0%	
	Ma	cro Screeni	ing		

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or 1 based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and 1-4 orgs = 1
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies		0	6	0
Damselflies		0	8	0
Riffle beetles (adults & larvae)		0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

ntegrity Rating:	#DIV/0!			
Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches		0	9	0
Aquatic worms		0	9	0
Aquatic sowbugs		0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)		0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies		0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies		0	5	0
True Flies - Midges		0	7	0

LAT: 38, 08699 LONG: -64,49461 STREAM ID DATE: 5.31-17 WATERSHED: Carre Run INVESTIGATOR(S) C. Bland M. Hall COWARDIN CLASS: **IMAGE COMMENT:** STREAM TYPE: STREAM SIZE: **IMAGE ID:** IMG Width (Ft) Perennial Depth (Ft) IMG Ephemeral IMG

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
I. Epifaunal Substrate / Available Cover	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder	Gravel, cobble, and boulder
Score 5		particles are 25-50% surrounded by fine sediment.	1	particles are more than 75% surrounded by fine sediment.
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	fast-shallow is missing, score lower	present (if fast-shallow or slow- shallow are missing, score low).	regime (usually slow-deep).
	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
Score 15	or point bars and less than 5% of the bottom affected by sediment deposition.	formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status	Water reaches base of both lower	Water fills > 75% of the available	Water fills 25-75% of the	Very little water in channel and
Score 14	banks, and minimal amount of channel substrate is exposed.	channel; or <25% of channel substrate is exposed.	available channel, and/or riffle substrates are mostly exposed.	mostly present as standing pools.
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
7. Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
(or Bends)	frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders	distance between riffles divided by	bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	1
Score S	streams where riffles are		Secure 15 to 25.	

MARGINAL POOR
4 3 2 1

8. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
LB Score 8	10 9 Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	•	5 4 3 Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative Protection LB Score RB Score	surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
10. Riparian Vegetative Zone Width LB Score RB Score	Width of riparian zone > 18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.

REMARKS / NOTES:

	General
Site ID	Stream Name
FI	Come Run trib
Date	Sampler(s)
5-31-17	C.Bayd Mall
	Substrate Characterization

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	70	15	15	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)			10	0%	NOTE: Each
Sand (0.06 – 2 mm)	15	15	10	0%	column must total
Gravel (2-64 mm)	15	15	30	0%	to 100.
Cobble (64-256mm)	10	70	50	0%	
Boulders (>256mm)				0%	
Bedrock				0%	
	Ma	cro Screeni	ing		

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or I based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and I-4 orgs = I
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies		0	6	0
Damselflies		0	8	0
Riffle beetles (adults & larvae)		0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

			F	1
True Flies - Midges		0	7	0
True Flies - Blackflies		0	5	0
True Flies - Craneflies		0	5	0
True Flies - Watersnipe flies		0	2	0
Crayfishes	108	0	6	0
Clams & mussels (non-native)		0	6	0
Mussels (native)	- 19	0	2	0
Scuds/sideswimmers	100	0	8	0
Operculate snails	9	0	4	0
Non-operculate snails		0	8	0
Aquatic sowbugs		0	8	0
Aquatic worms		0	9	0
Leeches		0	9	0
Flatworms		0	7	0
TOTALS	Abundance	0	Tolerance	0
Biotic Index:	#DIV/0!			
Integrity Rating:	#DIV/0!			

STREAM ID	JI (QA)		DATE: 5-19	9-17 LAT: 38,0663 LONG: -64,46212
INVESTIGATO	R(S) CiBlaid	cow	ARDIN CLASS:	WATERSHED: CAME FUM
STREAM SIZE:	STREAM TYPI	E: IMA	GE ID:	IMAGE COMMENT:
Width (Ft)	9-5 Perennial	IMG		
Depth (Ft)	(e ' Ephemeral	IMG		
Reach (Ft)	300 Intermittent	/ IMG		

Depth (Ft)	Ephemeral	IMG		
Reach (Ft) 300	Intermittent	IMG		
		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER 1. Epifaunal Substrate /	20 19 18 17 16 Greater than 70% of substrate	15 14 13 12 11 40-70% mix of stable habitat; well	10 9 8 7 6 20-40% mix of stable habitat;	Less than 20% stable habitat; lack
Available Cover Score	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).		of habitat is obvious; substrate unstable or lacking.
2. Embeddedness	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	0,	present (if fast-shallow or slow- shallow are missing, score low).	
4. Sediment Deposition	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6. Channel Alteration	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
7. Frequency of Riffles	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallov
(or Bends)	frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction		bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

	17	_	ı
-	1	(.)	(
7	1	CX /	-
11/	100	- 1	

O. Dani, Canbilian	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
8. Bank Stability LB Score	10 9 Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	8 7 6 Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	5 4 3 Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9. Vegetative Protection LB Score 7	surfaces and immediate riparian zone covered by native vegetation, including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through	70-90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than one-half of the potential plant	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
RB Score 7 10. Riparian Vegetative Zone Width LB Score 7 RB Score 7 Total Score 0	Width of riparian zone > 18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters little or no riparian vegetation due to human activities.

REMARKS / NOTES:

	General	
Site ID	Stream Name	
J1 (QA)	Care Run	
<u>Date</u>	Sampler(s)	
5-19-17	C.Bloyd	
在最级	Substrate Characterization	

Substrate	Riffle %	Run %	Pool %	Reach total	Notes
% of Stream	25	50	25	0%	NOTE: Row must total 100%
Silt/Clay (<0.06 mm)	90	100	100	0%	NOTE: Each
Sand (0.06 – 2 mm)				0%	column must total
Gravel (2-64 mm)	0			0%	to 100.
Cobble (64-256mm)				0%	
Boulders (>256mm)				0%	
Bedrock				0%	
	Ma	cro Screeni	ng		

- 1. Record Abundance Count, or number of organisms, from your field data sheet. Do not use ">" symbol.
- 2. Spreadsheet will assign an Abundance Value of 6, 3, or 1 based on the Abundance Count: >30 orgs = 6; 5-30 orgs = 3; and 1-4 orgs = 1
- 3. Spreadsheet multiplies each Abundance Value by the Tolerance Value to get the Tolerance Score for that type of Benthic Macroinvertebrate
- 4. Spreadsheet adds the entire Tolerance Score column to get Total Tolerance
- 5. Spreadsheet adds the entire Abundance Value column to get Total Abundance
- 6. Spreadsheet divides the Total Tolerance by the Total Abundance to calculate the Biotic Index
- 6. Spreadsheet calculates the Integrity Rating for the Bluegrass Region

Benthic Macroinvertebrates	Abundance Count	Abundance Value	Tolerance Value	Tolerance Score
Stoneflies		0	2	0
Mayflies		0	3	0
Caddisflies (case-building)		0	3	0
Caddisflies (net-spinning)		0	4	0
Dragonflies		0	6	0
Damselflies	1114	0	8	0
Riffle beetles (adults & larvae)	17/11	0	4	0
Water pennies		0	3	0
Other beetles		0	9	0
Hellgrammites		0	5	0
Alderflies		0	7	0
True Flies - Other		0	8	0

Integrity Rating:	#DIV/0!			
Biotic Index:	#DIV/0!			
TOTALS	Abundance	0	Tolerance	0
Flatworms		0	7	0
Leeches		0	9	0
Aquatic worms		0	9	0
Aquatic sowbugs	98	0	8	0
Non-operculate snails		0	8	0
Operculate snails		0	4	0
Scuds/sideswimmers		0	8	0
Mussels (native)		0	2	0
Clams & mussels (non-native)	0	0	6	0
Crayfishes		0	6	0
True Flies - Watersnipe flies		0	2	0
True Flies - Craneflies		0	5	0
True Flies - Blackflies		0	5	0
True Flies - Midges		0	7	0

APPENDIX B PHOTO LOG

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

AI- Bank Undercuts (Rb)

AI- Bank Undercuts 2 (Rb)

AI- Center of Reach, Culvert under I-64

A1- Facing Downstream from Upstream End of Reach, Submerged Vegetation, Leaf Packs

A1- Facing Upstream of Reach

A1- Train Bridge Upstream

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

AI- Trash, Submergent Vegetation, Leaf Packs

AI- Typical Substrate

A2- Aquatic Vegitation in Riffle

A2- Bank Undercuts (Rb) (a)

A2- Bank Undercuts (Rb) (b)

A2- Culvert Filter Facing Downstream, Leaf Packs

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

A2- Culvert Filter Facing Upstream

A2- Erosion Control on Rb of Reach

A2- Failed Silt Fence on Lb near Reach

A2- Log in Stream, Leaf Packs

A2- Riffle 2

A2- Riffle, Drainage from adjacent Neighborhood

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

A2- Riparian Zone, Bank Cut

A2- Road above Culvert (a)

A2- Road above Culvert (b)

A2- Sewer Pressure Pipe Warning (a)

A2- Sewer Pressure Pipe Warning (b)

A2- Typical Substrate

BI- Center of Reach Facing Upstream

BI- Center of Reach Facing Downstream

BI- Downstream End of Reach Facing Downstream

BI- Downstream End of Reach Facing Upstream

BI- Evidence of Buffer Restoration

BI- Evidence of Drainage from Agriculture Field

BI- Upstream End of Reach Facing Downstream

CI- Embeddedness Top of reach

CI- Riffle Sampling Site 4

CI- Top of Reach, Upstream

CRI- Banks

CRI- Downstream View of Stream Alteration

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

CRI- Effluent Pipe Stream Alteration

CRI- Emergent Vegetation (a)

CRI- Emergent Vegetation (b)

CRI- Pool Downstream of Reach

CRI- Pump Station Stream Reach

CRI- Root Mats and Undercut Banks

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

CRI- Typical Substrate Riffle

CRI- Typical Substrate

CRI- Undercut Bank Root Mat

CRI- Undercut Banks

CRI- Upstream View of Reach

CR3- Bedrock Bottom (a)

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

CR3- bedrock Bottom (b)

CR3- Bedrock Bottom (d)

CR3- Channel Alteration

CR3 Effluent Pipe Upstream of Reach

CR3- Riffle Habitat

CR3- Riffle

CR3- Submergent Vegetation (b)

CR3- Tributary Formation

CR3- Typical Instream Habitat

CR3- Undercut Bank (a)

CR3- Undercut Bank (b)

CR3- Undercut Bank and Root Mat

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

CR4- Bank Stabilization (a)

CR4- Bank Stabilization (b)

CR4- Bottom of Reach Looking Downstream

CR4- Looking Downstream Isolated Pools under Bridge

CR4- Midreach Looking Downstream

CR4- Midreach Looking Upstream

CR4- Riparian Vegetation Looking Upstream

CR4- Undercut Banks Top of Reach (a)

CR4- Undercut Banks Top of Reach (b)

CR5- Bedrock Sampling Site (a)

CR5- Bedrock-Drainpipe-Undercut Banks

CR5- Bedrock-Undercut Banks

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

CR5- Bottom of Reach Bedrock

CR5- Bottom of Reach Downstream

CR5- Drain Holes Bank Erosion

CR5- Drainage Holes

CR5- Hardening

CR5- Leaf Pack Sampling Site

CR5- Midpoint of Reach looking Downstream

CR5- Undercut Banks-Substrate

CR6- Bedrock

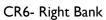
CR6- Downstream View from Upstream End

CR6- Downstream View of Downstream Reach

CR6- Eroding Bank and Pool

CR6- Fine Sediment

CR6- Leaf Pack



CR6- Left Bank

CR6- Riffle Habitat

CR6- Root Wad

CR6- Under Cut Bank

CR6- Upstream from Upstream End

CR6- Upstream View from Downstream End of Reach

CR7- Downstream View Downstream End of CR-7

CR7- Downstream View from Upstream End of CR-7

CR7- Habitat (a)

CR7- Habitat Photo (b)

CR7- Habitat Photo (c)

CR7- Upstream View from Upstream End

CR7- Upstream View from Downstream End of CR-7

CR9- Another Overviw of Reach

CR9- Culvert Downstream of Reach

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

CR9- Overview Facing Downstream

CR9- Overview of Reach (a)

CR9- Overview of Reach (b)

CR9- Riffle

CR9- Sanitary Sewer Adjacent to Stream

CR9- Small Trib to CR-9

CR9- Stream Disppears Under Dirt Road

CR9- Trash

CR9- Trees in Middle of Stream

CR9- Typical Substrate (a)

CR9- Typical Substrate (b)

CR9- Undercut Bank Root Mat

CR9- Undercut Bank

DI- Erosion and Undercut Banks

DI- Jab Sampling Site

DI- Point Bar Formation

DI- Riffle Sample Site

DI- Scoop Sampling Site

DI- Typical Vegetative Cover

D2- Riffle

D2- Scoop Sample

D2- Undercut Bankroot Mat

D2-I- Algae

D2-I- Bottom of Reach Downstream

D2-I- Midreach Downstream

D2-I- Midreach Upstream

D2-I- Storm Drain

D2-I- Stream Bank Stabilization

D2-Pipe Crossing Creek

D2-Reach Begining, Upstream

D3- Downstream View

D3- Emergent Vegetation

D3- Instream habitat

D3- Upstream view

D4- Downstream View From Downstream End

D4- Downstream View From Upstream End

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

D4- Emergent Vegetation

D4- Habitat

D4- Upstream View from Downstream End

D4- Upstream View from Upstream End

D5- Upstream View from Upstream End

D5- Downstream View from Downstream End

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

D5- Downstream View from Upstream End

D5- Habitat

D5- Upstream View from Downstream End

E2- Center of Reach Facing Downstream

E2- Center of Reach Facing Upstream

E2- Downstream End of Reach Facing Upstream

E2- Upstream End of Reach Facing Downstream

FI- Downstream

FI- Mid-Downstream

FI- Mid-Upstream

FI- Upstream (a)

G2- Riffle

Cane Run Watershed Focused Monitoring Stream Corridor Characterization Stream Sites Photo Log (Landscape)

G2- Riparian Zone Facing Downstream

G2- Root Mat Undercut Bank

G2- Sediment Deposition

G2- Thawleg

G2- Typical Riffle

G2- Typical Substrate (a)

G2- Undercut Bank Root Mat

G2- Upstream Riparian Zone

HI- Jab Sampling Site

HI- Sanitary Sewer

HI- Scoop Sampling Site

AI- High Sediment Deposition

CI- Bottom of Reach Looking Downstream

CI- Erosion Entering Top of Reach

CI- Midreach Looking Downstream

C1- Midreach Looking Upstream

CI- Riffle Sampling Site I

CI- Riffle Sampling Site 2

CI- Riffle Sampling Site 3

CI- Scoop Sampling Site

C2- Downstream

C2- Riffle (Kick)

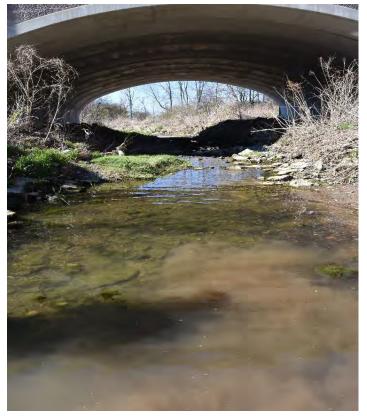
C2- Riffle (Sample Site)

C2- Undercut Bank (Jab)

C2- Upstream

C2- Vegatation

CR3 Bedrock Bottom (c)


CR3 Submergent Vegetation (a)

CR4- Benthic Sampling Site (a)

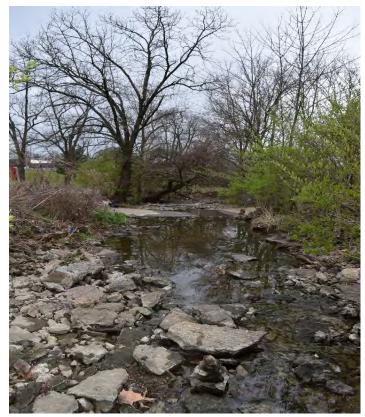
PCR4- Benthic Sampling Site (b)

PCR4- Bottom of Reach Looking Upstream

CR4- Inlet at Midreach

CR4- Isolated Pools Midreach

CR4- Top of Reach Looking Downstream

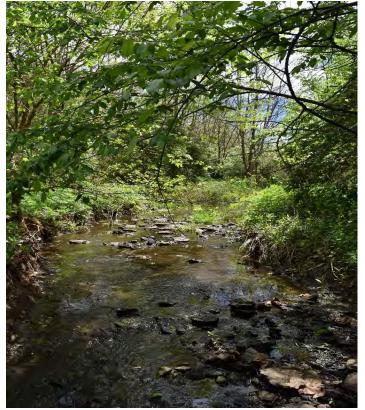

CR4- Top of Reach Looking Upstream

CR5- Bedrock Sampling Site (b)

CR5- Bottom of Reach Upstream

CR5- Midpoint of Reach Upstream

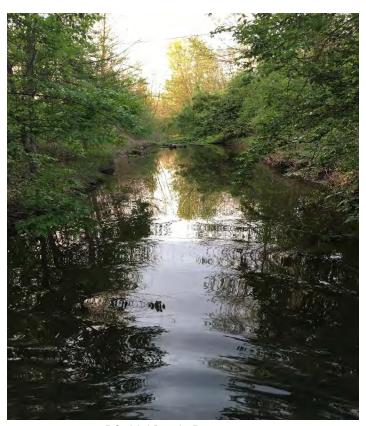
CR5- Midpoint of Reach


CR5- Silt-Sand-Gravel Sampling Site

CR5- Top of Reach Upstream

DI- Midreach Downstream

DI- Midreach Upstream Riffle Sample Site



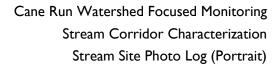
DI- Top of Reach

DI-Bottom of Reach

D2- Mid Reach, Downstream

D2-I- Riffle Sample Site

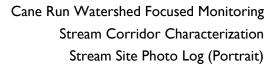
D2-I- Top of Reach Upstream


D2-End of Reach, Downstream

EI- Downstream (a)

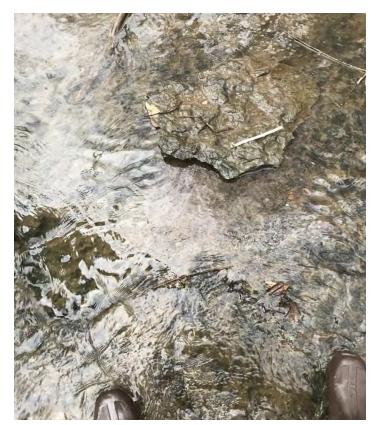
EI- Downstream (b)

EI- Fine Sediment


EI- Leaves

PEI- Riffle (a)

PEI- Riffle (b)



EI-Riffle (c)

EI- Riffle (d)

EI-Slabrock

EI- Undercut Bank

EI-I- At End of Reach Facing Upstream

E1-1- Beginning of Reach

EI-I- Middle Downstream

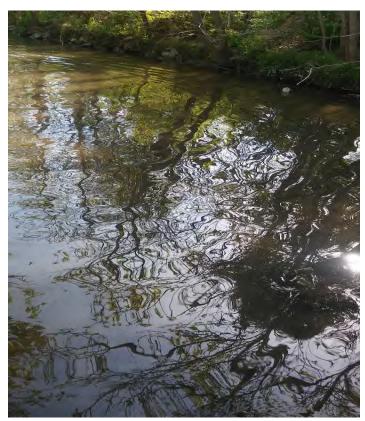
E1-1- Middle Upstream

E1-1- Start of Reach Facing Downstream

FI- Benthic Sampling Site-Downstream

FI- Benthic Sampling Site-Upstream

FI- Benthic Sampling Site

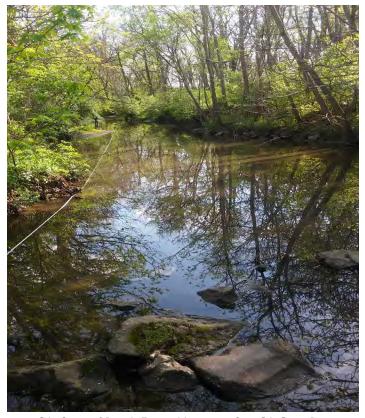


FI- Top of Reach

FI- Upstream (b)

GI- Ist Sample Spot_Toop of Only Riffle_At Beginning of Reach Site GI Cane Run

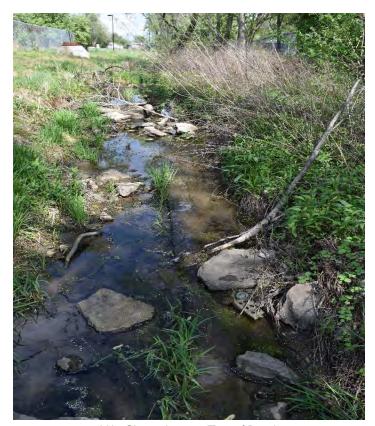
GI- 42m mark2nd Sample Spot (Undercut) Site GI Cane Run



GI- Middle of Reach Facing Upstream Site GI Cane Run

GI- Start of Reach Facing Upstream Site GI Cane Run

G2- Typical substrate (b)



HI- Bank erosion

HI- Bottom of Reach Downstream

HI- Channelization Top of Reach

HI- Erosion Control Blankets

HI- Middle of Reach Downstream

HI- Middle of Reach Upstream

HI- Possible Channelization-Sanitary Sewer

HI- Riffle Sampling Site (a)



HI- Riffle Sampling Site (b)

HI- Top of Reach Upstream

II- 2nd Sample Area Deepest Point of Reach Site II Cane Run

II- End of Reach Facing Upstream Site II Cane Run

II- Middle of Reach SIte II Cane Run

II- Pipe Running Across Stream 91m mark Site II Cane Run

II- Small Riffle Facing Downstream 1st Sample Area Site II

Cane Run


II- Start of Reach Facing Downstream Site II Cane Run

MI- 24m Mark- Right Bank 3rd Sample Spot-Undercut

MI- 50m Mark- 2nd Sampling Spot-Pool- Deepest Point of Reach

MI- 94m Mark- 1st Sampling Spot -Kick-End of Riffle


MI- End of Reach Facing Downstream

MI- Middle of Reach Facing Upstream

MI- Start of Reach Facing Upstream

NI- 25m Mark Facing Upstream Riffle-Vegetation

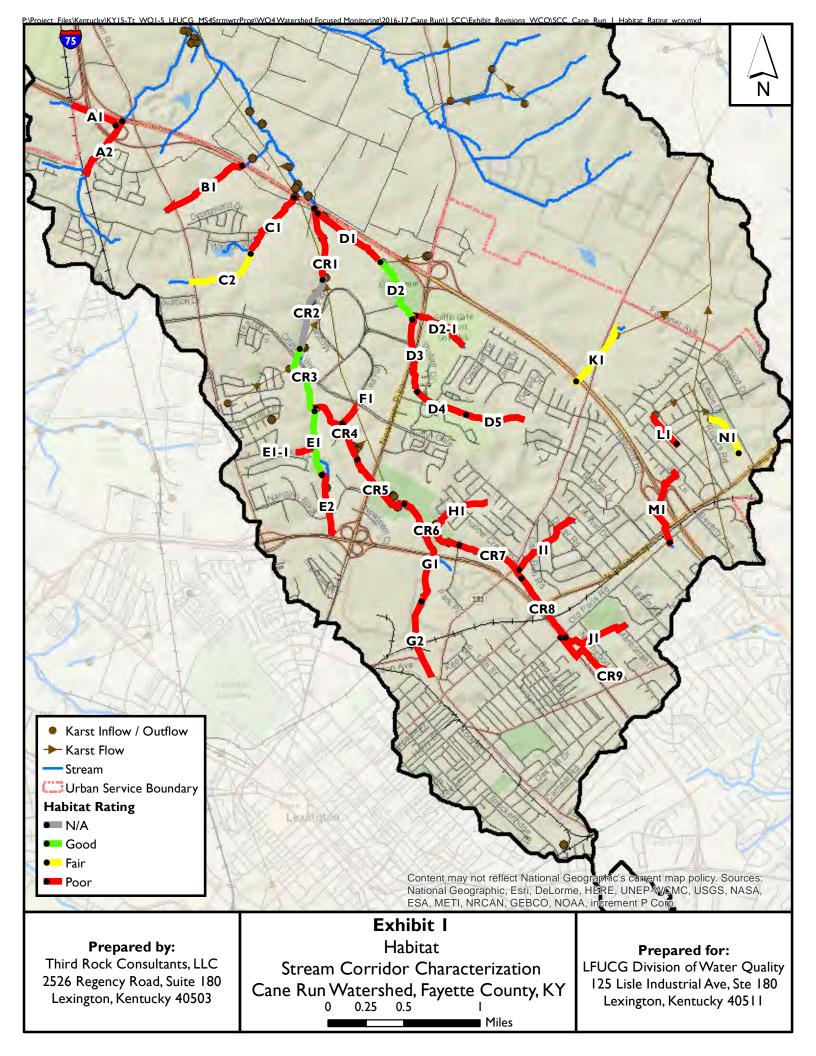
NI- 2nd and 3rd Sampling Site

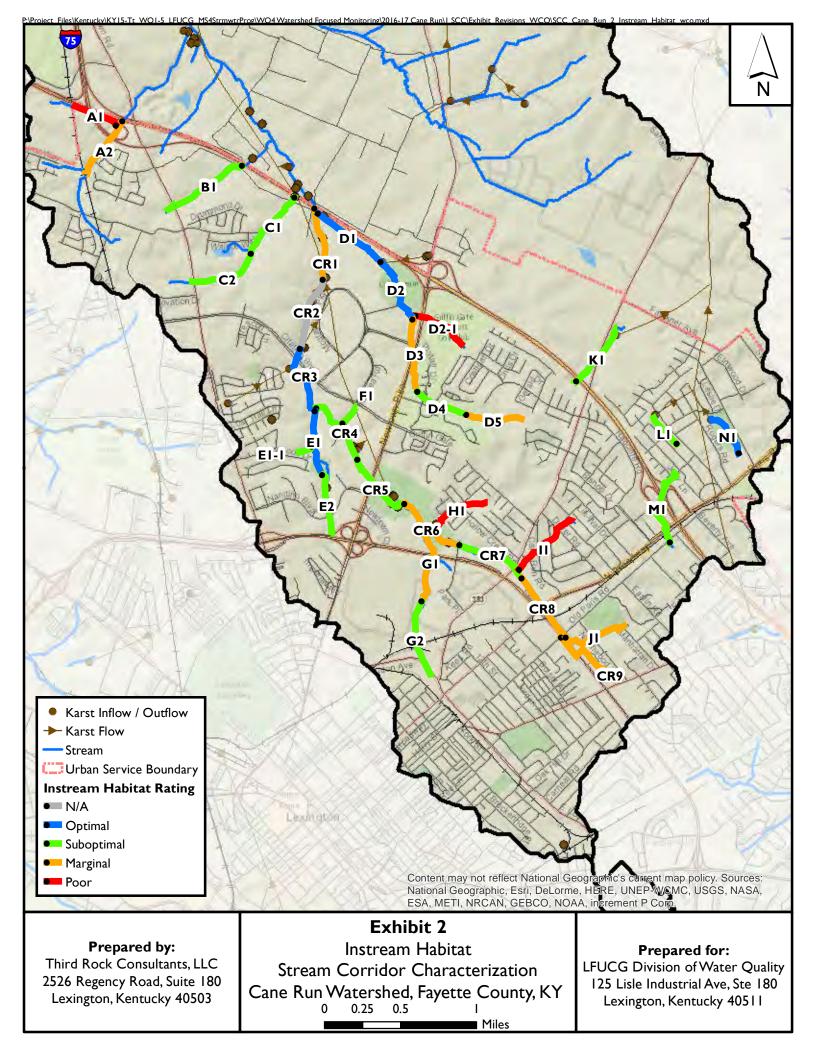
NI- At End of Reach Facing Upstream

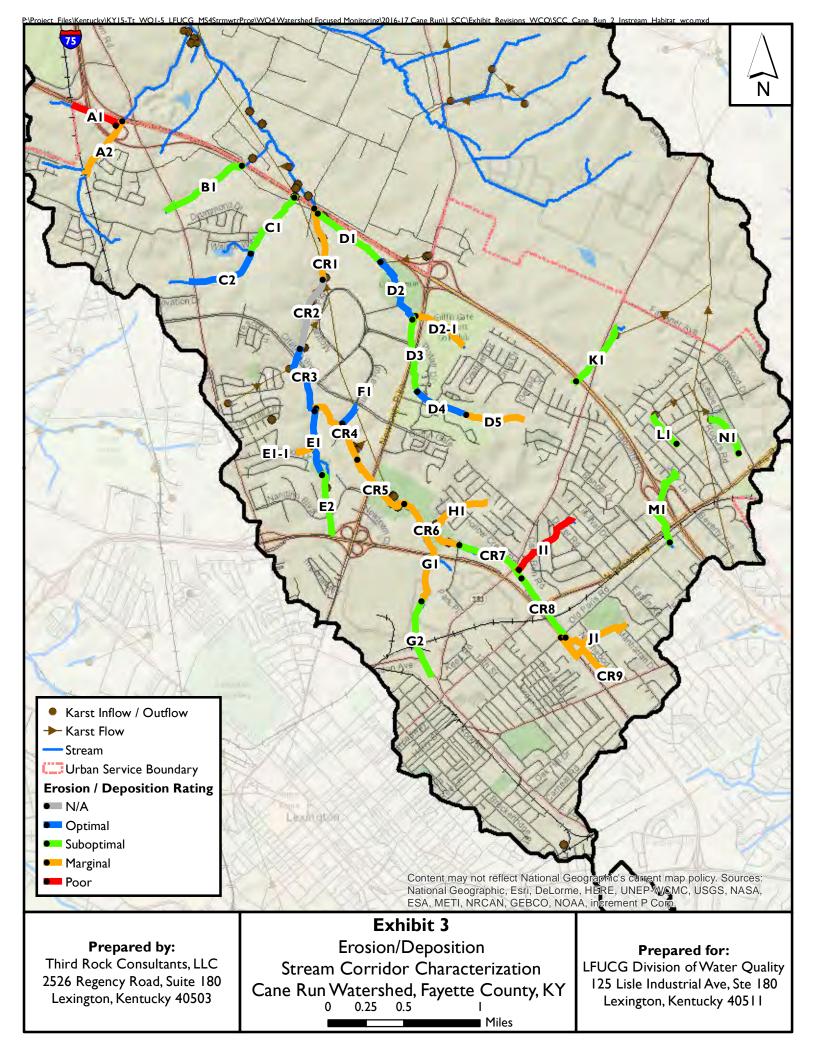
NI- At Start of Reach Facing Downstream

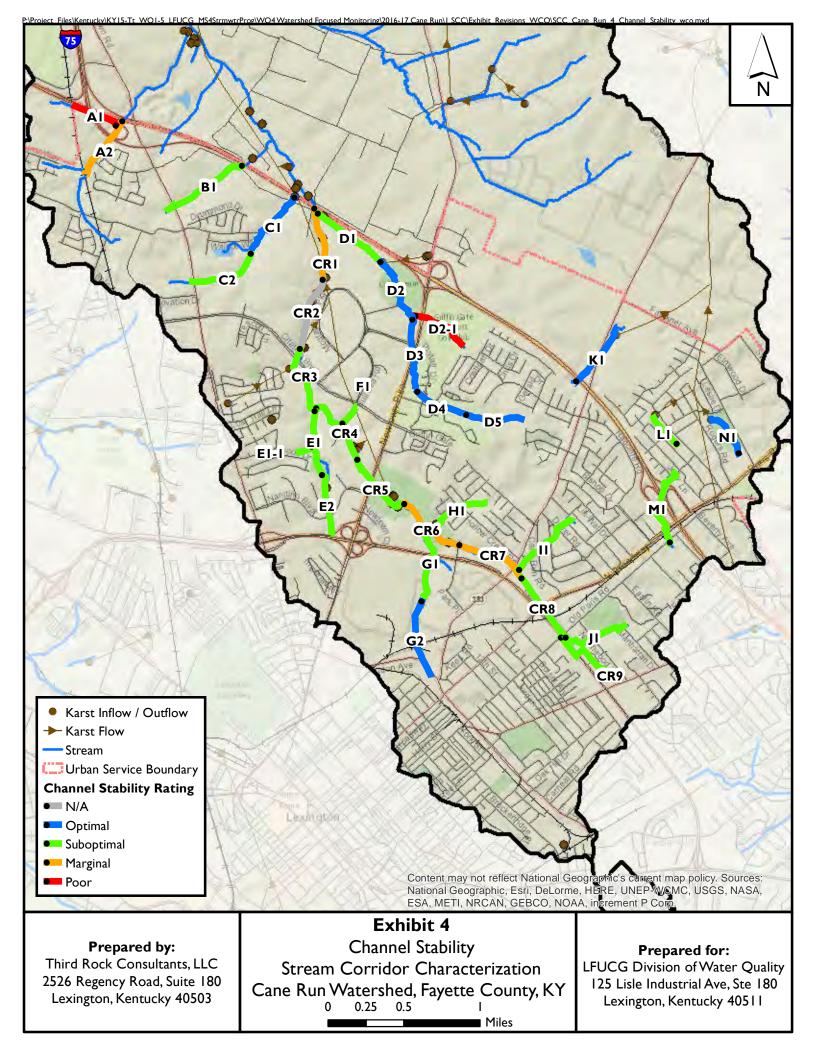
NI- Middle of Reach Facing Downstream

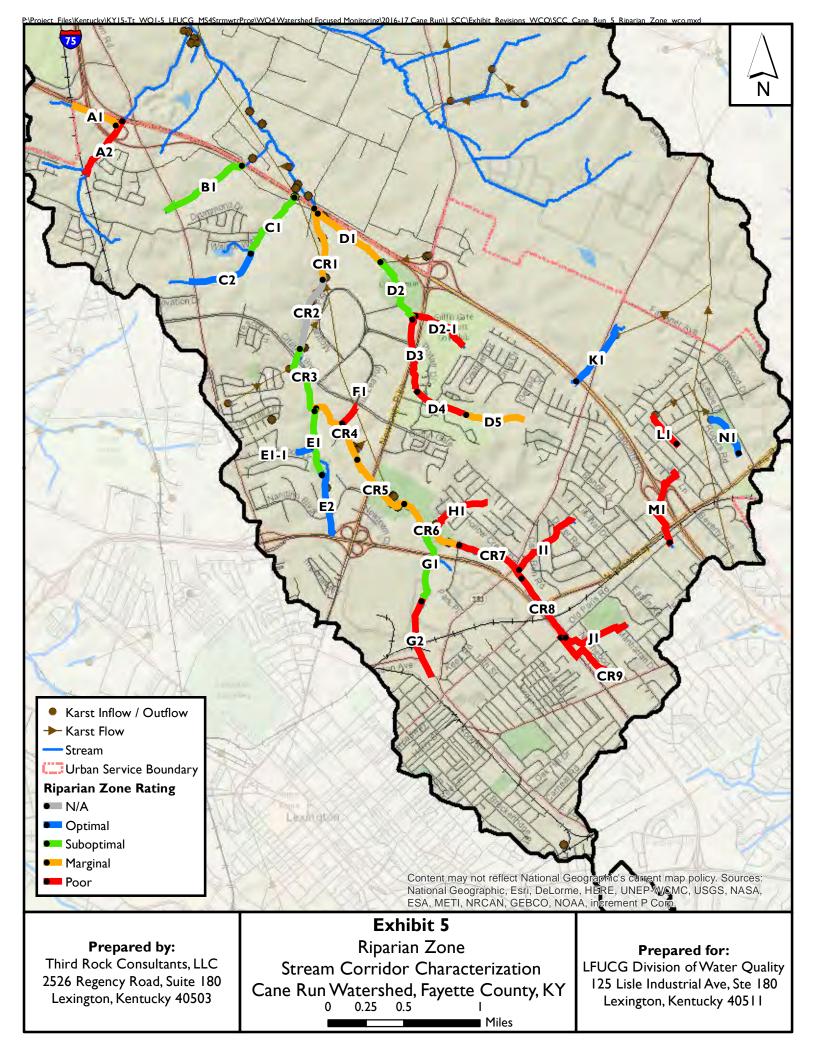
NI- Pond Skaters

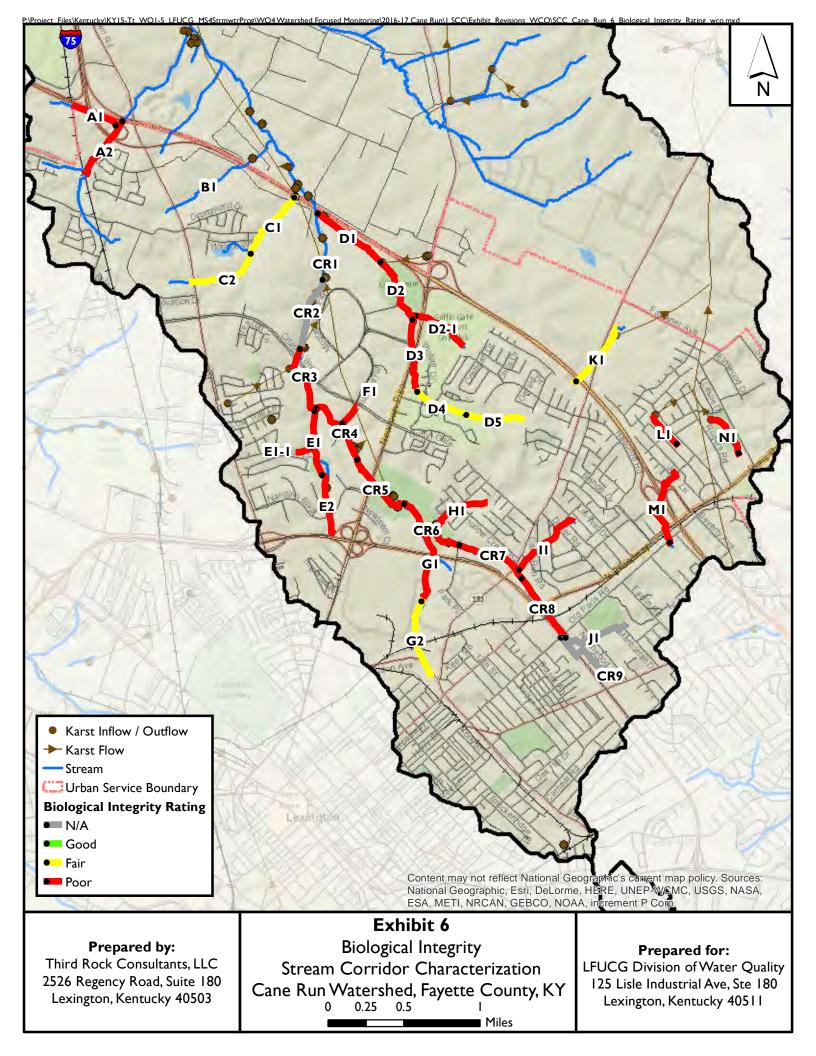


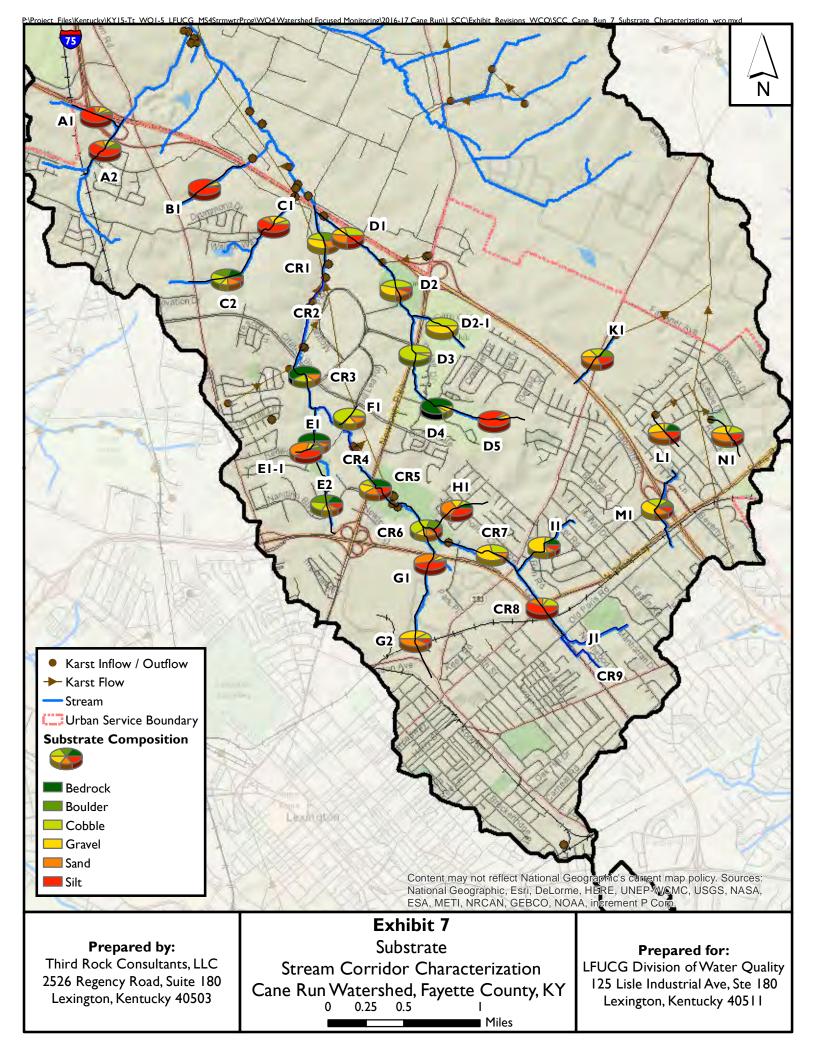





NI- Upstream Island Vegetation


APPENDIX C EXHIBITS





APPENDIX K

Submitted to: Jennifer Carey, PE, MS4 Coordinator

Lexington-Fayette Urban County Government (LFUCG)

Division of Water Quality

Copied to: Richard Walker, PE

Tetra Tech, Inc.

Prepared by: Bert Remley

Subject: Cane Run Watershed-Focused Monitoring

Stream Biology

Submitted on: January 16, 2018

BACKGROUND

LFUCG's Phase I MS4 Permit (KPDES No. KYS00002 AI No. 74551) was issued on May 1, 2015, with a five-year duration period effective June 1, 2015. One of the requirements of the permit is that "LFUCG shall begin to change its monitoring program to a watershed-focused monitoring program. In order to facilitate this process, monitoring should be conducted on a watershed basis with additional monitoring stations sampled for water chemistry, macroinvertebrates, microbial source tracking, hydrogeomorphic characterization, and habitat assessment."

The study area for LFUCG's Watershed-Focused Monitoring Program (WFMP) encompasses the seven major watersheds that drain LFUCG's Urban Service Area including Cane Run, South Elkhorn, West Hickman, East Hickman, Town Branch, North Elkhorn, and Wolf Run. Monitoring began in 2016 with the Cane Run Watershed, with monitoring to begin in in South Elkhorn in 2017, West Hickman in 2018, and so on until each watershed is monitored and the results reported to the Kentucky Division of Water (KDOW).

The overall objective of the WFMP is to collect and generate data to identify and remediate sources of recreational and aquatic habitat impairments to streams within the Urban Service Boundary. Key monitoring elements include:

- I. Stream Corridor Characterization
- 2. Stream Biology
- 3. Water Quality Monitoring
- 4. Discharge Prevention Investigation
- 5. Priority Area Upland Visual Assessment

Third Rock Consultants, LLC (Third Rock) was retained as a subconsultant to Tetra Tech, Inc. to provide water quality consulting services in support of LFUCG's MS4 program, including conducting key monitoring elements required by LFUCG's WFMP. Results for each watershed will be used to compute and assess pollutant loading and ultimately summarized in a comprehensive, Watershed-Focused Monitoring Program Report for each of the seven watersheds.

As detailed in the WFMP Quality Assurance Project Plan (QAPP), macroinvertebrates were sampled by Third Rock's KDOW-certified biologists at three sites within the watershed. This Technical Memorandum documents the results of Third Rock's stream biology monitoring in the Cane Run Watershed.

METHODOLOGY

Semi-quantitative and qualitative macroinvertebrate samples were collected at sites CR-4 and CR-8 on February 23, 2017 and site CR-5 on April 25, 2017 (see **Exhibit I**, **Appendix A**). All sites were sampled using methods developed by KDOW (KDOW 2015a).

Physical parameters (dissolved oxygen, pH, water temperature, turbidity, and specific conductance) were measured using a Hydrolab water quality meter, and US EPA Rapid Bioassessment Protocol (RBP) was used to assess stream habitat, in conjunction with the sampling effort. Ten physical habitat parameters that characterize the stream "micro-scale" habitat, the "macro-scale" features, and the riparian and bank structure features were assessed, photographed (**Appendix B**, Photo Log) and recorded on a field data sheets modified from US EPA 841-B-99-002 (Barbour et al. 1999) (**Appendix C**).

Semi-quantitative sampling involved the collection of four 0.25 square meter (m^2) samples collected from at least two separate riffles at each station using a 0.25 m^2 quadrat and a kicknet (600 μ m mesh). Riffle collections at each station were composited to form one semi-quantitative sample.

Since all sites were evaluated as headwater streams, qualitative, multi-habitat sampling involved the following:

- collection of three leaf packs; one each from a riffle, run and pool
- three jabs (with an 800 x 900µm D-frame dip net) in sticks/wood
- three jabs into undercut banks/submerged roots, edge habitat, and depositional areas (soft sediment) using a US #10 sieve
- hand-picking of five small boulders from pools
- visual searches of approximately six linear feet of large woody debris

All samples collected with the dip net and from rock and wood were processed through a $600\mu m$ wash bucket. Collections from each microhabitat were composited to form one qualitative sample for each station.

Samples were preserved in 95% ethanol and returned to Third Rock's laboratory for processing and identification. Random 300-specimen subsamples were removed from the semi-quantitative (riffle) samples using methods described by KDOW (2015b). Each riffle sample was poured into a Canton

sorting tray and divided into 30 equally sized grids. Organisms were removed from the sample in randomly selected grids until the 300-specimen total was reached or all specimens had been removed. The number of grids sorted was recorded for each sample to allow estimation of total organism abundance. Representative individuals for all distinct taxa were removed from the qualitative (multi-habitat) sample for identification. All organisms were identified to the lowest possible taxonomic level and recorded on laboratory bench sheets.

Deviation from the WFMP QAPP is summarized below:

The QAPP identifies sampling sites CR-I, CR-4, CR-8. Cane Run, downstream of site CR-5, has karst features that limit surface flow in this section of the stream, and as a result, dry conditions in CR-I prevented sampling during the index period; therefore, site CR-5, just upstream of site CR-I, was selected as an alternate sampling site. While CR-5 has a watershed greater than five (5) square miles, it was evaluated as a headwater stream because of the karst influence in the drainage area.

Sites CR-4 and CR-8 were sampled February 23, seven days in advance of the March I start of the index period. Third Rock Senior Taxonomist made the decision to sample in advance of a large a large precipitation event (> I inch) forecast for February 28 that would have scoured the macroinvertebrate communities and delaying sampling into March. Sampling results were not affected as a result of this schedule deviation.

RESULTS

Physical Water Quality Parameters

All streams within the Cane Run watershed have designated uses of Warmwater Aquatic Habitat (WAH). WAH standards apply to the protection of productive warmwater aquatic communities, fowl, animal wildlife, arboreous growth, agricultural, and industrial uses. The standards applicable to the physical parameters measured are as follows:

- pH shall not be less than 6.0 SU, more than 9.0 SU, nor fluctuate more than 1.0 SU over 24 hours;
- temperature shall not exceed 31.7°C (89°F);
- dissolved oxygen shall be above 5.0 mg/L as a 24-hour average and above 4.0 mg/L for instantaneous measurements; and
- specific conductance shall not be changed to the extent that the indigenous aquatic community is adversely affected.

All parameters were within regulatory benchmarks for WAH criteria. Dissolved oxygen, pH, turbidity, and water temperature measurements were "good" at all locations, while specific conductance levels were generally higher than would be expected. Dissolved oxygen levels ranged from 10.7 mg/L (CR-5) to 11.6 mg/L (CR-8), all of which are above the acute WAH criteria of 4.0 mg/L. Recorded pH levels were also within the WAH criteria, ranging from 8.1 (CR-5) to 8.6 standard units (CR-8). Temperature readings did not exceed 31.7°C (WAH criteria) at any of the stations. Specific conductance does not have a numeric WAH criteria, but results ranged from 677 to 839 μ S/cm. Streams were not turbid during sampling with turbidity levels all less than 5 NTUs. Results are summarized in **Table 1**, page 4.

Table I. Physical Water Q	uality Para	meter Result	S
		Site ID	
B 4	CD 4	CD F	

		Site ID		
Parameter	CR-4	CR-5	CR-8	
Date Sampled	2/23/17	4/28/17	2/23/17	
Dissolved Oxygen (mg/L)	10.8	10.7	11.6	
pH (SU)	8.2	8.1	8.6	
Temperature (°C)	15.2	16.6	19.2	
Specific Conductance (µS/cm)	701	677	839	
Turbidity (NTUs)	4.0	1.8	4.3	

Habitat

Each of the ten parameters was evaluated on a "Condition Category" scale from 0 to 20 where "optimal" scores from 20 to 16, "suboptimal" scores from 15 to 11, "marginal" scores from 10 to 6, and "poor" scores from 5 to 0. A score of 0 to 200 was assigned for each location based on the sum of the ten parameters. For headwater streams (watersheds less than 5 mi²) of the Bluegrass Bioregion, a habitat score below 142 indicates a "poor" habitat rating; scores between 142 and 155 indicate "fair" habitat rating; and scores above 155 indicate "good" rating (KDOW 2011) as summarized in **Table 2.**

Table 2. WAH Habitat Criteria

	Habitat (RBP Score)		
Rating	Drainage Area > 5.0 mi ²	Drainage Area < 5.0 mi ²	
Excellent	N/A	N/A	
Good	≥ 130	≥ 156	
Fair	114-129	142-155	
Poor	≤ 113	≤ 4	
Very Poor	N/A	N/A	

Habitat assessment indicated "poor" habitat for all three sites when compared to KDOW criteria for streams of the Bluegrass Bioregion. Results are summarized in **Table 3**, page 5.

Table 3. Habitat Results

	Site ID		
Parameter Parameter	CR-4	CR-5	CR-8
Date Sampled	2/23/17	4/28/17	2/23/17
Headwater (H) or Wadeable (W)	Н	Н	Н
Epifaunal Sub/Available Cover	11	5	7
Embeddedness	15	10	12
Velocity Depth Regime	12	П	6
Sediment Deposition	16	5	8
Channel Flow Status	13	12	6
Channel Alteration	15	15	14
Freq. of Riffles (or Bends)	13	13	14
Bank Stability	14	2	8
Vegetative Protection	12	2	4
Riparian Zone Width	16	0	5
RBP Score	137	75	84
RBP Rating	Poor	Poor	Poor

The majority of habitat parameters rated within the suboptimal or marginal categories. Vegetation protection and riparian vegetation zone width were the most impaired habitat parameters with a median score in the poor to low marginal range. Marginal riparian zone width is 6 to 12 meters (20' to 40') and has been impacted by human activities. Epifaunal substrate/available cover, sediment deposition, and bank stability were the next most impaired habitat parameters all with median scores falling in the mid-marginal category. Channel alteration and frequency of riffles/bends were the highest rated parameters with medium/high suboptimal median scores (15/13).

Bank stability and riparian vegetation zone width were the most variable parameters evaluated during the assessment with scores ranging from 2 to 14 and 0 to 16, respectively. It should be noted that stream restoration work at CR-5 had begun prior to assessment, lowering the scores at this location. Riparian vegetation had been removed from both banks of CR-5 resulting in a considerable reduction of the riparian zone. As the riparian vegetation recovers, the habitat score at CR-5 will improve.

Macroinvertebrates

Macroinvertebrate sampling results were evaluated through calculation of several community metrics specified by KDOW. Community metrics include genus taxa richness, genus EPT (mayfly, stonefly, and caddisfly) richness, total number of individuals, modified percent EPT individuals, modified Hilsenhoff biotic index (mHBI), percent Ephemeroptera (headwater only), percent primary clingers, and percent Chironomidae plus Oligochaeta (aquatic worms).

Results of community metrics at each site were combined to compute a Macroinvertebrate Bioassessment Index (MBI) score, ranging from 0 (worst) to 100 (best). MBI scores were compared to scoring criteria developed by KDOW to arrive at water quality ratings of "very poor," "poor," "fair," "good," or "excellent." For headwater streams (watersheds less than 5 mi²) of the Bluegrass Bioregion, an MBI score of 18 and below is "very poor," from 19 to 38 is "poor," from 39 to 50 is "fair," from 51 to 57 is "good," and 58 or greater is "excellent" (Pond et al., 2003) as summarized in **Table 4**.

Macroinvertebrates (MBI Score) **Drainage Area Drainage Area** > 5.0 mi² < 5.0 mi² Rating Excellent ≥ **70** ≥ 58 Good 61-69 51-57Fair 41-60 39-50 19-38 Poor 21 - 40Very Poor ≤ 20 ≤ 18

Table 4. WAH Macroinvertebrate Criteria

Macroinvertebrate results are summarized in **Table 5**; sampling checklists, laboratory chains of custody/bench sheets, taxa lists, and MBI calculations are included in **Appendix C.**

	Site ID		
Metric	CR-4	CR-5	CR-8
Date Sampled	2/23/17	4/28/17	2/23/17
Taxa Richness-genus level	35	23	13
EPT Richness-genus level	6	3	I
mHBI	5.82	5.72	7.05
% modified EPT	9.3	5.6	0.3
% Mayflies	1.9	0.3	0
% Midges & Worms	11.1	51.6	2.3
% Clingers	15.1	7.7	0.3
MBI Score	36.5	24.2	23.2
MBI Rating	Poor	Poor	Poor

Table 5. Macroinvertebrate Results

MBI scores calculated for all sites ranged from 23.2 (CR-8) to 36.5 (CR-4). Based on the Bluegrass Bioregion criteria, all stations had "poor" MBI ratings for headwater reaches. However, it should be noted that site CR-4 had the highest habitat and macroinvertebrate scores of the three sites and would rate "fair" for macroinvertebrates with only a slight increase in MBI score. It appears that site

CR-4 has undergone previous stream restoration activity (riparian plantings), which may have contributed to higher scores compared to the other sites.

Genus level taxa richness ranged from 13 (CR-8) to 35 (CR-4), and genus EPT richness ranged from 1 (CR-8) to 6 (CR-4). Genus taxa richness and genus EPT richness was highest at site CR-4, scoring 35 for genus taxa richness and 6 for genus EPT richness. Genus taxa richness and genus EPT richness were much lower at headwater sites CR-5 and CR-8. Increasing taxa and EPT richness is associated with improving water quality, habitat diversity, and/or habitat suitability.

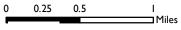
Modified Hilsenhoff Biotic Index (mHBI) scores ranged from a low of 5.72 (CS-5) to 7.05 (CR-8). Stations CR-5 and CR-4 rated "good" and CR-8 rated "fair". An increasing mHBI value indicates decreasing water quality.

Percent modified EPT abundance, which excludes the ubiquitous caddisfly *Cheumatopsyche*, was relatively low at all locations (<10%). Mayfly abundance, which is a metric for headwater streams only, was zero for CR-8, 0.3% for CR-5 and 1.9% CR-4. Increased EPT abundance is associated with improving water quality and/or habitat conditions, whereas mayfly abundance generally decreases with the presence of brine and metal contamination.

Abundance of generally pollution tolerant midges and oligochaeta (worms) was relatively low (<12%) at all locations except for CR-5 (51.6%). Increase in midge and oligochaeta abundance suggests decreasing water quality conditions.

Primary clingers ranged from 0.3 (CR-8) to 15.1 percent (CR-4). Primary clingers require hard, silt free substrates on which to "cling."

LITERATURE CITED


- Barbour, M.T., J. Gerritsen, B.D. Snyder, and J.B. Stribling. 1999. Rapid Bioassessment Protocols for Use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates and Fish. Second Edition. EPA 841-B-99-002. USEPA, Office of Water, Washington, D.C.
- Kentucky Division of Water (KDOW). 2011. Methods for Assessing Habitat in Wadeable Waters.

 Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Kentucky Division of Water (KDOW). 2015a. Methods for Collecting Macroinvertebrate Samples in Wadeable Waters. Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Kentucky Division of Water (KDOW). 2015b. Benthic Macroinvertebrate Processing and Identification.

 Kentucky Department for Environmental Protection, Division of Water, Frankfort, Kentucky.
- Pond, G.J., S.M. Call, J.F. Brumley and M.C. Compton. 2003. The Kentucky macroinvertebrate bioassessment index: derivation of regional narrative ratings for wadeable and headwater streams. Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY.

APPENDIX A EXHIBIT I

2526 Regency Road, Suite 180 Lexington, Kentucky 40503

125 Lisle Industrial Ave, Ste 180 Lexington, Kentucky 40511

APPENDIX B PHOTO LOG

Cane Run Watershed Focused Monitoring Stream Biology Monitoring Sites Fayette County, Kentucky

CR-4 Bedrock

CR-4 Cypress Knees and Roots

CR-4 Downstream View from Downstream End

CR-4 Downstream View from Upstream End

CR-4 Leaf Pack

CR-4 Pool Habitat

Cane Run Watershed Focused Monitoring Stream Biology Monitoring Sites Fayette County, Kentucky

CR-4 Riffle Habitat

CR-4 Upstream View from Downstream End

CR-4 Upstream View from Upstream End

CR-5 Downstream View of Construction Area

CR-5 End of Stream Transect

CR-5 Pool Habitat

Cane Run Watershed Focused Monitoring Stream Biology Monitoring Sites Fayette County, Kentucky

CR-5 Root Wad Habitat

CR-5 Upstream View from End of Transect

CR-8 Bedrock

CR-8 Downstream View from Upstream End

CR-8 Downstream View of Downstream Reach

CR-8 Eroding Bank and Pool

Cane Run Watershed Focused Monitoring Stream Biology Monitoring Sites Fayette County, Kentucky

CR-8 Fine Sediment

CR-8 Lleaf Pack

CR-8 Left Bank

CR-8 Riffle Habitat

CR-8 Right Bank

CR-8 Root Wad

Cane Run Watershed Focused Monitoring Stream Biology Monitoring Sites Fayette County, Kentucky

CR-8 Under Cut Bank

CR-8 Upstream from Upstream End

CR-8 upstream view from downstream end of reach

APPENDIX C HABITAT ASSESSMENT FIELD DATA

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID	T Caretur (2-4 DATE: 2	23-17 LAT	T: 36,100676 LONG: -84,490700
INVESTIGATOR(S)	BP/C0	COWARDIN CLASS:	Strenn	WATERSHED:
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COM	MENT:
Width (Ft)	Perennial	IMG	See	photo log
Depth (Ft)	Ephemeral	IMG		
Reach (Ff) M 100	Intermittent	IMG		

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER 1. Epifaunal Substrate / Available Cover	20 19 18 17 16 Greater than 70% of substrate favorable for epifaunal colonization	15 14 13 12 11 40-70% mix of stable habitat; well	10 9 8 7 6 20-40% mix of stable habitat; habitat availability less than	Less than 20% stable habitat; lack
Available Cover	and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	desirable; substrate frequently disturbed or removed.	unstable or lacking.
Score		,		
2. Embeddedness Score 15	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity /	All four velocity/depth regimes	Only 3 of the 4 regimes present (if	Only 2 of the 4 habitat regimes	Dominated by I velocity/depth
Depth Regime	present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	fast-shallow is missing, score lower	present (if fast-shallow or slow- shallow are missing, score low).	1
4. Sediment Deposition	Little or no enlargement of islands	Some new increase in bar	Moderate deposition of new	Heavy deposits of fine material,
Score Ua	or point bars and less than 5% of the bottom affected by sediment deposition.	formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5. Channel Flow Status Score 13	Water reaches base of both lower banks, and minimal amount of channel substrate is exposed.	Water fills > 75% of the available channel; or <25% of channel substrate is exposed.	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
6. Channel Alteration Score 15	Channelization or dredging absent or minimal; stream with normal pattern.	Some channelization present, usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization is not present.	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered or removed entirely.
	Occurrence of riffles relatively	Occurrence of riffles infrequent;	Occasional riffle or bend;	Generally all flat water or shallow
(or Bends)	frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders	distance between riffles divided by the width of the stream is between 7 to 15.	bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	riffles; poor habitat; distance
	continuous, placement of boulders or other large, natural obstruction is important.			

8. Bank Stability	OPTIMAL.	SUBOPTIMAL	MARGINAL	POOR
0. 54	10 9	8 7 6	5 4 3	2 1 0
	Banks stable; evidence of erosion	Moderately stable; infrequent, small	Moderately unstable; 30-60% of	Unstable; many eroded areas;
	or bank failure absent or minimal;	areas of erosion mostly healed	bank in reach has areas of	"raw" areas frequent along
	little potential for future problems.	over. 5-30% of bank in reach has	erosion; high erosion potential	straight sections and bends;
IB Score 7	< 5% of bank affected.	areas of erosion.	during floods.	obvious bank sloughing; 60-100%
LB Score 7				of bank has erosional scars.
9. Vegetative	More than 90% of the streambank	70-90% of the streambank surfaces	50-70% of the streambank	Less than 50% of the streambank
Protection	surfaces and immediate riparian	covered by native vegetation, but	surfaces covered by vegetation;	surfaces covered by vegetation;
	zone covered by native vegetation,	one class of plants is not well-	disruption obvious; patches of	disruption of streambank
	including trees, understory shrubs,	represented; disruption evident but	bare soil or closely cropped	vegetation is very high; vegetation
	or non-woody macrophytes;	not affecting full plant growth	vegetation common; less than	has been removed to 5
	vegetative disruption through	potential to any great extent; more	one-half of the potential plant	centimeters or less in average
	grazing or mowing minimal or not	than one-half of the potential plant	stubble height remaining.	stubble height.
	evident; almost all plants allowed	stubble height remaining.		
LB Score 6	to grow naturally.			
10. Riparian Vegetative	Width of riparian zone >18	Width of riparian zone 12-18	Width of riparian zone 6-12	Width of riparian zone <6 meters:
Zone Width	meters; human activities (i.e.,	meters; human activities have	meters; human activities have	little or no riparian vegetation due
	parking lots, roadbeds, clear-cuts,	impacted zone only minimally.	impacted zone a great deal.	to human activities.
LB Score	lawns, or crops) have not			
	impacted zone.			
Total Score				
137				

REMARKS / NOTES:

Cypress planted, possible constructed V: FFIe, decent rigorian zore midth For when streen.

× CR-4

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID Ca	re Run - CR	-8 DATE: 2.2	3-17 LAT: 38.07946LONG: - 84.491493
INVESTIGATOR(S)	B Renley /C. Ols	COWARDIN CLASS:	tyeam watershed: Ky
STREAM SIZE:	STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft)	Perennial	IMG	See photolog
Depth (Ft)	Ephemeral	IMG	
Reach (50) 150	Intermittent	IMG	

OPTIMAL	SUBOPTIMAL	MARCINIAL	
	JOBOT TIMAL	MARGINAL	POOR
20 19 18 17 16	15 14 13 12 11	10 9 8 (7) 6	5 4 3 2 1 0
Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	-	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).
Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.		Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
banks, and minimal amount of	channel; or <25% of channel	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
or minimal; stream with normal pattern.	usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be present, but recent channelization	stream reach channelized and	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
		Occasional siffo on bonds	Gonorally all flat water or shallow
frequent; ratio of distance between riffles divided by width of the stream < 7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders	distance between riffles divided by the width of the stream is between 7 to 15.	bottom contours provide some habitat; distance between riffles divided by the width of the	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.
	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern.	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Water fills > 75% of the available channel; or <25% of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream <7:1 (generally 5 to 7); variety of habitat is key. In streams where riffles are continuous, placement of boulders or other large, natural obstruction	favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are toot new fall and not transient.) Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space. All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.) Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Water reaches base of both lower banks, and minimal amount of channel substrate is exposed. Channelization or dredging absent or minimal; stream with normal pattern. Water reaches base of both tower substrate is exposed. Cocurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the stream is petween for the stream is petween for the stream is between for the stream is between for other large, natural obstruction or ot

1 0
any eroded areas;
frequent along
tions and bends;
k sloughing; 60-100%
erosional scars.
0% of the streambank
vered by vegetation;
of streambank
s very high; vegetation
moved to 5
or less in average
tht.
parian zone <6 meters:
riparian vegetation due
ctivities.

REMARKS/NOTES: Law flow probably does Not flow year round

Lots of truch a Stream.

8 CR-8

THIRD ROCK CONSULTANTS, LLC STREAM HABITAT ASSESSMENT (HIGH GRADIENT)

STREAM ID CR-52 AKA C	R-5 DATE 4 2	LAT: LONG:
INVESTIGATOR(S)	COWARDIN CLASS:	WATERSHED: Care Rus
STREAM SIZE: STREAM TYPE:	IMAGE ID:	IMAGE COMMENT:
Width (Ft) 15 Perennial	IMOS 943/003	Riffle / fool
Depth (Ft) 1,5 cm Ephemeral	IMG 036	DS view of construction
Reach (Ft) 375 Intermittent	IMG 106	100+ W9-1

		CONDITION	CATEGORY	
HABITAT	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
PARAMETER	20 19 18 17 16	15 14 13 12 11	10 9 8 7 6	5 4 3 2 1 0
Epifaunal Substrate / Available Cover Score 5	Greater than 70% of substrate favorable for epifaunal colonization and fish cover; mix of snags, submerged logs, undercut banks, cobble or other stable habitat and at stage to allow full colonization potential (i.e., logs/snags that are not new fall and not transient.)	40-70% mix of stable habitat; well suited for full colonization potential; adequate habitat for maintenance of populations; presence of additional substrate in the form of new fall, but not yet prepared for colonization (may rate at high end of scale).	20-40% mix of stable habitat; habitat availability less than desirable; substrate frequently disturbed or removed.	Less than 20% stable habitat; lack of habitat is obvious; substrate unstable or lacking.
2. Embeddedness Score	Gravel, cobble, and boulder particles are 0-25% surrounded by fine sediment. Layering of cobble provides diversity of niche space.	Gravel, cobble, and boulder particles are 25-50% surrounded by fine sediment.	Gravel, cobble, and boulder particles are 50-75% surrounded by fine sediment.	Gravel, cobble, and boulder particles are more than 75% surrounded by fine sediment.
3. Velocity / Depth Regime	All four velocity/depth regimes present (slow-deep, slow-shallow, fast-deep, fast-shallow). (Slow is < 0.3 m/s, deep is > 0.5 m.)	Only 3 of the 4 regimes present (if fast-shallow is missing, score lower than if missing other regimes).	Only 2 of the 4 habitat regimes present (if fast-shallow or slow-shallow are missing, score low).	Dominated by I velocity/depth regime (usually slow-deep).
4. Sediment Deposition Score	Little or no enlargement of islands or point bars and less than 5% of the bottom affected by sediment deposition.	Some new increase in bar formation, mostly from gravel, sand or fine sediment; 5-30% of the bottom affected; slight deposition in pools.	Moderate deposition of new gravel, sand or fine sediment on old and new bars; 30-50% of the bottom affected; sediment deposits at obstructions, constrictions, and bends; moderate deposition of pools prevalent.	Heavy deposits of fine material, increased bar development; more than 50% of the bottom changing frequently; pools almost absent due to substantial sediment deposition.
5, Channel Flow Status	banks, and minimal amount of	Water fills > 75% of the available channel; or <25% of channel substrate is exposed	Water fills 25-75% of the available channel, and/or riffle substrates are mostly exposed.	Very little water in channel and mostly present as standing pools.
5. Channel Alteration		usually in areas of bridge abutments; evidence of past channelization, i.e., dredging, (greater than past 20 yr) may be	Channelization may be extensive; embankments or shoring structures present on both banks; and 40 to 80% of stream reach channelized and disrupted.	Banks shored with gabion or cement; over 80% of the stream reach channelized and disrupted. Instream habitat greatly altered o removed entirely.
'. Frequency of Riffles or Bends)	Occurrence of riffles relatively frequent; ratio of distance between riffles divided by width of the	Occurrence of riffles infrequent; distance between riffles divided by the width of the stream is between 7 to 15.	Occasional riffle or bend; bottom contours provide some habitat; distance between riffles divided by the width of the stream is between 15 to 25.	Generally all flat water or shallow riffles; poor habitat; distance between riffles divided by the width of the stream is a ration of > 25.

B. Bank Stability	OPTIMAL	SUBOPTIMAL	MARGINAL	POOR
o, bank oubliney	10 9	8 7 6	5 4 3	2 1 0
LB Score	Banks stable; evidence of erosion or bank failure absent or minimal; little potential for future problems. < 5% of bank affected.	Moderately stable; infrequent, small areas of erosion mostly healed over. 5-30% of bank in reach has areas of erosion.	Moderately unstable; 30-60% of bank in reach has areas of erosion; high erosion potential during floods.	Unstable; many eroded areas; "raw" areas frequent along straight sections and bends; obvious bank sloughing; 60-100% of bank has erosional scars.
9 Vegetative Protection LB Score	including trees, understory shrubs, or non-woody macrophytes; vegetative disruption through grazing or mowing minimal or not	70.90% of the streambank surfaces covered by native vegetation, but one class of plants is not well-represented; disruption evident but not affecting full plant growth potential to any great extent; more than one-half of the potential plant stubble height remaining.	surfaces covered by vegetation; disruption obvious; patches of bare soil or closely cropped vegetation common; less than	Less than 50% of the streambank surfaces covered by vegetation; disruption of streambank vegetation is very high; vegetation has been removed to 5 centimeters or less in average stubble height.
10. Riparian Vegetative Zone Width Some RB Score Total Score	Width of riparian zone >18 meters; human activities (i.e., parking lots, roadbeds, clear-cuts, lawns, or crops) have not impacted zone.	Width of riparian zone 12-18 meters; human activities have impacted zone only minimally.	Width of riparian zone 6-12 meters; human activities have impacted zone a great deal.	Width of riparian zone <6 meters: little or no riparian vegetation due to human activities.

REMARKS/NOTES: Bettom 3/4 OF reach is a consulty mondern to

APPENDIX D LABORATORY DATA

Collector(s) Initials: 13	1/C6 Time: 4		n Number C	p-4/	acvo
Collected during the	headwater sampling	period (March 1– M	1ay 31).		
Stream Conditions					
Clear /Normal flow					
Turbid/High flow. (If					
No flow in riffles. (I	f so, do not sample.)				
Stream Reach					
100 meters – 300 met	ters How long?	100		meters	
Number of riffles in stream		(at	least 3)	neters	
Number of runs in stream	reach: 3	(at le			
Number of pools in stream		(at le	east 3; for headwat	ers with no pools, t	hen at leas
4 runs and riffles)				
1 m2 Kick-net Method					
√ 0.25 m ² quadrat from	n the thelwag of Piff	lo #1			
0.25 m ² quadrat from	n the thalwag of a dif	ferent area of Riffle	#) (If Riffle #1 is	small, then sample	Riffle #4
from the sample i	reach; Riffle #4 can b	e anywhere within t	he stream reach)		
<u> </u>	n the thalwag of Riffl	le #2 which is locate	ed at the most upst	ream portion of the	stream
reach 0.25 m ² quadrat fron	o the thalwag of Riffl	e #3 which is locate	d at the most down	astream portion of t	he stream
reach	Title that wag of Rim	e 45 Willell 13 locate	a at the most down	istroam portion of t	
Multi-Habitat Method					
Boulder Picks					
Boulder Pick (5 rocks	from pools/side cha	nnels/eddies within	reach)		
Sweeps (If any of these h	abitats are missing,	then add one more	sweep to each ha	bitat that is presen	it.)
Undercut Banks/Root	e Sweene (3 eweene)	n 2 pools/side chan	nels/eddies and 3 s	weens in 2 runs/riff	les within
reach)					ics within
Sticks/Wood Sweeps	(3 sweeps in pools/si	de channels/eddies		ns within reach)	
Other Sweeps (Ex. Bo	edrock sweeps) Comr	nents: 2 neg	roch		
Conditioned Leaf Pack P	icks				
		/		/ 12: 2 1:::	11 6
Conditioned Leaf Pac	ck Picks (3 conditione and 3 conditioned leaf	d leaf packs from p	ools/side channels	eddies, 3 condition	ed leaf
packs from runs a	A	N/A			
N/	Fine Gravel) Senons	/ /A			
Fine Material (Silt/Sand/	time Otheren ocoup.				
Fine Material (Silt/Sand/ Fine Material Scoops			al and sieve. 6 de	positional areas with	nin reach)
Fine Material Scoops	(Using a US#10 slev	e, scoop fine materi			
Fine Material Scoops Conditioned Submerged	(Using a US#10 siev Wood Picks – Total	e, scoop fine materi		nditioned submerg	ged wood.
Fine Material Scoops Conditioned Submerged Submerged Wood Pic	(Using a US#10 siev Wood Picks – Total	e, scoop fine materi between 2 and 4 li `Wood Sampled	near meters of co	nditioned submerg	ged wood.
Fine Material Scoops Conditioned Submerged Submerged Wood Picture and pools/sic	(Using a US#10 siev Wood Picks – Total cks: Linear Meters of de channels/eddies wi	e, scoop fine materi between 2 and 4 li 'Wood Sampled thin reach shall be r	near meters of co	nditioned submerg	ged wood. From riffle
Fine Material Scoops Conditioned Submerged Submerged Wood Picture and pools/sic	(Using a US#10 siev Wood Picks – Total	e, scoop fine materi between 2 and 4 li 'Wood Sampled thin reach shall be r	near meters of co	nditioned submerg	ged wood. From riffle

Collector(s) Initials:	BAICO Station Number CR-8
Collected during	the headwater sampling period (March 1- May 31),
Stream Conditions	
	v. (If so, do not sample.) . (If so, do not sample.)
Stream Reach	
100 meters - 300	meters. How long? 150 meters
Number of riffles in st	ream reach; 4 (at least 3)
Number of runs in stre	
Number of pools in str	
4 runs and rif	iles)
1 m ² Kick-net Method	<u>d</u>
1 0.25 m ² quadrat	from the thalwag of Riffle #1
	from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4
from the sami	ble reach; Riffle #4 can be anywhere within the stream reach)
0.25 m ² quadrat	from the thalwag of Riffle #2 which is located at the most upstream portion of the stream
reach	
	from the thalwag of Riffle #3 which is located at the most downstream portion of the stream
reach	
Multi-Habitat Metho	d
Boulder Picks	
Boulder Pick (5 re	ocks from pools/side channels/eddies within reach)
Sweeps (If any of thes	se habitats are missing, then add one more sweep to each habitat that is present.)
./-	2/2
	Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2-runs/riffles within
reach)	eps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach)
	a. Bedrock sweeps) Comments:
Other Sweeps (Ess	Bedrock sweeps) Comments.
Conditioned Leaf Pac	ek Picks
V 9 13 17 6	D. 1. District. 11. Construction of least state of the second stat
	Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf ns and 3 conditioned leaf packs from riffles)
packs non ru	is and 5 conditioned tear packs from times)
Fine Material (Silt/Sa	nd/Fine Gravel) Scoops
Fine Material Sco	ops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach)
Conditioned Submerg	ged Wood Picks – Total between 2 and 4 linear meters of conditioned submerged wood
O. L	Dieles Linear Mators of Wood Samulad
	Picks: Linear Meters of Wood Sampled(Wood from riffle s/side channels/eddies within reach shall be represented.)
	11.6/124 DO 19.2 Temperature 8.6 pH 839 Conductivity
Field Measurements:	11.6/124 DO 19.2 Temperature $\frac{6.6}{\text{pH}}$ $\frac{839}{9}$ Conductivity

	BR 175 Station Number CP-5
Collected during	g the headwater sampling period (March 1– May 31)
Stream Conditions	
Valore Monnel G	
Clear /Normal flo	w. (If so, do not sample.)
	ss. (If so, do not sample.)
Stream Reach	
100 meters – 300	0 meters. How long? 125 meters
Number of riffles in s	
Number of runs in stre	
Number of pools in st 4 runs and ri	
4 runs and ri	mes)
1 m ² Kick-net Metho	<u>od</u>
	t from the thalwag of Riffle #1
	t from the thalwag of a different area of Riffle #1 (If Riffle #1 is small, then sample Riffle #4
	apple reach; Riffle #4 can be anywhere within the stream reach)
	t from the thalwag of Riffle #2 which is located at the most upstream portion of the stream
reach	from the thalwag of Riffle #3 which is located at the most downstream portion of the stream
reach	from the thanking of killing its which is located at the most do wholean person of the shear
Multi-Habitat Metho	od
Boulder Picks	
Boulder Pick (5 r	rocks from pools/side channels/eddies within reach)
Sweeps (If any of the	ese habitats are missing, then add one more sweep to each habitat that is present.)
Undercut Banks/	Roots Sweeps (3 sweeps in 2 pools/side channels/eddies and 3 sweeps in 2 runs/riffles within
reach)	
Sticks/Wood Swe Other Sweeps (E	eeps (3 sweeps in pools/side channels/eddies and 3 sweeps in runs within reach) x. Bedrock sweeps) Comments:
Conditioned Leaf Pa	ck Picks
16 mm	
	f Pack Picks (3 conditioned leaf packs from pools/side channels/eddies, 3 conditioned leaf uns and 3 conditioned leaf packs from riffles)
	and/Fine Gravel) Scoops
Fine Material (Silt/Sa	
/	pops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reach
Fine Material Sco	cops (Using a US#10 sieve, scoop fine material and sieve. 6 depositional areas within reaching a Wood Picks – Total between 2 and 4 linear meters of conditioned submerged wood
Fine Material Sco	ged Wood Picks – Total between 2 and 4 linear meters of conditioned submerged wood delicks: Linear Meters of Wood Sampled(Wood from riffled)
Fine Material Sco	ged Wood Picks – Total between 2 and 4 linear meters of conditioned submerged wood
Fine Material Sco	ged Wood Picks – Total between 2 and 4 linear meters of conditioned submerged wood delicks: Linear Meters of Wood Sampled(Wood from riffled)

Sample ID	Taxa Name	Class	Order	Family	FFG	Tolerence	Clinger	Count
CR-4 QL	Ischnura sp	Insecta	Odonata	Coenagrionidae	PR	9.52	FALSE	N/A
CR-4 QL	Polypedilum fallax gr	Insecta	Diptera	Chironomidae	SH	6.39	FALSE	N/A
CR-4 QL	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	5.9	FALSE	N/A
CR-4 QL	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	5.9	FALSE	N/A
CR-4 QL	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	6.7	FALSE	N/A
CR-4 QL	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	6.4	TRUE	N/A
CR-4 QL	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	6.4	FALSE	N/A
CR-4 QL	Lumbriculidae	Oligochaeta	Lumbriculida	Lumbriculidae	CG	7.3	FALSE	N/A
CR-4 QL	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	2.8	TRUE	N/A
CR-4 QL	Procladius sp	Insecta	Diptera	Chironomidae	PR	9.1	FALSE	N/A
CR-4 QL	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	7.18	TRUE	N/A
CR-4 QL	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	7.4	FALSE	N/A
CR-4 QL	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	6.87	TRUE	N/A
CR-4 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	N/A
CR-4 QL	Synurella sp	Malacostraca	Amphipoda	Crangonyctidae	CG	8	FALSE	N/A
CR-4 QL	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	N/A
CR-4 QL	Hydropsychidae	Insecta	Trichoptera	Hydropsychidae	CF	4	FALSE	N/A
CR-4 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	N/A
CR-4 QL	Stempellinella sp	Insecta	Diptera	Chironomidae	CG	4.62	FALSE	N/A
CR-4 QL	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	6.48	FALSE	N/A
CR-4 QL	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	N/A
CR-4 QL	Simulium sp	Insecta	Diptera	Simuliidae	CF	4.4	TRUE	N/A
CR-4 QL	Ablabesmyia sp	Insecta	Diptera	Chironomidae	PR	7.2	FALSE	N/A
CR-4 QL	Phaenopsectra flavipes	Insecta	Diptera	Chironomidae	SC	7.94	FALSE	N/A
CR-4 QL	Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	8.45	TRUE	N/A
CR-4 QL	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	7.1	FALSE	N/A
CR-4 QL	Stictochironomus sp	Insecta	Diptera	Chironomidae	CG	6.52	FALSE	N/A
CR-4 QL	Turbellaria	Turbellaria			CG	5	FALSE	N/A
CR-4 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5.1	TRUE	1
CR-4 QT	Stempellinella sp	Insecta	Diptera	Chironomidae	CG	4.62	FALSE	1
CR-4 QT	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2.84	FALSE	1
CR-4 QT	Chimarra aterrima	Insecta	Trichoptera	Philopotamidae	CF	2	TRUE	1
CR-4 QT	Stenonema femoratum	Insecta	Ephemeroptera	Heptageniidae	SC	7.18	TRUE	1
CR-4 QT	Orconectes sp	Malacostraca	Decapoda	Cambaridae	CG	5.49	FALSE	1
CR-4 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	1
CR-4 QT	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	1
CR-4 QT	Rheotanytarsus exiguus gr	Insecta	Diptera	Chironomidae	CF	6.4	TRUE	1
CR-4 QT	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	6.48	FALSE	1
CR-4 QT	Gyraulus sp	Mollusca	Lymnophila	Planorbidae	SC	7.5	FALSE	1
CR-4 QT	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	6.7	FALSE	1
CR-4 QT	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	9	FALSE	2
CR-4 QT	Stenacron interpunctatum	Insecta	Ephemeroptera	Heptageniidae	CG	6.87	TRUE	2
CR-4 QT	Simulium sp	Insecta	Diptera	Simuliidae	CF	4.4	TRUE	2
CR-4 QT	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	9.1	FALSE	3
CR-4 QT	Psephenus herricki	Insecta	Coleoptera	Psephenidae	SC	2.35		3
CR-4 QT	Hydropsyche betteni/depravata complex	Insecta	Trichoptera	Hydropsychidae		4	TRUE	3
CR-4 QT	Caenis diminuta gr	Insecta	Ephemeroptera	Caenidae	CG	7.4	FALSE	3
CR-4 QT	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	5.9	FALSE	3
CR-4 QT	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	7.1	FALSE	3
CR-4 QT	Turbellaria	Turbellaria			CG	5	FALSE	4
CR-4 QT	Polypedilum flavum	Insecta	Diptera	Chironomidae	SH	5.3	FALSE	4
CR-4 QT	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7		7
CR-4 QT	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae		6.22	TRUE	7
CR-4 QT	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5.1	TRUE	8
CR-4 QT	Thienemannimyia gr	Insecta	Diptera	Chironomidae	PR	5.9	FALSE	13
CR-4 QT	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	2.8	TRUE	20
CR-4 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	225
CR-8 QL	Lymnaea sp	Mollusca	Lymnophila	Lymnaeidae	SC	7	FALSE	N/A
CR-8 QL	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	8.63	FALSE	N/A
CR-8 QL	Crangonyx sp	Malacostraca	Amphinoda	Crangonyctidae	SH	8	FALSE	N/A

CR-8 QL	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	N/A
CR-8 QL	Tipula sp	Insecta	Diptera	Tipulidae	SH	7.33	FALSE	N/A
CR-8 QL	Physella sp	Mollusca	Basommatophora	Physidae	SC	8.84	FALSE	N/A
CR-8 QL	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	N/A
CR-8 QT	Erpobdella punctata	Hirudinea	Pharyngobdellida	Eropolellidae	CG	7.8	FALSE	1
CR-8 QT	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	9.1	FALSE	1
CR-8 QT	Chimarra obscura	Insecta	Trichoptera	Philopotamidae	CF	2.8	TRUE	1
CR-8 QT	Dubiraphia sp	Insecta	Coleoptera	Elmidae	SC	6.4	FALSE	1
CR-8 QT	Physella sp	Mollusca	Basommatophora	Physidae	SC	8.84	FALSE	1
CR-8 QT	Lumbriculidae	Oligochaeta	Lumbriculida	Lumbriculidae	CG	7.3	FALSE	7
CR-8 QT	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	10
CR-8 QT	Turbellaria	Turbellaria			CG	5	FALSE	15
CR-8 QT	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	272

Sample ID	Taxa Name	Class	Order	Family	FFG	Tolerence	Clinger	Count
CR-5	Turbellaria	Turbellaria			CG	5	FALSE	4
CR-5	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	2
CR-5	Stenelmis sp	Insecta	Coleoptera	Elmidae	SC	5.1	TRUE	2
CR-5	Limnophyes sp	Insecta	Diptera	Chironomidae	CG	7	FALSE	1
CR-5	Polypedilum illinoense gr	Insecta	Diptera	Chironomidae	SH	9	FALSE	1
CR-5	Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	8.45	TRUE	1
CR-5	Thienemanniella xena	Insecta	Diptera	Chironomidae	CG	5.9	FALSE	5
CR-5	Cricotopus bicinctus	Insecta	Diptera	Chironomidae	SH	8.54	FALSE	8
CR-5	Cricotopus/Orthocladius gr	Insecta	Diptera	Chironomidae	CG	7.1	FALSE	15
CR-5	Micropsectra sp	Insecta	Diptera	Chironomidae	CG	1.52	FALSE	20
CR-5	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	24
CR-5	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2.84	FALSE	96
CR-5	Simulium sp	Insecta	Diptera	Simuliidae	CF	4.4	TRUE	3
CR-5	Baetis flavistriga	Insecta	Ephemeroptera	Baetidae	CG	6.58	FALSE	1
CR-5	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	9.1	FALSE	4
CR-5	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	132
CR-5	Cheumatopsyche sp	Insecta	Trichoptera	Hydropsychidae	CF	6.22	TRUE	2
CR-5	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	6.22	TRUE	18
CR-5	Crangonyx sp	Malacostraca	Amphipoda	Crangonyctidae	SH	8	FALSE	N/A
CR-5	Physella sp	Mollusca	Basommatophora	Physidae	SC	8.84	FALSE	N/A
CR-5	Chironomus sp	Insecta	Diptera	Chironomidae	CG	9.63	FALSE	N/A
CR-5	Stictochironomus sp	Insecta	Diptera	Chironomidae	CG	6.52	FALSE	N/A
CR-5	Paratanytarsus sp	Insecta	Diptera	Chironomidae	CG	8.45	TRUE	N/A
CR-5	Limnophyes sp	Insecta	Diptera	Chironomidae	CG	7	FALSE	N/A
CR-5	Tanytarsus sp	Insecta	Diptera	Chironomidae	CF	6.7	FALSE	N/A
CR-5	Cricotopus tremulus gr	Insecta	Diptera	Chironomidae	SH	7	FALSE	N/A
CR-5	Cricotopus trifascia	Insecta	Diptera	Chironomidae	SH	2.84	FALSE	N/A
CR-5	Anopheles sp	Insecta	Diptera	Culicidae	CF	8.58	FALSE	N/A
CR-5	Naididae	Oligochaeta	Haplotaxida	Naididae	CG	9.1	FALSE	N/A
CR-5	Pisidium sp	Mollusca	Heterodonta	Pisidiidae	CF	6.48	FALSE	N/A
CR-5	Sphaerium sp	Mollusca	Heterodonta	Pisidiidae	CF	7.58	FALSE	N/A
CR-5	Lirceus fontinalis	Malacostraca	Isopoda	Asellidae	CG	7.85	FALSE	N/A
CR-5	Helobdella stagnalis	Hirudinea	Rhynchobdellida	Glossiphoniidae	PC	8.63	FALSE	N/A
CR-5	Hydroptila sp	Insecta	Trichoptera	Hydroptilidae	PH	6.22	TRUE	N/A

MBI Calculations

			201	17 Cane Run I	Headwater ME	3I Results	ì		Raw Results				Metric Score											
StationID	StreamName	CollDate	Bioregion	Sub-Ecoregion	Basin	Order	Catchment Area	CollMeth	G-TR	G-EPT	mHBI	m%EPT	%Ephem	%C+O	%ClngP	G-TR	G-EPT	HBI2	m%EPT	%Ephem	%C+O	%ClngP	MBI Score	MBI Rating
CR-4	UNT Cane Run	2/23/2017	BG	711	KY	2	1.02	1 M2 KICKNET/Multihabitat	35	6	5.82	9.26	1.85	11.11	15.12	59.32	19.35	53.47	10.66	2.78	89.50	20.03	36.5	Poor
CR-5	Cane Run	4/28/2017	BG	711	KY	2	5.5	1 M2 KICKNET/Multihabitat	23	3	5.72	5.60	0.29	51.62	7.67	38.98	9.68	54.73	6.44	0.44	48.71	10.16		Poor
CR-8	Cane Run	2/23/2017	BG	711	KY	2	4.08	1 M2 KICKNET/Multihabitat	13	1	7.05	0.32	0.00	2.27	0.32	22.03	3.23	37.68	0.37	0.00	98.40	0.43	23.2	Poor

Third Rock Pjt #:	KY15-TT-4.3	Client Name:	TRC In-House Tetra Tech-LFUCG
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-4	Collection Date:	2/23/2017
Collector:	BR/CO	Sampling Method:	Kick Ne
Sorter:	Bert Remley	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	
		No. Organisms Picked:	321

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA		PLECOPTERA	=	DIPTERA (CHIRONOMIDAE)	
Naididae (Immature)	3			Cricotopus trifascia	
				Cricotopus tremulus gr	
				Cricotopus/Orthocladius gr	
				Polypedilum flavum	
AMPHIPODA				Polypedilum illinoense gr	
Crangonyx sp	1			Rheotanytarsus exiguus gr	
				Stempellinella sp	
				Tanytarsus sp	
ISOPODA				Thienemanniella xena	
Lirceus fontinalis	225			Thienemannimyia gr	
					+
DECAPODA Operando en (Demando)	1 1	TRICHORTERA			
Orconectes sp (Damaged)	1	TRICHOPTERA	7		+
EDITE MEDADTED A		Cheumatopsyche sp	7		+
EPHEMEROPTERA	1 2	Chimarra obscura	20		-
Caenis diminuta gr	3	Chimarra aterrima	1		+
Stenacron interpunctatum	2	Hydropsyche betteni/depravata complex	3		
Stenonema femoratum	1				
				DIPTERA (OTHER)	
				Simulium sp	
					_
		MEGALOPTERA			_
		MEGALOPTERA	1	MOLLUSCA	
ODONATA			1	Gyraulus sp	
02010/17/				Pisidium sp	
				Sphaerium sp	
		COLEOPTERA	1	oprider arr op	+-
		Psephenus (L) 3	3		1
		Stenelmis (A) 1 (L) 8	9		1
		() ()		OTHER TAXA	
				Turbellaria	
					+-
					+
					+
				Number of Individuals	3

Third Rock Pjt #:	KY15-TT-4.3	Client Name:	TRC In-House Tetra Tech-LFUCG
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-4	Collection Date:	2/23/2017
Collector:	BR/CO	Sampling Method:	Multihabita
Sorter:	Bert Remley	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	30
		No. Organisms Picked:	1

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	·
umbriculidae (Immature)				Ablabesmyia sp (Damaged)	
				Cricotopus tremulus gr	
				Cricotopus/Orthocladius gr	
				Paratanytarsus sp	
AMPHIPODA				Phaenopsectra flavipes	
Crangonyx sp				Polypedilum fallax gr	
Synurella sp				Procladius sp	
				Rheotanytarsus exiguus gr	
ISOPODA				Stempellinella sp	
Lirceus fontinalis				Stictochironomus sp	
				Tanytarsus sp	
				Thienemanniella xena	
DECAPODA				Thienemannimyia gr	
		TRICHOPTERA			
		Chimarra obscura			
EPHEMEROPTERA		Hydropsychidae (Immature)			
Caenis diminuta gr					
Stenacron interpunctatum					
Stenonema femoratum					
				DIPTERA (OTHER)	
				Simulium sp	
				·	
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Pisidium sp	
Ischnura sp (Immature)				Sphaerium sp	
,					
		COLEOPTERA			
		Dubiraphia (L) 0			
		, ,			
				OTHER TAXA	
	1			Turbellaria	
	1				
	1				
	+ +		+		+
	+ +		+		+
	+		+		+
					<u> </u>
	1			1	

THIRDROCK CONSULTANTS Lexington, Kentucky

Lexington, Rentucky	DATA SHLLI	LUNAIL LADONAIONI	ACKOINVERTED
TRC In-House Tetra Tech-LFUCG	Client Name:	KY15-TT-4.3	Third Rock Pjt #:
KY / Fayette	State/County:	Cane Run	Water Body:
2/23/2017	Collection Date:	CR-8	Sample ID:
Kick Net	Sampling Method:	BR/CO	Collector:
Subsample	Sample Sorting:	Bert Remley	Sorter:
10	No. Grids of 30 Picked:	Bert Remley	Taxonomist:
311	No. Organisms Picked:		

	No		Ne		Ne
Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No Org
ANNELIDA		PLECOPTERA		DIPTERA (CHIRONOMIDAE)	
Erpobdella punctata	1				
Lumbriculidae (Immature)	7				
Naididae (Immature)	1				
AMPHIPODA					
Crangonyx sp	10				
<u> </u>					
ISOPODA					-
Lirceus fontinalis	272				
Eli ceda fortunalia	212				
DECAPODA		TRICHODTERA			
	+	TRICHOPTERA Chimarra obscura	1		-
EPHEMEROPTERA		Chimidita Obscuta	1		-
LI HEWENOT TENA					
	1 1				
				DIPTERA (OTHER)	1
	+				
		MEGALOPTERA			
				MOLLUSCA	
ODONATA				Physella sp	-
		COLEOPTERA			
		Dubiraphia (A) 1	1		
				OTHER TAXA	
				Turbellaria	1
					_
	1				
					-
	+				
	+				-
	+ +				
	+				
	+ +				
					1
	+				1
	+ +				
	1 1			Number of Individuals	30

Third Rock Pjt #:	KY15-TT-4.3	Client Name:	TRC In-House Tetra Tech-LFUCG
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-8	Collection Date:	2/23/2017
Collector:	BR/CO	Sampling Method:	Multihabita [.]
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	30
		No. Organisms Picked:	1

Family or Taxon / Genus	No.	Family or Taxon / Genus	No.	Family or Taxon / Genus	No.
	Orgs.		Orgs.		Orgs
ANNELIDA Helobdella stagnalis		PLECOPTERA	1	DIPTERA (CHIRONOMIDAE)	
петориена ѕтаўнанѕ					
AMPHIPODA Crangonyx sp					
Crangoryx sp					
ISOPODA					
Lirceus fontinalis					
DECAPODA					
		TRICHOPTERA	T		
EPHEMEROPTERA					
EI HEIVIEROI TERA					
				DIPTERA (OTHER)	
				Tipula sp (Immature)	
				mpana op (mmataro)	
		MEGALOPTERA	T		
ODONATA				MOLLUSCA Lymnaea sp	
ODONATA				Physella sp	
				Sphaerium sp	
		COLEOPTERA			
				OTHER TAXA	
	-				
	 			Number of Individuals	n/a

Third Rock Pjt #:	KY15Y3TT3-3B	Client Name:	TRC In-House Tetra Tech-LFUCG
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-5	Collection Date:	4/28/2017
Collector:	BR	Sampling Method:	Kick Ne
Sorter:	Chelsey Olson	Sample Sorting:	Subsample
Taxonomist:	Chelsey Olson	No. Grids of 30 Picked:	
		No. Organisms Picked:	347

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No.Orgs.
ANNELIDA	÷ <u>.</u>	PLECOPTERA	<u> </u>	DIPTERA (CHIRONOMIDAE)	<u>-</u>
Naididae	4			Cricotopus tremulus gr	24
				Cricotopus bicinctus	8
				Cricotopus trifascia	96
				Cricotopus/Orthocladius gr	15
AMPHIPODA				Limnophyes sp	1
Crangonyx sp	2			Micropsectra sp	20
				Paratanytarsus sp	1
				Polypedilum illinoense gr	1
ISOPODA				Thienemanniella xena	5
Lirceus fontinalis	132				
DECAPODA					
		TRICHOPTERA			
		Cheumatopsyche sp	2		
EPHEMEROPTERA		Hydroptila sp	18		
Baetis flavistriga	1				
				DIPTERA (OTHER)	
				Simulium sp	3
		MEGALOPTERA	T		
				MOLLUSCA	1
ODONATA					
		COLEOPTERA	_		
		Stenelmis (L) 2	2		
				OTHER TAYA	
	 			OTHER TAXA	1 4
	1			Turbellaria	4
	1				1
	 				
	-	-			
	+				
	-	-			
	-	-			
	-	-			
	-	-			+
	-				600
	1	II	1	Number of Individuals	339

 $^{^1}$ Sampling Method: Surber (SU); Traveling-Kick (TK); Multihabitat (MH); Hester-Dendy (HD); or Other (O). 2 Sorting: Entire Sample (E); 100-Specimen Subsample (SS-100); or Other (O).

Reviewed By:	
Date:	

Third Rock Pjt #:	KY15Y3TT3-3B	Client Name:	TRC In-House Tetra Tech-LFUCG
Water Body:	Cane Run	State/County:	KY / Fayette
Sample ID:	CR-5 QL	Collection Date:	4/28/2017
Collector:	BR	Sampling Method:	Multihabitat
Sorter:	Bert Remley	Sample Sorting:	Subsample
Taxonomist:	Bert Remley	No. Grids of 30 Picked:	30
		No. Organisms Picked:	1

Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.	Family or Taxon / Genus	No. Orgs.		
ANNELIDA	- -	PLECOPTERA	-	DIPTERA (CHIRONOMIDAE)			
Helobdella stagnalis				Chironomus sp			
Naididae				Cricotopus tremulus gr			
				Cricotopus trifascia			
				Limnophyes sp			
AMPHIPODA				Paratanytarsus sp			
Crangonyx sp				Stictochironomus sp			
				Tanytarsus sp			
ISOPODA							
Lirceus fontinalis							
DECAPODA							
		TRICHOPTERA	T				
EDIJEMEDODTEDA		Hydroptila sp					
EPHEMEROPTERA							
				DIPTERA (OTHER)			
	+			Anopheles sp	1		
				Arioprieles sp			
		MEGALOPTERA					
				MOLLUSCA	·		
ODONATA	•			Physella sp			
				Pisidium sp			
				Sphaerium sp			
		COLEOPTERA					
				OTHER TAXA			
	1						
	1						
	1						
	1						
	1						
	1						
	1						
	1			<u> </u>	1		
				Number of Individuals	NA		

 $^{^{1}}$ Sampling Method: Surber (SU); Traveling-Kick (TK); Multihabitat (MH); Hester-Dendy (HD); or Other (O). 2 Sorting: Entire Sample (E); 100-Specimen Subsample (SS-100); or Other (O).

Reviewed By:	_
Date:	_

Macroinvertebrate Sample Chain of Custody Project Information Sheet

Client Name: Tetra Te	ch /Lifuci	<u>√</u> Project Ac	lministrator:	Steve Ev	ws_ Project Num	ber: Ky (S	77_wol-5_Msystem way Due Date: 3-31-17
Sampling Site Location:	ine Run			County:	Fayette	1	State:
System Type: Head water	Fo	oRegion: I	3/0	Total Num	phor of Camples	4 Total	Number of Containers: 4
	· ·						
Reporting Requirements:			-				
Samples Relinquished By: 2	A flemly	Date/Time: $\frac{2^{-1}}{2^{-1}}$	24-17/0931 s	ample Rece	eived By: 06	18	Date/Time: 2-19-17/0931
Samples Relinquished By:		Date/Time:	S	ample Rece	eived By:		Date/Time:
Comments/Special Instructions							
						# of	
	Qualitative or	Collected	Collection	Sample		Containers Per	Applysis Dogwined
Sample Reference ID	Quantitative	Ву	Date	Туре	Preservative	Sample	Analysis Required (KDOW Protocol, ID Level; etc.)
CR-4	Quent	BR/CO	2-23-17	KN	EHONOL	1	L-DOW 55-300
CR-4	Qua (1		MH			
CR-8	Quent			KN			
CR-8	Qual	V		mH	V	V	
		- Continu	ie on Reverse	for More S	amples -		
System Type: Headwater Stream; W	adeable Stream; Large	e River; Lotic; Ot	her		· •		
EcoRegion: Bluegrass; Mountain; Sample Type: KN KickNet; TK Trave	Pennyroyal; Mississipp ling Kick; MH Multihal	i Valley-Interior I pitat; S Surber; H	River Lowlands; D Hester-Dendy	Other Multiplate;	HDD HD Deep; HDS	HD Shallow; OT	Other; NA Not Available
MacLIMS: Client Setup/Login By	Date	; Repor	ted By	Da	te; Invo	oiced By	Date 5/20/10

Macroinvertebrate Sample Chain of Custody Project Information Sheet

Client Name: Fuc 6 Project Administrator: Steve Evans Project Number: Ay 15 tt Due Date: 7-30-17									
Sampling Site Location: <u>Lane</u>	4								
System Type: Head water EcoRegion: Blue 50.55 Total Number of Samples: Total Number of Containers: Z									
Reporting Requirements:Laboratory Data Sheet;Excel Spreadsheet;MBI Calculations via e-Submittal; Hardcopy;Both									
Samples Relinquished By: 1/200 Date/Time: 5-9-17/1700 Sample Received By: Em Manly Date/Time: 5-9-17/1700									
Samples Relinquished By:		Date/Time:	S	ample Rece	eived By:		Date/Time:		
Comments/Special Instructions:_									
Qualitative or Collected Collection Sample Sample Reference ID Quantitative By Date Type Preservative Sample (KDOW Protocol, ID Level; etc.)									
CR-5/4	Quant	BRICO	4-26-17	KN	Ethoral		KDOW		
CR-5	Qual	J	1	MH	V	\downarrow	\checkmark		
System Type: Headwater Stream; Wac EcoRegion: Bluegrass; Mountain; Pe Sample Type: KN KickNet; TK Travelir	nnyroyal; Mississippi	River; Lotic; Otl Vallev-Interior R	River Lowlands:	Other	•	HD Shallow; OT	Other; NA Not Available		
MacLIMS: Client Setup/Login By	Date	; Report	ted By	Dat	te; Invo	iced By	Date 5/20/10		

APPENDIX L

Submitted to: Jennifer Carey, PE

Lexington-Fayette Urban County Government (LFUCG)

Division of Water Quality

Copied to: Richard Walker, PE

Tetra Tech, Inc.

Prepared by: Jennifer Shelby, PE

Subject: Cane Run Watershed-Focused Monitoring

Water Quality Monitoring

Submitted on: April 10, 2018; Revised May 22, 2019

BACKGROUND

LFUCG's Phase I MS4 Permit (KPDES No. KYS00002 AI No. 74551) was issued on May 1, 2015, with a five-year duration period effective June 1, 2015. One of the requirements of the permit is that "LFUCG shall begin to change its monitoring program to a watershed-focused monitoring program. In order to facilitate this process, monitoring should be conducted on a watershed basis with additional monitoring stations sampled for water chemistry, macroinvertebrates, microbial source tracking, hydrogeomorphic characterization, and habitat assessment."

The study area for LFUCG's Watershed-Focused Monitoring Program (WFMP) encompasses the 7 major watersheds that drain LFUCG's Urban Service Area including Cane Run, South Elkhorn, West Hickman, East Hickman, Town Branch, North Elkhorn, and Wolf Run. Monitoring began in 2016 with the Cane Run Watershed, with monitoring to begin in South Elkhorn in 2017, West Hickman in 2018, and so on until each watershed is monitored and the results reported to the Kentucky Division of Water (KDOW).

The overall objective of the WFMP is to collect and generate data to identify and remediate sources of recreational and aquatic habitat impairments to streams within the Urban Service Boundary. Key monitoring elements include:

- I. Stream Corridor Characterization
- 2. Stream Biology
- 3. Water Quality Monitoring
- 4. Discharge Prevention / Source Investigation
- 5. Priority Area Upland Visual Assessment

Third Rock Consultants, LLC (Third Rock) was retained as a subconsultant to Tetra Tech, Inc. to provide water quality consulting services in support of LFUCG's MS4 program, including conducting key monitoring elements required by LFUCG's WFMP. Results for each watershed will be used to compute and assess pollutant loading and ultimately summarized in a comprehensive, Watershed-Focused Monitoring Program Report for each of the seven watersheds.

The Cane Run watershed (HUC#05100205280200) is a 45.4 square mile (mi²) watershed located within Fayette and Scott Counties, Kentucky. The stream has been listed as impaired since 1998 for Warmwater Aquatic Habitat (WAH) and Primary Contact Recreational (PCR) uses. Since that time, tributaries have also been designated as impaired for causes including pathogens and nutrients.

As detailed in the WFMP Quality Assurance Project Plan (QAPP; Third Rock 2017), water quality was monitored by trained volunteers, LFUCG staff, and consultants at major outfalls and stream sites throughout the headwater portion of the Cane Run watershed (11.6 mi²) that lies within the LFUCG Urban Service Area (USA). This Technical Memorandum documents the results of that effort.

METHODOLOGY

Monitoring

In accordance with the approved QAPP (Third Rock 2017), water quality monitoring was conducted in 2 phases. Phase I was a screening effort during which dry weather sampling (at least 72 consecutive hours of dry weather prior to sampling) was attempted at II in-stream sites and 73 major outfalls shown on **Exhibit I**, **Appendix A**, respectively. Phase 2 monitoring was attempted at the II in-stream sites and I7 of the Phase I major outfalls found to be routinely flowing during Phase I as shown on **Exhibit 2**, **Appendix A**.

Prior to sampling, physical characteristics (i.e. cross-section, slope, roughness) of each in-stream site and outfall location were measured such that stream or pipe flow could be calculated using water depth values measured during sampling events. The United States Geological Survey (USGS) gage within the watershed at Newtown Pike (Station 03288190, Tributary to Cane Run) was used to validate flow estimates when needed.

Phase I Sampling

Phase I sampling was conducted in September and October of 2016 and February through May 2017. Each site was visited 4 times, but samples were only collected when there was water flowing. Ammonia-Nitrogen and Chlorine were measured in the field using Hanna Checkers, handheld colorimeter units and detergents were measured in the field using a CHEMets kit (also a colorimetric method). Dissolved oxygen, pH, temperature, and specific conductance were measured *in-situ* using a multimeter water quality probe. Grab samples were collected and transported to the LFUCG Town Branch Waste Water Treatment Plant (WWTP) Laboratory for analysis of *E. coli*, Total Suspended Solids, Total Phosphorus, Nitrate-Nitrogen. All samples were preserved according to method specifications and transported to the laboratory within method holding times and temperature requirements.

Phase 2 Sampling

Phase 2 monitoring consisted of 10 sampling events during the PCR period (May through September 2017) on a set day of the week, regardless of weather conditions. Chlorine was measured in the field using Hanna Checkers, handheld colorimeter units. Dissolved oxygen, pH, temperature, and specific conductance were measured *in-situ* using a multimeter water quality probe. Grab samples were collected and transported to the Town Branch WWTP Laboratory for analysis of *E. coli*, Total Suspended Solids, Total Phosphorus, Nitrate-Nitrogen, Ammonia-Nitrogen, and Detergents. All samples were preserved according to method specifications and transported to the laboratory within method holding times and temperature requirements.

LFUCG staff collected duplicate grab samples and associated field replicates of *in situ* measurements and field test kits at 1 of 28 sites during 5 of the 10 Phase 2 sampling events. The QAPP (Third Rock 2017) requires field duplicates and associated field replicates of *in situ* measurements and field test kits be collected by LFUCG staff at 5% (or 1 for every 20 sites sampled) during each of the Phase 2 monitoring events.

Internal laboratory quality control samples were analyzed to determine if the project accuracy standards, listed in Table 7 of the QAPP (Third Rock 2017) were met.

Action Levels and Discharge Prevention Investigation

When field or laboratory water quality sampling results were found to be above established action levels summarized in **Table I**, illicit discharge prevention investigations were performed by LFUCG staff to attempt to locate pollution sources.

Parameter	Limit
E. coli	>1,000 MPN/100 mL
Total Suspended Solids	>80 mg/L
Conductivity	>1000 µS/cm
Chlorine	>0.5 mg/L
Temperature	>90°F or >32.2°C

Table I. Parameter Action Levels

Parameter	Limit
Fluoride	>0.5 mg/L
Ammonia	>0.5 mg/L
Detergents	>0.5 mg/L
pН	<6 SU or >9 SU
Dissolved Oxygen	< 4 mg/L

Data Analysis

To evaluate the nature and extent of impairments in the Cane Run Watershed, water quality results were compared to applicable water quality benchmarks summarized in **Table 2**, page 4. Both regulatory water quality standards and non-regulatory benchmarks were used (as detailed below). Regulatory water quality standards provided in 401 KAR 10:031 apply to specific designated uses. For this project, the applicable designated uses included Warmwater Aquatic Habitat (WAH), Primary Contact Recreation (PCR), and Secondary Contact Recreation (SCR). Where regulatory criteria exist, those standards were used as benchmarks. Where such criteria do not exist, non-regulatory benchmarks were utilized for data evaluation purposes. Because of the sampling frequency

of this monitoring effort, instantaneous or acute water quality criteria were used to evaluate results when multiple criteria existed.

Table 2. Water Quality Benchmarks

PCR Regulatory Water	PCR Regulatory Water Quality Standard						
	Instantaneous: <240 CFU/100mL; 30-day geometric mean: <130						
E. coli ¹	CFU/100mL (MPN treated as equivalent to CFU)						
SCR Regulatory Water Quality Standard							
	Instantaneous: <676 CFU/100mL; 30-day geometric mean: <386						
E. coli ¹	CFU/100mL (MPN treated as equivalent to CFU) ²						
WAH Regulatory Water	er Quality Standard						
	Between 6.0 and 9.0 SU, and not to fluctuate more than 1.0 SU over 24						
pН	hours						
Temperature	< 31.7°C (89°F)						
	Not altered to a degree that will adversely affect the aquatic						
Flow	community						
Dissolved Oxygen	> 5.0 mg/L as a 24-hour average; or > 4.0 mg/L for instantaneous						
Specific Conductance	Indigenous aquatic community is not adversely affected						
Total Suspended Solids	Indigenous aquatic community is not adversely affected						
Nutrients	Not elevated to a level that results in a eutrophication problem						
WAH Non-Regulatory	Benchmark						
Specific Conductance	<300 μS/cm						
Total Phosphorus as P	<0.5 mg/L						
Nitrate as N	<2.0 mg/L						
Ammonia as N	<0.5 mg/L						
Detergents	>0.5 mg/L						
Chlorine	<0.5 mg/L						
Fluoride	<0.5 mg/L						
Total Suspended Solids	<80 mg/L						

- I Geometric mean based on not less than five samples taken during a 30-day period. Instantaneous standard is not to be exceeded in 20% or more of all samples taken during a 30-day period. If less than five samples are taken in a month, this standard applies. This study compared values to the instantaneous standard.
- 2 SCR standard for Fecal Coliform converted to E. coli using relationship derived by Ormsbee and Akasapu. 2010. Relationship Between Fecal Coliform and Within the Kentucky River Basin. Kentucky Water Resources Research Institute. University of Kentucky. Lexington, Kentucky. Ecoli=1.44*FC^{0.8093}

Acceptance criteria for accuracy, precision, and sensitivity were defined in the QAPP (Third Rock 2017). While these criteria were generally met, the reporting limit specified in the QAPP for *E. coli* was I MPN/I00mL but the laboratory reported values of <100 MPN/I00mL for results below the reporting limit. In the analysis of the Phase 2 data, when values for *E. coli* were below the reporting limit, a value of 50 MPN/I00mL (half of the reporting limit) was used; when results for *E. coli* were above the reporting limit (>241,960 MPN/I00mL), a value of 241,960 MPN/I00mL was used. For laboratory measurements of Ammonia-Nitrogen, when values were below the reporting limit (<0.015 mg/L), a value of 0.0075 mg/L, or half of the reporting limit, was used in analyses.

Pollutant Loads

Pollutant loads are calculated for a given parameter by multiplying the pollutant concentration by the flow and unit conversion factors. However, professional judgment must be used to determine how best to aggregate the concentration data and what flow to utilize to represent annual loading conditions. In this case, Phase 2 concentration data was aggregated together as an average for each site per parameter. The median annual flow (1.4 cfs) was computed from the long-term flow record at the USGS gage on the Tributary to Cane Run at Newtown Pike (site 3288190), scaled for each Phase 2 sampling site based on dry weather drainage area (considering karst drainage patterns), and then used to compute pollutant loadings. One exception was site CR-5 at Citation Boulevard; where another USGS gage is located (site 3288180). For this site the median annual flow computed from the long-term flow record was 1.6 cfs.

Historic data indicates that because of the heavy interaction between surface and groundwater, strict area-weighted scaling of the USGS gage flow would not produce accurate flow measurements for the individual monitoring stations. Therefore, drainage areas of each monitoring site were adjusted, based on previously mapped sink points, to determine the land area typically contributing to routine stream flows. The adjusted drainage area of each sampling location (except for CR-5) was used to scale the median flow from USGS site 3288190, within the watershed to develop a median annual flow at each site.

Therefore, the loading at each site was calculated using the average measured Phase 2 pollutant concentration (for Ammonia-Nitrogen, Nitrate-Nitrogen, Total Phosphorus, and *E. coli*; these are the parameters that required load reductions at some stations) and the predicted median flow. Likewise, benchmark loads were calculated using the benchmark concentration instead of the average measured concentration. Pollutant reductions needed to reach benchmark levels were then calculated by subtracting the benchmark loads from the existing loads. These reductions were then further divided into the incremental sub-drainages by subtracting reductions focused in upstream areas from downstream areas. This includes subtracting reductions at outfalls from the downstream stream sites that they drain to.

RESULTS

Concentration Data

Phase I samples were collected at 9 in-stream sites and 18 of the major outfalls over the course of the monitoring effort for a total of 86 samples collected. Samples were only collected when there was water flowing. Phase I results are included in **Appendix B** by monitoring site. Exceedances of the action level for I or more parameter occurred at the majority of sites (17 of the outfalls and 6 of the in-stream locations), many of which were due to measured *E. coli* above the I,000 MPN/I00mL action level.

Sampling was conducted at least once at each of the Phase 2 major outfall and in-stream sites for a total of 221 samples collected. Phase 2 results are included in **Appendix C.1** by monitoring site, along with summary statistics, including the percent of time the measured values exceeded the benchmark for a given parameter. Exceedances of the action level for 1 or more parameters

occurred at all sites over the course of the monitoring effort. As in Phase I, many were due to measured E. coli above the I,000 MPN/I00mL action level. Results can be summarized as follows:

- pH was always within the desired range set by water quality standards at all sites during the study.
- Dissolved oxygen (DO) dropped below the desired threshold (water quality standard) very infrequently. However, repeated low DO was observed at outfall 15519.
- Conductivity measurements exceeded the benchmark during most events at most stations; outfall 15019 was higher than other stations.
- Water temperature did not exceed the water quality standard for any site during the study.
- Some measured values for *Detergents* did exceed the benchmark value; however, on average it was within desired limits at all sites. Likewise, some measured values for *Chlorine* did exceed the benchmark value; however, on average it was well below the benchmark at all stations.
- Some measured values for *Ammonia-Nitrogen* did exceed the benchmark value; however, on average it only exceeded the benchmark at outfall 15506.
- For Nitrate-Nitrogen, the benchmark was frequently exceeded and, on average, it was exceeded at most stations; the highest Nitrate-Nitrogen average was observed at outfall 15506 (same for Ammonia-Nitrogen).
- For Total Phosphorus, some measured values did exceed the benchmark value; however, on average it only exceeded the benchmark at outfall 15506 (same as for Ammonia- and Nitrate-Nitrogen).
- Total Suspended Solids was always within the threshold set by water quality standards at all sites during the study.
- All sites generally had E. coli values above the water quality standards for PCR and SCR.

Phase 2 quality control field duplicate results are summarized in **Appendix C.2**. Exceedances of precision values were evaluated based upon those established in the QAPP (Third Rock 2017), but no data was excluded from analyses based upon and identified exceedance.

To better compare the data to benchmarks and make comparisons between sites, "box and whisker" plots of the summary statistics were produced for each water quality parameter and are included in **Appendix D**. Statistics for the Phase 2 data set presented in the plots are the median (thick black dash), average (blue square), minimum (end of bottom whisker except for dissolved oxygen, which is reversed), maximum (end of top whisker except for dissolved oxygen, which is reversed), 25th percentile (bottom of box except for dissolved oxygen, which is reversed), and 75th percentile (top of box except for dissolved oxygen, which is reversed). The specific benchmark(s) for each parameter are plotted as thick dashed lines (black).

Health Grades

To highlight trends in the Phase 2 water quality data, the percentage exceedance (for concentration data) of a benchmark was utilized to generate water quality health grades as illustrated in **Table 3**. This approach assigns letter grades, like in report cards, to the frequency of exceedances at each site. Each parameter is "graded on a curve" such that letter scores for I parameter are similar to letter scores for other parameters. Letter grades for individual parameters are roughly based on Kentucky Division of Water (KDOW) methods for evaluating data for listing impairments or TMDL Health Reports.

% of Results Exceeding Benchmark C F В D **Parameter Benchmark** Α pH (SU) 6 - 9 0-5% 11-25% 6-10% 26-66% 67-100% 4 0-5% 6-10% 11-25% DO (mg/L) 26-66% 67-100% 300 25-50% COND (uS/cm) 0-10% 11-25% 51-66% 67-100% 67-100% DTRG (mg/L) 0.5 0-10% 11-25% 25-50% 51-66% CI (mg/L) 0.5 0-10% 11-25% 25-50% 51-66% 67-100% 25-50% 0.5 $NH_3 - N (mg/L)$ 0-10% 11-25% 67-100% 51-66% 2 11-25% 25-50% $NO_3 - N (mg/L)$ 0-10% 51-66% 67-100% TP (mg/L) 0.5 0-10% 11-25% 25-50% 51-66% 67-100% 80 TSS (mg/L) 0-10% 11-25% 25-50% 67-100% 51-66% E. coli, PCR (MPN/ 100mLs) 240 0-10% 11-20% 21-33% 67-100% 34-66% 676 0-10% 11-20% E. coli, SCR (MPN/ 100mLs) 21-33% 34-66% 67-100%

Table 3. Water Quality Health Grades

Table 4, pages 9 and 10, summarizes the percent exceedance for each parameter at each site and illustrates the corresponding "health grade" using the shading assigned in **Table 3**.

USGS DATA

LFUCG works in cooperation with the USGS to collect continuous water quality data at its stream flow gauging stations within Fayette County on a rotation basis. Specific conductance (conductivity), pH, water temperature, and dissolved oxygen were collected at the USGS gaging station at Cane Run and Citation Boulevard (site 03288180) during the watershed-focused monitoring effort between June 23, 2016 and July 6, 2017. Thus, the USGS record ends before the last 6 samples of the Phase 2 effort were collected. Plots of available USGS water quality data (along with benchmarks used to analyze Phase I and 2 concentration data) are included in **Appendix E**. To compare the response of these parameters to stream flow, a plot of the flow at this location is also included in **Appendix E**.

The pH data collected by the USGS was within the desired water quality standard range for the entire record. Dissolved oxygen was observed to seasonally fall below the desired water quality

standard in the USGS record. Specific conductance was above the benchmark for this study the majority of the time; however, it seldom exceeded the action level. Seasonal fluctuations of water temperature were observed, but the water temperature was well below the water quality standard during the entire USGS monitoring period.

POLLUTANT LOADS

Predicted flows used for loading calculations are tabulated in **Appendix F**. Existing annual loads, annual benchmark loads, and annual load reductions required to reach the benchmark loads (both as an absolute value and as a percentage of the existing annual load) at each station, along with the incremental load reductions needed, are identified in **Appendix G**. Required load reductions for Nitrate-Nitrogen and *E. coli* were common. Load reductions are required at all outfall stations except outfall CR8_502 and at stream sites CR-7, CR-9, CR-10, and CR-12 to meet the *E. coli* standards for PCR and SCR. The only station to require Ammonia-Nitrogen and Total Phosphorus load reductions to meet benchmark levels is outfall 15506.

LITERATURE CITED

Third Rock Consultants, LLC. 2017. Quality Assurance Project Plan (QAPP) for Lexington-Fayette Urban County Government Watershed-Focused Monitoring Plan. Revision No. 2, August 1, 2017.

Table 4. Phase 2 Water Quality Health Grades (Outfalls)

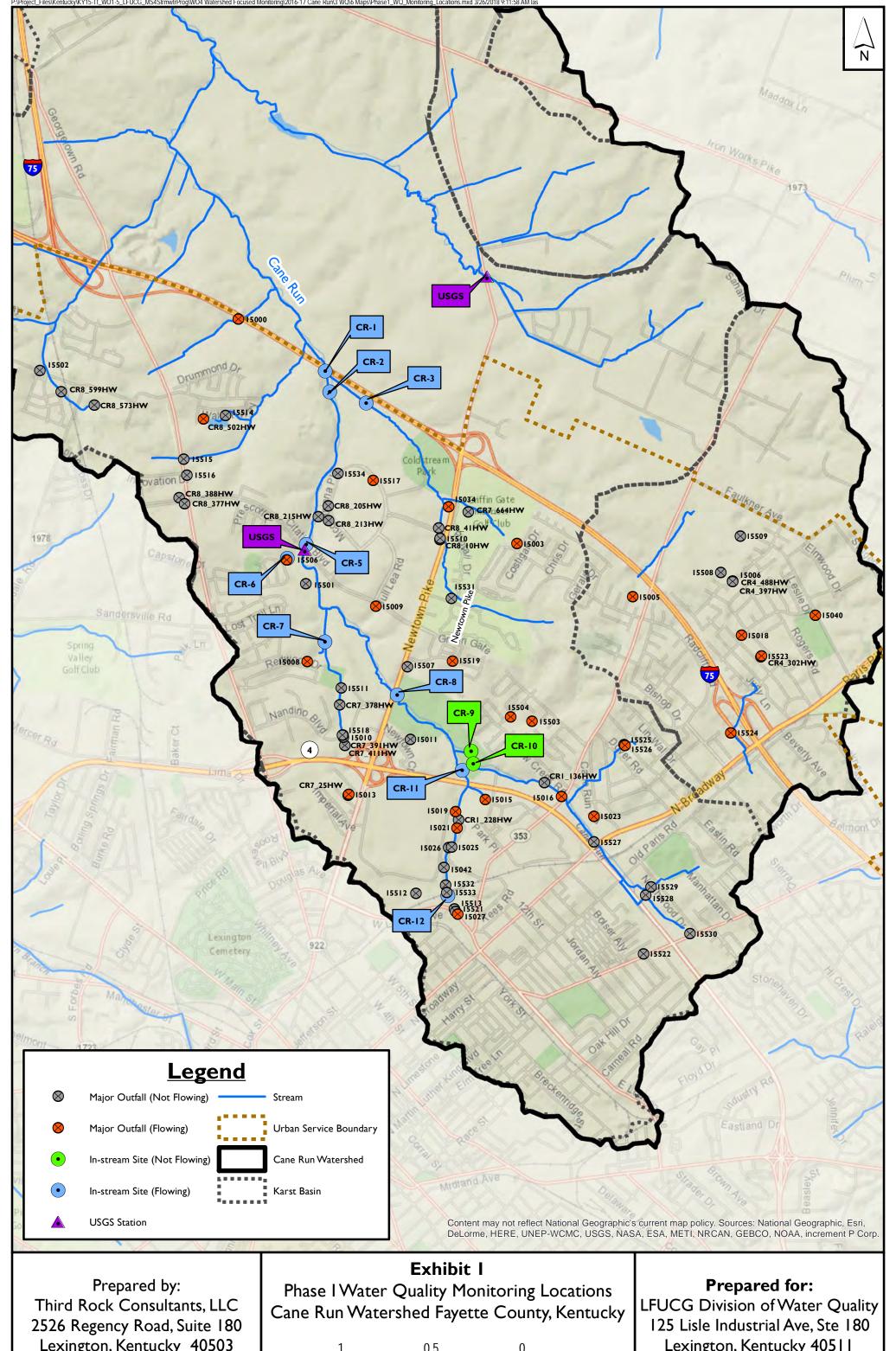
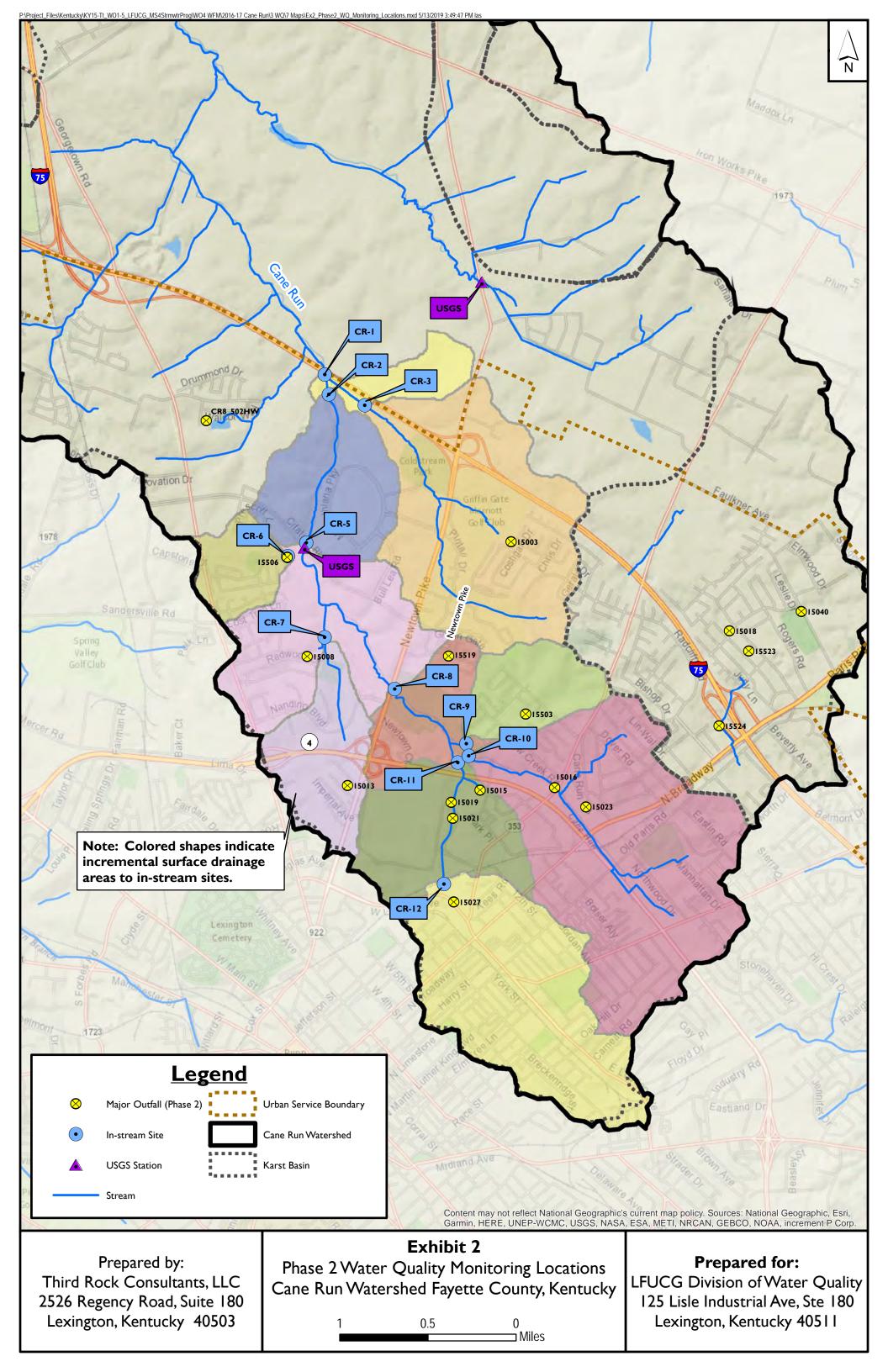

Benchmark:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	676
Site ID	pH (SU)	DO (mg/L)	COND (uS/cm)	TEMP (°C)	DTRG (mg/L)	CI (mg/L)	NH ₃ - N (mg/L)	NO ₃ - N (mg/L)	TP (mg/L)	TSS (mg/L)	PCR E. coli (MPN/ 100mLs)	SCR E. coli (MPN/ 100mLs)
15003	0%	10%	80%	0%	10%	0%	20%	80%	10%	0%	90%	80%
15008	0%	0%	86%	0%	43%	0%	29%	71%	29%	0%	86%	86%
15013	0%	0%	100%	0%	10%	0%	0%	90%	0%	0%	100%	50%
15015	0%	0%	50%	0%	0%	0%	0%	0%	0%	0%	100%	100%
15016	0%	0%	100%	0%	0%	0%	0%	10%	0%	0%	50%	40%
15018	0%	0%	100%	0%	10%	0%	0%	50%	0%	0%	100%	100%
15019	0%	0%	90%	0%	30%	0%	0%	10%	20%	10%	100%	100%
15021	0%	10%	100%	0%	10%	0%	10%	60%	10%	0%	100%	70%
15023	0%	0%	100%	0%	0%	0%	0%	80%	0%	0%	80%	60%
15027	0%	10%	100%	0%	0%	0%	10%	90%	20%	0%	90%	90%
15040	0%	0%	100%	0%	25%	0%	0%	100%	13%	0%	100%	75%
15503	0%	0%	100%	0%	14%	0%	0%	86%	0%	0%	43%	43%
15506	0%	0%	100%	0%	50%	0%	38%	88%	38%	0%	100%	100%
15519	0%	33%	100%	0%	0%	0%	0%	89%	11%	11%	44%	33%
15523	0%	0%	100%	0%	10%	0%	0%	70%	0%	0%	100%	60%
15524	0%	0%	100%	0%	0%	0%	10%	70%	0%	0%	50%	20%
CR8_502HW	0%	0%	100%	0%	0%	14%	0%	71%	0%	0%	29%	0%

Table 4. Phase 2 Water Quality Health Grades (Instream Sites) Cont.

Benchmark:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	676
Site ID	pH (SU)	DO (mg/L)	COND (u\$/cm)	TEMP (°C)	DTRG (mg/L)	CI (mg/L)	NH₃ - N (mg/L)	NO ₃ - N (mg/L)	TP (mg/L)	TSS (mg/L)	E. coli (MPN/ 100mLs)	SCR E. coli (MPN/ 100mLs)
CR-I	0%	0%	100%	0%	0%	0%	0%	33%	0%	0%	50%	33%
CR-2	0%	0%	100%	0%	0%	0%	0%	100%	25%	0%	75%	50%
CR-3	0%	0%	100%	0%	0%	0%	0%	10%	10%	0%	60%	10%
CR-5	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	90%	70%
CR-6	0%	0%	100%	0%	0%	0%	0%	90%	0%	0%	90%	70%
CR-7	0%	0%	100%	0%	0%	10%	0%	30%	0%	0%	100%	100%
CR-8	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	100%	100%
CR-9	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%	100%	100%
CR-10	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	100%	100%
CR-11	0%	0%	100%	0%	10%	10%	0%	50%	0%	0%	90%	70%
CR-12	0%	10%	100%	0%	10%	0%	10%	60%	20%	0%	100%	90%


APPENDIX A EXHIBITS I AND 2

Lexington, Kentucky 40503

⊐ Miles

Lexington, Kentucky 40511

APPENDIX B PHASE I RESULTS

Appendix B

Cane Run Watershed-Focused Monitoring

Phase I Results Summary Page I of 5

	Benchmai	rk Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	"Hit"
		Est.											E. coli	above
 15		Flow	pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/	Action
Site ID	Date	(cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)	Level
15000	2/14/2017	2.3	7.7	10.4	688	12.1	0.3	0.00	0.05	10.70	0.90	8	100	
	9/6/2016	2.8	7.9	9.1	818	20.2	0.1	0.02	0.00	2.48	0.37	8	1,989	- 1
15003	10/4/2016	2.43	8.1	6.9	844	17.8	0.1	0.02	0.00	2.35	0.46	11	38,732	l l
13003	2/14/2017	0.33	8.1	6.5	756	11.2	0.2	0.05	0.09	2.96	0.23	1	100	
	3/16/2017	2.3	8.4	9.4	769	7.6	0.2	0.02	0.03	2.98	2.50	2	100	
15005	2/6/2017	0.33	8.2	11.3	722	9.3	0.0	0.02	0.00	0.34	2.50	7	9,322	- 1
13003	3/16/2017	0.004	8.3	10.8	764	4.1	0.2	0.00	0.26	0.33	2.16	4	3,405	T
15008	9/7/2016	0.004	8.5	5.0	915	22.0	0.5	0.05	0.14	1.98	0.85	4	5,284	2
13000	10/4/2016	0.004	8.3	6.8	928	19.1	0.5	0.06	0.05	1.80	0.42	8	1,223	2
15009	2/14/2017	0.07	8.4	7.1	916	9.8	0.2	0.00	0.00	1.13	0.05	0	400	
	9/7/2016	6.0	7.8	6.8	611	19.5	0.8	0.02	0.00	2.07	0.91	5	413	- 1
15013	10/4/2016	5.7	7.8	7.8	602	19.1	0.1	0.00	0.00	1.98	2.50	3	738	
13013	2/14/2017	5.8	7.6	5.9	300	13.2	0.2	0.00	0.01	2.43	0.91	-	1,350	- 1
	3/16/2017	1.8	7.8	8.1	532	11.9	0.2	0.00	0.07	2.32	1.56	1	969	
15015	9/6/2016	0.07	7.5	7.0	211	25.3	-	0.04	0.00	1.16	1.20	14	1,613	- 1
13013	10/4/2016	0.04	8.4	7.9	400	23.2	0.0	0.02	0.04	1.13	0.68	5	1,596	- 1
	9/6/2016	1.79	7.8	6.4	926	24.5	0.1	0.28	0.06	0.90	1.23	15	<100	
15016	2/6/2017	0.29	7.6	9.8	610	13.4	0.2	0.00	0.00	2.61	0.86	I	413	
	3/16/2017	2	8.2	8.5	1,276	11.4	0.2	0.04	0.00	1.10	0.80	2	7,665	2

Red text indicates value >= benchmark value

Appendix B

Cane Run Watershed-Focused Monitoring

Phase I Results Summary Page 2 of 5

	Benchma	rk Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	"Hit"
		Est.											E. coli	above
		Flow	pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/	Action
Site ID	Date	(cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)	Level
	9/6/2016	0.20	8.4	7.0	743	20.5	0.1	0.03	0.00	1.59	0.80	6	3,839	I
15018	10/4/2016	0.32	8.2	7.5	527	16.2	0.1	0.00	0.00	1.38	0.84	5	738	
13010	2/3/2017	0.83	8.3	9.4	602	8.1	0.2	0.06	0.04	2.36	0.82	3	2,917	1
	3/16/2017	0.68	8.3	12.2	700	4.2	0.2	0.00	0.06	2.08	0.51	5	979	
	9/6/2016	0.003	7.9	6.6	2,229	21.8	0.2	0.16	0.00	2.08	0.40	87	27,551	3
15019	2/3/2017	0.01	8.2	6.9	2,459	8.5	0.3	0.00	0.00	1.67	0.65	П	111,987	2
	3/15/2017	0.003	8.3	6.9	2,193	5.0	0.3	0.18	1.17	2.00	0.03	29	12,356	3
	10/4/2016	0.003	8.7	8.2	1,235	18.3	0.0	0.02	0.01	1.25	0.63	16	24,809	2
15021	2/3/2017	0.04	7.8	8.9	1,471	10.7	0.3	0.01	0.12	2.78	1.54	7	844	1
	3/15/2017	0.07	7.8	6.0	1,281	9.8	0.3	0.00	0.07	2.12	1.22	3	745	1
15023	2/14/2017	0.79	7.4	9.3	623	13.2	0.2	0.02	0.00	3.26	1.09	-	1,100	1
13023	3/15/2017	0.33	7.7	4.7	590	10.2	0.2	0.00	0.73	3.07	2.50	I	1,869	2
	9/7/2016	0.14	7.6	3.8	761	23.2	0.0	0.00	0.00	1.95	1.23	3	1,211	2
15027	10/5/2016	0.19	7.8	5.6	694	19.8	0.2	0.00	0.07	<0.23	1.12	2	2,307	1
13027	2/3/2017	4.6	7.7	8.4	713	8.8	0.2	0.00	0.13	4.20	1.11	2	<100	
	3/15/2017	9	7.6	6.3	666	8.5	0.5	0.00	0.13	3.96	0.00	I	20,142	2
15034	10/4/2016	0.51	7.0	2.3	634	21.7	0.1	0.00	0.06	0.68	1.15	10	<100	- 1
15040	2/6/2017	0.03	8.0	10.7	294	9.5	0.2	0.04	0.01	3.97	0.72	5	1,989	- 1
13040	3/16/2017	0.06	8.0	12.7	488	2.4	0.2	0.00	0.00	3.72	0.00	9	2,334	I

Red text indicates value >= benchmark value

Appendix B

Cane Run Watershed-Focused Monitoring

Phase I Results Summary Page 3 of 5

	Benchmai	rk Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	"Hit"
		Est.											E. coli	above
		Flow	pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/	Action
Site ID	Date	(cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)	Level
	9/6/2016	0.68	8. I	6.8	844	20.6	0.1	0.00	0.05	3.25	1.31	7	852	
15503	10/4/2016	0.73	8.0	6.2	777	19.1	0.1	0.01	0.00	2.85	1.00	4	<100	
13303	2/15/2017	2.15	7.6	6.8	318	8.3	0.1	0.03	0.01	0.56	0.58	5	969	
	3/15/2017	1	8.1	4.8	635	11.7	0.2	0.00	0.00	3.29	0.13	2	632	
15504	2/14/2017	1.6	7.8	7.0	670	13.7	0.2	0.05	0.01	3.20	2.50	1	<100	
15506	2/14/2017	3.15	7.1	5.8	673	14.8	0.2	0.00	0.21	4.18	1.77	3	1,211	- 1
15506	3/16/2017	4.3	7.6	6.3	652	10.3	0.3	0.04	0.46	3.91	1.40	6	7,712	I
15517	2/14/2017	0.26	7.7	6.5	584	11.2	0.2	0.09	0.00	2.93	1.45	I	<100	
	10/4/2016	3.07	7.5	3.9	866	16.9	0.3	0.00	0.27	0.68	0.65	8	1,731	2
15519	2/6/2017	0.08	7.5	6.8	844	11.0	0.2	0.03	0.03	4.03	0.57	4	306	
	3/15/2017	2.6	7.7	6.1	791	9.8	0.2	0.00	0.06	4.32	2.50	10	<100	
	9/6/2016	0.16	7.6	6.9	218	19.2	0.2	0.13	0.02	1.68	0.84	6	100	
15523	2/3/2017	0.3	8.0	8.1	731	9.0	0.2	0.07	0.00	2.35	2.20	3	4,257	- 1
	3/16/2017	0.67	8.0	12.8	638	5.7	0.3	0.03	0.00	2.11	2.50	2	202	
	9/6/2016	0.003	7.9	6.8	555	22.7	0.3	0.12	0.02	1.89	0.73	6	201	
15524	10/4/2016	0.001	7.7	5.1	692	20.6	0.0	0.07	0.01	1.40	0.64	2	1,464	- 1
13327	2/6/2017	0.003	7.4	8.2	637	12.6	0.2	0.00	0.02	2.34	0.40	2	100	
	3/16/2017	0.01	8.0	9.1	590	10.9	0.3	0.02	0.00	2.40	0.05	5	306	
15526	2/14/2017	1.82	7.6	9.1	351	9.5	0.2	2.49	0.44	1.20	1.10	0	<100	I

Red text indicates value >= benchmark value

Appendix B

Cane Run Watershed-Focused Monitoring

Phase I Results Summary Page 4 of 5

	Benchma	rk Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	"Hit"
		Est.											E. coli	above
	_	Flow	pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/	Action
Site ID	Date	(cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)	Level
	4/26/2017	0.001	7.9	6.7	864	21.1	0.2	0.05	0.08	1.45	0.09	13	<100	
CR8_502HW	4/27/2017	0.001	7.6	5.5	656	18.6	0.2	0.00	0.03	2.06	0.69	32	<100	
C110_3021111	5/9/2017	0.02	7.5	6.2	655	17.8	0.3	0.05	0.00	2.35	2.40	0	<100	
	5/10/2017	0.003	7.8	-	491	24.0	0.2	0.14	0.00	1.65	0.66	10	306	
CR-I	2/15/2017	0.58	8.2	9.0	703	10.2	0.1	0.07	0.00	2.22	0.90	3	<100	
CIX-1	3/15/2017	20	7.8	8.0	623	4.9	0.2	0.00	0.09	1.48	0.84	2	400	
CR-2	10/4/2016	3.64	7.7	8.3	703	17.3	0.1	0.13	0.41	0.45	0.41	15	4,737	T
	10/4/2016	0.03	7.6	6.2	764	17.2	0.1	0.15	0.01	0.62	1.03	7	202	
CR-3	2/15/2017	0.52	7.9	11.0	735	10.3	0.1	0.13	0.07	1.82	1.42	3	<100	
	3/15/2017	0.52	8.0	9.3	645	6.8	0.2	0.02	0.05	1.11	1.65	2	<100	
	9/6/2016	0.22	8.0	7.3	703	19.3	0.2	0.00	0.00	2.92	1.09	8	1,078	- 1
CR-5	10/4/2016	0.05	7.2	6.7	724	18.1	0.2	0.01	0.05	3.16	1.19	5	1,613	1
CIC-5	2/3/2017	1.02	8.2	9.9	729	8.9	0.2	0.00	0.44	3.39	0.13	5	1,579	- 1
	3/15/2017	0.7	8.0	9.0	654	8.0	0.2	0.12	0.04	3.61	1.12	3	2,157	- 1
	9/6/2016	0.45	7.2	6.7	689	18.3	0.2	0.00	0.04	3.10	1.32	7	2,785	-
CR-6	10/4/2016	0.69	7.8	7.4	746	17.5	0.2	0.00	0.01	2.94	1.15	6	731	
CIV-0	2/3/2017	0.69	7.3	6.7	679	13.5	0.2	0.08	0.15	3.96	2.20	5	4,135	T
	3/15/2017	0.69	7.4	6.6	629	12.8	0.2	0.07	0.06	3.97	1.33	3	4,223	ı

Red text indicates value >= benchmark value

Appendix B Cane Run Watershed-Focused Monitoring Phase I Results Summary Page 5 of 5

	Benchma	rk V alue:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240	"Hit"
		Est.											E. coli	above
		Flow	pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/	Action
Site ID	Date	(cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)	Level
	9/7/2016	0.4	8.1	5.8	1,010	21.3	0.3	0.16	0.00	1.36	1.36	12	1,336	2
CR-7	10/4/2016	2.61	7.9	8.9	474	17.2	0.5	0.03	0.00	1.29	1.00	33	2,785	2
CK-7	2/15/2017	6.79	8.1	10.5	877	8.7	0.2	0.00	0.11	2.27	1.86	5	1,199	1
	3/15/2017	6.8	8.2	7.8	834	5.0	0.2	0.00	0.02	2.22	2.50	2	306	
CR-8	2/15/2017	87.06	8.3	8.2	888	6.8	0.2	0.02	0.03	3.38	0.56	3	<100	
	9/6/2016	0.61	8.0	12.6	1,218	21.9	0.1	0.02	0.00	0.32	0.73	8	100	- 1
CR-11	10/4/2016	0.61	7.7	7.6	782	16.5	0.3	0.03	0.00	0.31	0.36	9	960	
CIN-11	2/15/2017	3.21	7.7	7.2	870	9.3	0.2	0.07	1.01	3.34	0.65	-	969	1
	3/15/2017	1.6	8.0	11.6	945	3.8	0.3	0.03	0.10	2.38	0.87	5	<100	
CR-12	2/15/2017	0.68	8.5	14.2	656	10.1	0.2	0.05	0.03	4.40	1.01	I	969	
CR-12	3/15/2017	0.15	7.8	5.8	511	2.6	0.3	0.00	0.27	3.98	0.00	3	86,644	I

Note: CR-9 and CR-10 were not flowing during Phase I

Red text indicates value >= benchmark value

APPENDIX C.I PHASE 2 RESULTS

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page I of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15003	5/16/2017	2.3	8.2	9.0	753	15.8	0.00	0.11	0.02	2.71	0.10	3	202
	5/30/2017	3.4	7.5	9.5	645	16.9	0.00	0.05	0.04	2.88	0.15	23	2,882
	6/13/2017	2.30	7.3	9.1	709	17.7	0.00	0.07	0.0075	2.55	0.30	3	860
	6/27/2017	2.81	7.7	9.6	643	17.9	0.13	0.06	0.03	2.89	0.13	2	745
	7/18/2017	2.3	8.1	8.8	676	19.3	0.15	0.12	0.02	2.39	0.28	15	979
	7/25/2017	1.4	8.4	8.1	721	20.2	0.15	0.02	0.02	2.59	0.10	4	1,596
	8/8/2017	2.3	8.2	7.5	616	19.5	0.15	0.06	0.02	2.80	0.13	2	306
	8/22/2017	0.78	8.0	3.7	826	20.9	0.15	0.12	3.17	0.81	0.21	6	241,960
	9/5/2017	2.3	7.9	7.1	233	21.5	0.15	0.00	0.54	1.89	0.41	20	46,111
	9/19/2017	3.37	7.6	5.8	249	21.3	1.00	0.06	0.26	2.10	0.58	30	241,960

% BM Exceendaces	0%	10%	80%	0%	10%	0%	20%	80%	10%	0%	90%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.9	7.8	607	19.1	0.19	0.07	0.41	2.36	0.24	П	53,760
Median	7.9	8.5	661	19.4	0.15	0.06	0.03	2.57	0.18	5	1,288
Q۱	7.6	7.2	623	17.7	0.03	0.05	0.02	2.17	0.13	3	774
Q3	8.2	9.1	718	20.7	0.15	0.10	0.20	2.78	0.30	19	35,304
Min	7.3	3.7	233	15.8	0.00	0.00	0.01	0.81	0.10	2	202
Max	8.4	9.6	826	21.5	1.00	0.12	3.17	2.89	0.58	30	241,960

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 2 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	$NH_3 - N$	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15008	5/16/2017	1.44	8.2	7.5	963	17.1	1.50	0.03	0.0075	2.66	0.26	3	100
	7/25/2017	1.4	8.3	7.6	839	22.4	0.15	0.08	0.04	2.80	0.56	55	969
	6/27/2017	6.13	8.1	5.7	860	19.3	0.50	0.00	0.0075	2.47	0.33	17	15,756
	7/18/2017	0.78	6.3	5.7	981	21.3	0.15	0.01	0.02	2.32	0.31	35	7,976
	8/22/2017	3.99	6.0	8.4	886	23.0	0.15	0.00	0.0075	2.56	0.32	3	34,480
	9/5/2017	1.14	8.0	5.8	660	21.8	0.15	0.00	0.74	1.78	0.48	29	64,882
	9/19/2017	7.4	8.0	5.1	268	22.6	0.50	0.00	0.67	1.42	0.89	60	32,554

% BM Exceendaces	0%	0%	86%	0%	43%	0%	29%	71%	29%	0%	86%
Count	7	7	7	7	7	7	7	7	7	7	7
Average	7.6	6.5	780	21.1	0.44	0.02	0.21	2.29	0.45	29	22,388
Median	8.0	5.8	860	21.8	0.15	0.00	0.02	2.47	0.33	29	15,756
Q۱	7.2	5.7	750	20.3	0.15	0.00	0.01	2.05	0.32	10	4,473
Q3	8.1	7.5	925	22.5	0.50	0.02	0.35	2.61	0.52	45	33,517
Min	6.0	5.1	268	17.1	0.15	0.00	0.01	1.42	0.26	3	100
Max	8.3	8.4	981	23.0	1.50	0.08	0.74	2.80	0.89	60	64,882

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring
Phase 2 Results Summary Page 3 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15013	5/16/2017	3.63	7.7	7.5	558	15.3	0.00	0.06	0.02	2.15	0.29	3	304
	5/30/2017	4.8	7.8	9.6	539	16.0	0.00	0.06	0.02	2.12	0.29	I	2,109
	6/13/2017	4.76	7.9	9.1	536	17.5	0.00	0.02	0.03	2.20	0.29	2	304
	7/18/2017	7.4	7.7	7.8	609	18.3	0.15	0.00	0.05	2.77	0.30	2	413
	7/25/2017	0.06	7.8	7.6	534	19.1	0.15	0.01	0.02	2.49	0.30	2	409
	8/8/2017	9.71	7.6	7.6	501	18.9	0.15	0.00	0.02	2.25	0.32	4	745
	6/27/2017	10.53	7.3	5.5	536	19.2	0.00	0.00	0.02	2.58	0.31	3	9,331
	8/22/2017	7.4	8.0	7.1	591	19.7	0.15	0.00	0.02	2.58	0.31	2	979
	9/5/2017	6.02	7.4	6.2	561	19.0	0.15	0.00	0.02	2.53	0.33	4	632
	9/19/2017	10.53	7.5	6.3	629	20.7	0.50	0.00	0.12	1.66	0.34	46	77,010

% BM Exceendaces	0%	0%	100%	0%	10%	0%	0%	90%	0%	0%	100%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.6	7.4	559	18.4	0.13	0.02	0.03	2.33	0.31	7	9,224
M edian	7.7	7.5	549	18.9	0.15	0.00	0.02	2.37	0.30	3	689
Q۱	7.5	6.5	536	17.7	0.00	0.00	0.02	2.16	0.29	2	410
Q3	7.8	7.8	584	19.2	0.15	0.02	0.03	2.57	0.31	4	1,827
Min	7.3	5.5	501	15.3	0.00	0.00	0.02	1.66	0.29	Ī	304
Max	8.0	9.6	629	20.7	0.50	0.06	0.12	2.77	0.34	46	77,010

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 4 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15015	5/30/2017	0.003	8.4	9.0	1,093	18.3	0.00	0.00	0.0075	1.81	0.16	3	9,322
	6/27/2017	0.02	7.4	8.6	268	17.9	0.13	0.00	0.05	1.79	0.15	4	3,545

% BM Exceendaces	0%	0%	50%	0%	0%	0%	0%	0%	0%	0%	100%
Count	2	2	2	2	2	2	2	2	2	2	2
Average	7.9	8.8	681	18.1	0.06	0.00	0.03	1.80	0.16	4	6,434
M edian	7.9	8.8	681	18.1	0.06	0.00	0.03	1.80	0.16	4	6,434
Q۱	7.7	8.7	474	18.0	0.03	0.00	0.02	1.80	0.15	3	4,989
Q3	8.2	8.9	887	18.2	0.09	0.00	0.04	1.81	0.16	4	7,878
Min	7.4	8.6	268	17.9	0.00	0.00	0.01	1.79	0.15	3	3,545
Max	8.4	9.0	1,093	18.3	0.13	0.00	0.05	1.81	0.16	4	9,322

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 5 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15016	5/16/2017	0.86	7.5	4.6	1,114	17.5	0.00	0.03	0.0075	0.92	0.21	4	50
	5/30/2017	1.5	7.9	10.0	1,055	18.6	0.00	0.00	0.0075	1.07	0.21	3	1,596
	6/13/2017	0.74	7.8	6.9	1,256	19.7	0.00	0.02	0.02	0.94	0.25	5	202
	7/18/2017	4.8	7.4	4.7	1,146	21.6	0.00	0.00	0.02	1.54	0.40	16	100
	7/25/2017	2.7	8.1	7.5	1,172	21.9	0.15	0.02	0.03	1.29	0.26	9	516
	6/27/2017	4.76	7.6	7.6	877	20.3	0.25	0.00	0.0075	1.42	0.18	3	4,195
	8/8/2017	2.88	7.9		1,029	29.2	0.15	0.03	0.05	3.32	0.36	2	2,917
	8/22/2017	2.65	7.2	6.1	1,097	22.9	0.25	0.00	0.0075	1.01	0.30	2	50
	9/5/2017	4	7.7	5.7	622	22.4	0.15	0.00	0.02	1.10	0.43	12	202
	9/19/2017	2.91	7.1	7.0	1,053	21.8	0.15	0.00	0.02	0.93	0.28	5	979

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	10%	0%	0%	50%
Count	10	9	10	10	10	10	10	10	10	10	10
Average	7.6	6.7	1,042	21.6	0.11	0.01	0.02	1.35	0.29	6	1,081
Median	7.6	6.9	1,076	21.7	0.15	0.00	0.02	1.09	0.27	5	359
Q۱	7.4	5.7	1,035	19.8	0.00	0.00	0.01	0.96	0.22	3	126
Q3	7.9	7.5	1,138	22.3	0.15	0.02	0.02	1.39	0.35	8	1,442
Min	7.1	4.6	622	17.5	0.00	0.00	0.01	0.92	0.18	2	50
Max	8.1	10.0	1,256	29.2	0.25	0.03	0.05	3.32	0.43	16	4,195

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 6 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	ТР	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15018	5/16/2017	1.19	8.0	9.7	627	16.9	0.00	0.12	0.04	1.93	0.24	5	1,890
	5/30/2017	2.2	7.8	9.8	702	16.9	0.00	0.03	0.02	2.42	0.23	7	1,869
	6/27/2017	0.64	7.7	10.2	652	17.0	0.13	0.11	0.03	2.49	0.21	4	1,749
	7/18/2017	0.59	7.9	8.8	736	20.9	0.25	0.11	0.01	1.98	0.25	I	979
	7/25/2017	0.29	8.1	8.6	742	19.8	0.15	0.00	0.03	2.06	0.25	3	1,464
	6/13/2017	1.03	8.0	8.1	759	20.5	0.00	0.00	0.04	0.90	0.25	5	5,833
	8/8/2017	0.53	8.1	8.1	429	18.8	0.15	0.06	0.0075	2.15	0.26	2	2,917
	8/22/2017	1.59	8.1	7.9	749	21.5	0.15	0.00	0.02	1.92	0.28	2	11,874
	9/5/2017	0.32	7.8	7.9	683	19.3	0.50	0.00	0.02	2.12	0.26	3	2,621
	9/19/2017	0.5	7.7	7.3	741	19.2	0.15	0.00	0.02	1.56	0.35	6	8,803

% BM Exceendaces	0%	0%	100%	0%	10%	0%	0%	50%	0%	0%	100%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.9	8.7	682	19.1	0.15	0.04	0.02	1.95	0.26	4	4,000
M edian	8.0	8.3	719	19.3	0.15	0.02	0.02	2.02	0.25	4	2,256
QI	7.8	8.0	660	17.4	0.03	0.00	0.02	1.92	0.24	2	1,779
Q3	8.0	9.5	742	20.3	0.15	0.10	0.03	2.14	0.26	5	5,104
Min	7.7	7.3	429	16.9	0.00	0.00	0.01	0.90	0.21	I	979
Max	8.1	10.2	759	21.5	0.50	0.12	0.04	2.49	0.35	7	11,874

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 7 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15019	7/18/2017	0.003	8.1	5.4	2,116	20.8	0.00	0.00	0.03	0.84	0.21	62	27,551
	6/13/2017	0.003	7.9	6.1	2,411	19.6	0.00	0.02	0.04	0.99	0.38	103	23,822
	5/16/2017	0.01	7.9	5.7	2,670	15.8	0.25	0.00	0.02	1.78	0.22	15	38,732
	5/30/2017	0.01	7.8	9.9	1,959	17.1	0.00	0.00	0.06	1.63	0.38	15	6,437
	7/25/2017	0	8.2	7.1	2,040	20.9	0.15	0.15	0.02	1.80	0.28	20	979
	8/8/2017	0.003	8.2		1,975	20.1	1.00	0.18	0.23	3.20	0.63	25	745
	6/27/2017	0	7.7	8.0	1,811	18.4	0.13	0.02	0.04	1.89	0.19	5	8,823
	8/22/2017	0.001	6.9	6.7	2,196	22.2	0.15	0.00	0.03	1.37	1.01	48	9,108
	9/5/2017	0.01	7.6	7.6	1,216	20.3	1.00	0.02	0.33	1.89	0.29	18	129,965
	9/19/2017	0.42	7.5	8.2	173	22.0	0.75	0.07	0.14	1.25	0.14	23	12,112

% BM Exceendaces	0%	0%	90%	0%	30%	0%	0%	10%	20%	10%	100%
Count	10	9	10	10	10	10	10	10	10	10	10
Average	7.8	7.2	1,857	19.7	0.34	0.05	0.09	1.66	0.37	33	25,827
M edian	7.8	7.1	2,008	20.2	0.15	0.02	0.04	1.71	0.28	22	10,610
Q۱	7.7	6.1	1,848	18.7	0.03	0.00	0.03	1.28	0.21	16	7,034
Q3	8.1	8.0	2,176	20.9	0.63	0.06	0.12	1.87	0.38	42	26,619
Min	6.9	5.4	173	15.8	0.00	0.00	0.02	0.84	0.14	5	745
Max	8.2	9.9	2,670	22.2	1.00	0.18	0.33	3.20	1.01	103	129,965

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring
Phase 2 Results Summary Page 8 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15021	5/16/2017	0.02	7.6	8.1	1,293	16.8	0.00	0.07	0.03	2.56	0.27	7	5,731
	5/30/2017	0.07	7.7	11.5	1,317	15.4	0.00	0.00	0.02	2.49	0.19	4	2,655
	6/13/2017	0.74	8.0	2.0	1,109	20.1	0.00	0.12	0.10	1.64	0.73	11	13,540
	6/27/2017	0.5	7.5	7.0	1,341	16.7	0.25	0.00	0.09	2.72	0.31	4	306
	7/25/2017	1.9	7.9	7.9	1,269	18.1	0.15	0.00	0.03	2.11	0.20	3	516
	8/8/2017	0.31	7.8	10.1	1,199	18.0	1.00	0.00	0.0075	2.33	0.19	3	413
	7/18/2017	0.5	7.6	8.3	1,265	18.0	0.00	0.00	0.02	1.88	0.20	3	6,198
	8/22/2017	0.31	8.1	7.3	1,266	18.9	0.15	0.00	0.0075	1.86	0.22	2	16,743
	9/5/2017	0.73	7.4	7.6	626	19.8	0.15	0.00	0.67	2.21	0.25	8	120,333
	9/19/2017	0.17	7.8	7.0	1,010	19.6	0.15	0.00	0.02	1.40	0.32	7	1,749

% BM Exceendaces	0%	10%	100%	0%	10%	0%	10%	60%	10%	0%	100%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.7	7.7	1,170	18.1	0.19	0.02	0.10	2.12	0.29	5	16,818
Median	7.7	7.7	1,266	18.0	0.15	0.00	0.02	2.16	0.23	4	4,193
Q۱	7.6	7.1	1,132	17.1	0.00	0.00	0.02	1.87	0.20	3	824
Q3	7.9	8.3	1,287	19.4	0.15	0.00	0.08	2.45	0.30	7	11,705
Min	7.4	2.0	626	15.4	0.00	0.00	0.01	1.40	0.19	2	306
Max	8.1	11.5	1,341	20.1	1.00	0.12	0.67	2.72	0.73	П	120,333

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 9 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15023	5/16/2017	0.78	7.3	7.5	618	14.7	0.00		0.0075	2.82	0.33	8	306
	5/30/2017	1.4	7.5	10.8	622	15.1	0.00	0.00	0.0075	2.81	0.32	2	202
	6/27/2017	1.25	7.1	8.7	644	16.0	0.13	0.10	0.0075	3.26	0.34	3	1,223
	8/8/2017	0.47	7.9		674	19.6	0.15	0.00	0.03	1.27	0.30	8	3,498
	9/5/2017	0.78	7.2	7.1	1,034	18.3	0.15	0.00	0.12	3.01	0.39	23	2,776

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	80%	0%	0%	80%
Count	5	4	5	5	5	4	5	5	5	5	5
Average	7.4	8.5	718	16.7	0.09	0.03	0.03	2.63	0.33	9	1,601
M edian	7.3	8.1	644	16.0	0.13	0.00	0.01	2.82	0.33	8	1,223
QI	7.2	7.4	622	15.1	0.00	0.00	0.01	2.81	0.32	3	306
Q3	7.5	9.2	674	18.3	0.15	0.03	0.03	3.01	0.34	8	2,776
Min	7.1	7.1	618	14.7	0.00	0.00	0.01	1.27	0.30	2	202
Max	7.9	10.8	1,034	19.6	0.15	0.10	0.12	3.26	0.39	23	3,498

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring
Phase 2 Results Summary Page 10 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15027	7/18/2017	14	7.5	4.2	1,008	22.1	0.25	0.00	0.18	3.08	0.50	3	57,943
	7/25/2017	1.5	7.6	4.0	900	22.4	0.25	0.00	0.64	2.77	0.56	4	20,142
	5/16/2017	8.97	7.8	8.3	647	17.0	0.00	0.00	0.15	3.90	0.40	5	2,378
	5/30/2017	14	7.8	9.4	672	18.0	0.00	0.00	0.13	3.38	0.31	2	3,839
	6/13/2017	8.97	7.8	6.4	991	19.9	0.00	0.12	0.07	1.99	0.41	5	100
	8/8/2017	13.96	8.0	8.1	760	21.6	0.15	0.00	0.09	3.35	0.37	33	7,328
	6/27/2017	14.36	7.7	5.8	617	19.6	0.13	0.03	0.23	4.41	0.34	3	3,310
	8/22/2017	9.46	7.8	4.2	695	23.6	0.15	0.06	0.15	2.73	0.47	2	3,786
	9/5/2017	13.96	7.8	6.1	670	21.7	0.15	0.29	0.12	3.40	0.41	3	6,631
	9/19/2017	12.92	7.8	3.6	720	21.5	0.15	0.00	0.05	2.15	0.37	5	1,449

% BM Exceendaces	0%	10%	100%	0%	0%	0%	10%	90%	20%	0%	90%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.8	6.0	768	20.7	0.12	0.05	0.18	3.12	0.41	7	10,691
Median	7.8	6.0	708	21.6	0.15	0.00	0.14	3.22	0.40	4	3,813
Q۱	7.7	4.2	671	19.7	0.03	0.00	0.10	2.74	0.37	3	2,611
Q3	7.8	7.6	865	22.0	0.15	0.05	0.17	3.40	0.45	5	7,154
Min	7.5	3.6	617	17.0	0.00	0.00	0.05	1.99	0.31	2	100
Max	8.0	9.4	1,008	23.6	0.25	0.29	0.64	4.41	0.56	33	57,943

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 11 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	$NH_3 - N$	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15040	6/13/2017	0.07	7.6	6.8	610	20.6	0.00	0.00	0.07	2.82	0.28	16	15,756
	8/8/2017	0.01	8.2	7.5	543	19.4	0.15	0.03	0.04	3.31	0.36	30	12,740
	5/16/2017	0.63	7.8	9.4	609	15.7	0.00	0.10	0.10	2.96	0.30	32	304
	5/30/2017	0.32	7.6	9.9	512	15.3	0.00	0.09	0.04	3.48	0.21	20	306
	6/27/2017	0.26	7.7	8.1	547	16.0	0.50	0.00	0.04	3.42	0.21	19	1,199
	7/18/2017	0.07	7.7	7.3	629	21.4	0.15	0.09	0.04	2.85	0.26	10	1,100
	9/5/2017	0.004	7.7	7.7	579	20.0	0.15	0.00	0.08	3.41	0.32	9	3,498
	9/19/2017	0.001	7.3	5.4	506	19.7	0.75	0.19	0.29	2.44	0.99	51	12,457

% BM Exceendaces	0%	0%	100%	0%	25%	0%	0%	100%	13%	0%	100%
Count	8	8	8	8	8	8	8	8	8	8	8
Average	7.7	7.8	567	18.5	0.21	0.06	0.09	3.09	0.36	23	5,920
M edian	7.7	7.6	563	19.6	0.15	0.06	0.06	3.14	0.29	20	2,349
QI	7.6	7.2	535	15.9	0.00	0.00	0.04	2.84	0.25	15	902
Q3	7.8	8.4	609	20.2	0.24	0.09	0.09	3.41	0.33	31	12,528
Min	7.3	5.4	506	15.3	0.00	0.00	0.04	2.44	0.21	9	304
Max	8.2	9.9	629	21.4	0.75	0.19	0.29	3.48	0.99	51	15,756

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring
Phase 2 Results Summary Page 12 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	$NH_3 - N$	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15503	5/16/2017	1.35	8.6	7.7	624	15.6	0.00	0.10	0.03	3.22	0.26	3	202
	5/30/2017	1.7	7.5	8.3	588	15.4	0.00	0.01	0.0075	1.70	0.27	I	202
	6/13/2017	0.73	8.2	8.0	665	18.3	0.00	0.11	0.02	3.18	0.26	4	100
	6/27/2017	1.72	7.8	8.3	610	16.5	0.00	0.01	0.0075	2.96	0.29	3	202
	8/8/2017	1.34	7.8	7.3	641	18.2	0.15	0.07	0.03	3.37	0.29	2	860
	9/5/2017	1.14	7.4	7.4		19.0	0.15	0.02	0.07	3.09	0.27	7	3,089
	9/19/2017	0.68	7.7	6.4		19.8	0.50	0.00	0.03	2.53	0.30	6	1,869

% BM Exceendaces	0%	0%	100%	0%	14%	0%	0%	86%	0%	0%	43%
Count	7	7	5	7	7	7	7	7	7	7	7
Average	7.9	7.6	626	17.5	0.11	0.05	0.03	2.86	0.28	4	932
Median	7.8	7.7	624	18.2	0.00	0.02	0.03	3.09	0.27	3	202
Q۱	7.6	7.3	610	16.1	0.00	0.01	0.01	2.75	0.26	3	202
Q3	8.0	8.1	641	18.6	0.15	0.09	0.03	3.20	0.29	5	1,365
Min	7.4	6.4	588	15.4	0.00	0.00	0.01	1.70	0.26	Ι	100
Max	8.6	8.3	665	19.8	0.50	0.11	0.07	3.37	0.30	7	3,089

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 13 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15506	7/25/2017	4.6	7.5	8.2	612	18.6	1.00	0.00	1.33	3.01	0.63	15	173,289
	7/18/2017		7.1	10.6	781	18.4	0.15	0.00	0.61	3.86	0.47	4	10,193
	5/16/2017	3.15	7.2	8.0	628	15.1	0.00	0.02	0.28	3.47	0.38	3	9,881
	5/30/2017	9	6.0	8.4	584	15.3	0.00	0.02	0.03	4.06	0.34	3	5,284
	6/27/2017	8.99	6.0	8.9	579	16.1	0.50	0.00	0.0075	4.69	0.29	3	1,869
	8/8/2017	7.26	7.0	7.4	627	17.3	0.15	0.00	0.03	3.39	0.38	3	3,145
	9/5/2017	6.47	7.0	7.4		17.8	0.75	0.00	0.08	3.70	0.59	7	15,286
	9/19/2017	1.35	7.2			18.0	1.00	0.14	3.17	0.23	1.15	16	241,960

% BM Exceendaces	0%	0%	100%	0%	50%	0%	38%	88%	38%	0%	100%
Count	8	7	6	8	8	8	8	8	8	8	8
Average	6.9	8.4	635	17.1	0.44	0.02	0.69	3.30	0.53	7	57,613
M edian	7.0	8.2	620	17.5	0.33	0.00	0.18	3.59	0.42	4	10,037
Q۱	6.7	7.7	591	15.9	0.11	0.00	0.03	3.30	0.37	3	4,749
Q3	7.2	8.7	628	18.1	0.81	0.02	0.79	3.91	0.60	9	54,786.75
Min	6.0	7.4	579	15.1	0.00	0.00	0.01	0.23	0.29	3	1,869
Max	7.5	10.6	781	18.6	1.00	0.14	3.17	4.69	1.15	16	241,960

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 14 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15519	5/16/2017	3.12	7.2	4.5	801	15.7	0.00	0.00	0.03	3.21	0.19	4	50
	5/30/2017	2.7	6.7	6.5	746	15.4	0.00	0.00	0.0075	2.15	0.19	I	50
	6/13/2017	1.82	7.0	1.9	815	17.3	0.00	0.12	0.03	2.75	0.20	6	860
	6/27/2017	4.76	7.2	7.4	726	16.1	0.13	0.00	0.02	3.29	0.23	3	100
	7/18/2017		7.8	2.8	655	18.3	0.15	0.12	0.02	2.88	0.22	4	100
	8/8/2017	4.76	6.8	4.5	776	18.1	0.15	0.10	0.0075	3.95	0.18	I	620
	7/25/2017	3.9	7.2	8.5	673	19.8	0.15	0.08	0.12	1.82	0.25	8	2,751
	8/22/2017	3.63	7.1	1.6	815	19.9	0.15		0.22	2.27	0.91	111	202
	9/5/2017	5.69	7.0	7.0	·	18.3	0.25	0.03	0.02	3.67	0.18	3	16,695

% BM Exceendaces	0%	33%	100%	0%	0%	0%	0%	89%	11%	11%	44%
Count	9	9	8	9	9	8	9	9	9	9	9
Average	7.1	5.0	75 I	17.6	0.11	0.06	0.05	2.89	0.29	16	2,381
Median	7.1	4.5	761	18.1	0.15	0.06	0.02	2.88	0.20	4	202
Q۱	7.0	2.8	713	16.1	0.00	0.00	0.02	2.27	0.19	3	100
Q3	7.2	7.0	805	18.3	0.15	0.11	0.03	3.29	0.23	6	860
Min	6.7	1.6	655	15.4	0.00	0.00	0.01	1.82	0.18	I	50
Max	7.8	8.5	815	19.9	0.25	0.12	0.22	3.95	0.91	111	16,695

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 15 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15523	5/16/2017	0.31	7.6	6.9	804	16.0	0.00		0.02	2.01	0.23	5	1,078
	5/30/2017	2.1	7.6	9.8	712	16.4	0.00	0.04	0.02	2.38	0.22	3	521
	6/27/2017	0.58	7.4	7.8	669	16.8	0.13	0.02	0.04	2.52	0.23	5	512
	7/18/2017	0.21	7.3	9.2	732	19.5	0.00	0.17	0.02	1.98	0.24	I	516
	7/25/2017	2.2	7.0	7.6	729	19.9	0.15	0.21	0.02	2.20	0.30	6	306
	8/8/2017	0.91	7.7	8.7	682	18.1	0.15	0.00	0.0075	2.26	0.26	2	1,849
	6/13/2017	0.24	7.6	8.1	782	18.3	0.00	0.00	0.0075	1.98	0.24	5	3,184
	8/22/2017	1.32	7.5	9.0	763	18.3	1.00	0.00	0.0075	2.18	0.28	10	46,111
	9/5/2017	2.89	7.6	8.0	688	19.2	0.15	0.02	0.02	2.08	0.32	13	2,621
	9/19/2017	0.93	7.4	7.7	775	18.8	0.15	0.29	0.02	1.68	0.50	33	979

% BM Exceendaces	0%	0%	100%	0%	10%	0%	0%	70%	0%	0%	100%
Count	10	10	10	10	10	9	10	10	10	10	10
Average	7.5	8.3	734	18.1	0.17	0.08	0.02	2.13	0.28	8	5,768
Median	7.5	8.0	73 I	18.3	0.14	0.02	0.02	2.13	0.25	5	1,029
Q۱	7.4	7.7	694	17.1	0.00	0.00	0.01	1.99	0.23	4	517
Q3	7.6	8.9	772	19.1	0.15	0.17	0.02	2.25	0.29	9	2,428
Min	7.0	6.9	669	16.0	0.00	0.00	0.01	1.68	0.22	I	306
Max	7.7	9.8	804	19.9	1.00	0.29	0.04	2.52	0.50	33	46,111

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 16 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
15524	5/16/2017	0.04	7.4	6.8	609	15.6	0.00	0.03	0.04	1.90	0.19	4	306
	5/30/2017	0.07	7.7	9.8	523	16.5	0.00	0.13	0.03	2.32	0.17	5	50
	6/13/2017	0.15	7.9	8.6	595	17.6	0.00	0.00	0.07	1.15	0.17	2	202
	6/27/2017	0.29	7.6	8.1	557	18.0	0.00	0.00	0.0075	2.57	0.18	3	100
	7/18/2017	0.003	7.9	8.4	604	19.6	0.15	0.17	0.07	2.25	0.19	2	50
	7/25/2017	0.15	7.9	7.4	570	19.9	0.15	0.02	0.04	2.46	0.18	2	202
	8/8/2017	0.15	7.4	8.0	578	19.8	0.15	0.00	0.04	2.37	0.28	6	413
	8/22/2017	0.003	7.6	6.5	667	21.1	0.15	0.11	0.08	2.24	0.20	2	620
	9/5/2017	0.03	7.3	7.2	339	21.3	0.15	0.00	0.67	2.23	0.29	17	1,849
	9/19/2017	0.01	7.7	5.6	538	20.4	0.25	0.03	0.22	1.68	0.47	14	11,446

% BM Exceendaces	0%	0%	100%	0%	0%	0%	10%	70%	0%	0%	50%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.6	7.6	558	19.0	0.10	0.05	0.13	2.12	0.23	6	1,524
Median	7.6	7.7	574	19.7	0.15	0.03	0.05	2.25	0.19	4	254
Q۱	7.4	6.9	543	17.7	0.00	0.00	0.04	1.98	0.18	2	126
Q3	7.9	8.4	602	20.3	0.15	0.09	0.08	2.36	0.26	6	568
Min	7.3	5.6	339	15.6	0.00	0.00	0.01	1.15	0.17	2	50
Max	7.9	9.8	667	21.3	0.25	0.17	0.67	2.57	0.47	17	11,446

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 17 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	$NH_3 - N$	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR8_502HW	5/16/2017	0.001	7.3	6.5	696	18.6	0.00	0.10	0.0075	2.26	0.21	15	50
	5/30/2017	0.003	7.5	8.2	698	20.4	0.00	0.00	0.02	1.99	0.18	4	516
	6/27/2017	0.07	7.3	8.0	596	19.1	0.13	0.10	0.05	2.48	0.35	6	50
	7/25/2017	0.0001	7.2	5.9	630	21.7	0.15	0.00	0.02	2.31	0.21	4	400
	8/8/2017	0.07	7.4	5.9	489	22.3	0.15	0.06	0.02	1.33	0.26	7	50
	9/5/2017		7.1	5.8		19.8	0.15	0.07	0.02	2.32	0.22	8	99
	9/19/2017	0.004	6.9	6.0		20.6	0.15	1.05	0.02	2.12	0.25	19	50

% BM Exceendaces	0%	0%	100%	0%	0%	14%	0%	71%	0%	0%	29%
Count	7	7	5	7	7	7	7	7	7	7	7
Average	7.2	6.6	622	20.4	0.10	0.20	0.02	2.12	0.24	9	174
Median	7.3	6.0	630	20.4	0.15	0.07	0.02	2.26	0.22	7	50
Q۱	7.1	5.9	596	19.4	0.06	0.03	0.02	2.06	0.21	5	50
Q3	7.4	7.2	696	21.2	0.15	0.10	0.02	2.32	0.25	12	250
Min	6.9	5.8	489	18.6	0.00	0.00	0.01	1.33	0.18	4	50
Max	7.5	8.2	698	22.3	0.15	1.05	0.05	2.48	0.35	19	516

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 18 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-I	5/16/2017	20.3	7.7	7.9	602	18.6	0.00	0.05	0.04	1.05	0.40	27	2,433
	5/30/2017	62.2	7.5	9.6	617	17.6	0.00	0.12	0.02	2.36	0.33	6	202
	6/27/2017	73.6	7.8	8.2	645	17.2	0.00	0.07	0.04	2.94	0.33	8	409
	7/18/2017	32.34	8.1	8.1	591	21.6	0.15	0.04	0.02	1.14	0.31	6	100
	8/8/2017	32.34	7.2	7.0	490	19.5	0.15	0.04	0.02	0.90	0.36	5	745
	9/5/2017	41.2	7.8	7.8	500	20.5	0.25	0.13	0.04	1.36	0.42	13	202

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	33%	0%	0%	50%
Count	6	6	6	6	6	6	6	6	6	6	6
Average	7.7	8.1	574	19.2	0.09	0.08	0.03	1.62	0.36	П	682
M edian	7.7	8.0	597	19.0	0.08	0.06	0.03	1.25	0.35	7	306
QI	7.5	7.8	523	17.8	0.00	0.04	0.02	1.07	0.33	6	202
Q3	7.8	8.2	613	20.3	0.15	0.11	0.04	2.11	0.39	12	661
Min	7.2	7.0	490	17.2	0.00	0.04	0.02	0.90	0.31	5	100
Max	8.1	9.6	645	21.6	0.25	0.13	0.04	2.94	0.42	27	2,433

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 19 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-2	5/30/2017	151	8.0	9.8	668	17.1	0.00	0.13	0.0075	2.75	0.26	2	516
	6/27/2017	167.26	7.8	8.7	684	17.0	0.13	0.10	0.02	3.59	0.56	38	852
	8/8/2017	59.1	7.6	6.3	495	18.4	0.25	0.00	0.02	2.29	0.32	4	2,133
	9/5/2017	112.94	7.8	8.5	613	21.6	0.15	0.10	0.02	2.43	0.32	6	202

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	100%	25%	0%	75%
Count	4	4	4	4	4	4	4	4	4	4	4
Average	7.8	8.3	615	18.5	0.13	0.08	0.02	2.77	0.37	13	925.75
Median	7.8	8.6	641	17.7	0.14	0.10	0.02	2.59	0.32	5	684
QI	7.7	7.9	584	17.1	0.09	0.08	0.01	2.40	0.30	4	438
Q3	7.9	9.0	672	19.2	0.18	0.11	0.02	2.96	0.38	14	1,172
Min	7.6	6.3	495	17.0	0.00	0.00	0.01	2.29	0.26	2	202
Max	8.0	9.8	684	21.6	0.25	0.13	0.02	3.59	0.56	38	2,133

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 20 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	$NH_3 - N$	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-3	5/16/2017	0.52	8.1	7.9	610	19.1	0.00	0.04	0.03	0.88	0.33	5	50
	5/30/2017	1.22	7.6	7.8	501	19.9	0.00	0.14	0.03	1.68	0.36	6	413
	6/13/2017	0.12	7.7	6.5	639	21.1	0.00	0.17	0.03	3.43	0.37	6	632
	6/27/2017	0.52	7.1	7.8	536	19.8	0.00	0.07	0.02	1.67	0.34	4	306
	7/18/2017	0.03	7.6	6.5	602	21.2	0.15	0.00	0.02	0.82	0.32	3	413
	7/25/2017	0.03	7.2	6.4	637	20.9	0.15	0.04	0.02	0.82	0.32	5	1,211
	8/8/2017	0.12	7.6	6.7	501	20.5	0.15	0.07	0.02	0.68	0.35	4	521
	8/22/2017	0.01	7.8	5.7	924	23.0	0.15	0.01	0.03	0.57	1.07		202
	9/5/2017	0.52	7.5	8.7	494	20.5	0.25	0.06	0.02	1.23	0.32	2	100
	9/19/2017	0.01	7.2	5.2	732	20.7	0.15	0.03	0.02	0.70	0.33	5	100

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	10%	10%	0%	60%
Count	10	10	10	10	10	10	10	10	10	9	10
Average	7.5	6.9	618	20.7	0.10	0.06	0.02	1.25	0.41	4	395
Median	7.6	6.6	606	20.6	0.15	0.05	0.02	0.85	0.34	5	360
Q۱	7.3	6.4	510	20.1	0.00	0.03	0.02	0.73	0.33	4	126
Q3	7.7	7.8	639	21.1	0.15	0.07	0.03	1.56	0.36	5	494
Min	7.1	5.2	494	19.1	0.00	0.00	0.02	0.57	0.32	2	50
Max	8.1	8.7	924	23.0	0.25	0.17	0.03	3.43	1.07	6	1,211

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring
Phase 2 Results Summary Page 21 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	ТЕМР	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-5	5/16/2017	0.93	8.8	7.8	702	16.5	0.00	0.00	0.03	2.79	0.28	5	860
	5/30/2017	5.21	7.6	8.7	676	16.8	0.00	0.01	0.0075	2.84	0.27	3	409
	6/13/2017	0.23	7.4	7.7	678	17.3	0.00	0.10	0.03	3.61	0.37	14	413
	6/27/2017	5.85	7.6	8.5	704	16.9	0.13	0.03	0.0075	3.64	0.34	3	1,829
	7/18/2017	0.18	7.8	8.1	651	17.9	0.25	0.05	0.02	3.77	0.35	П	1,829
	7/25/2017	0.13	7.7	8.2	651	17.7	0.15	0.06	0.02	3.61	0.34	5	1,211
	8/8/2017	1.92	7.5	7.8	559	18.0	0.25	0.01	0.02	2.46	0.30	2	1,849
	8/22/2017	0.06	8.0	8.3	665	19.2	0.15	0.01	0.0075	3.10	0.39	9	745
	9/5/2017	3.4	7.4	9.5	636	18.6	0.15	0.05	0.02	2.69	0.33	Ī	738
	9/19/2017	0.2	7.7	7.6	732	18.3	0.15	0.00	0.02	3.06	0.49	18	202

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	90%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.7	8.2	665	17.7	0.12	0.03	0.02	3.16	0.34	7	1,009
Median	7.6	8.2	671	17.8	0.15	0.02	0.02	3.08	0.34	5	803
Q۱	7.5	7.8	65 I	17.0	0.03	0.01	0.01	2.80	0.31	3	494
Q3	7.8	8.4	696	18.2	0.15	0.05	0.02	3.61	0.36	П	1,675
Min	7.4	7.6	559	16.5	0.00	0.00	0.01	2.46	0.27	I	202
Max	8.8	9.5	732	19.2	0.25	0.10	0.03	3.77	0.49	18	1,849

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 22 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
Site ID	Doto	Est Flour(sfr)	pH	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-6	7/18/2017	0.69	7.1	6.7	658	16.9	0.15	0.00	0.05	3.89	0.39	7	14,209
	7/25/2017	0.31	7.2	7.1	655	17.0	0.15	0.04	0.02	3.78	0.40	19	3,405
	5/16/2017	0.69	7.6	7.1	631	15.5	0.00	0.02	0.0075	3.36	0.34	П	1,829
	5/30/2017	0.69	7.3	7.8	580	15.5	0.00	0.09	0.0075	3.85	0.23	2	304
	6/13/2017	0.69	6.6	8.0	682	15.9	0.00	0.09	0.0075	1.56	0.31	4	860
	6/27/2017	0.69	7.1	8.1	589	16.3	0.00	0.07	0.07	4.67	0.32	3	1,480
	8/8/2017	0.31	7.1	6.1	558	17.6	0.15	0.01	0.02	3.22	0.37	3	100
	8/22/2017	0.09	7.1	6.5	676	19.5	0.15	0.00	0.0075	3.27	0.36	3	2,034
	9/5/2017	0.69	6.4	8.5	566	18.0	0.25	0.04	0.02	3.65	0.39	2	521
	9/19/2017	0.31	6.8	5.6	703	19.7	0.18	0.00	0.02	3.13	0.31	3	1,336

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	90%	0%	0%	90%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.0	7.2	630	17.2	0.10	0.04	0.02	3.44	0.34	6	2,608
M edian	7.1	7.1	643	16.9	0.15	0.03	0.02	3.51	0.35	3	1,408
Q۱	6.9	6.5	582	16.0	0.00	0.00	0.01	3.23	0.31	3	606
Q3	7.1	7.9	672	17.9	0.15	0.06	0.02	3.83	0.38	6	1,983
Min	6.4	5.6	558	15.5	0.00	0.00	0.01	1.56	0.23	2	100
Max	7.6	8.5	703	19.7	0.25	0.09	0.07	4.67	0.40	19	14,209

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring

Phase 2 Results Summary Page 23 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	E. coli (MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-7	6/13/2017	2.61	7.8	7.1	962	21.0	0.00	0.00	0.03	0.80	0.29	5	5,208
	8/8/2017	4.38	7.8	7.8	743	18.6	0.15	0.00	0.0075	1.96	0.32	3	3,592
	5/16/2017	6.79	7.7	8.0	888	19.0	0.00	2.15	0.03	2.07	0.33	4	1,336
	5/30/2017	6.79	7.6	7.7	822	18.0	0.00	0.06	0.02	1.98	0.31	4	3,319
	6/27/2017	4.38	7.7	9.8	712	16.8	0.13	0.00	0.03	2.30	0.27	5	2,882
	7/18/2017	1.3	7.9	7.9	890	20.5	0.00	0.00	0.02	1.80	0.33	2	860
	7/25/2017	1.3	7.8	6.0	841	20.7	0.15	0.09	0.03	1.55	0.34	18	1,211
	8/22/2017	1.3	8.1	5.4	1,024	22.2	0.15	0.06	0.02	1.55	0.36	3	6,127
	9/5/2017	6.79	7.6	8.1	844	19.6	0.15	0.00	0.02	2.22	0.35	4	860
	9/19/2017	2.61	7.9	8.1	770	19.7	0.15	0.00	0.02	1.62	0.33	6	12,229

% BM Exceendaces	0%	0%	100%	0%	0%	10%	0%	30%	0%	0%	100%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.8	7.6	850	19.6	0.09	0.24	0.02	1.79	0.32	5	3,762
M edian	7.8	7.8	843	19.7	0.14	0.00	0.02	1.88	0.33	4	3,101
QI	7.7	7.3	783	18.7	0.00	0.00	0.02	1.57	0.32	3	1,242
Q3	7.9	8.0	890	20.6	0.15	0.06	0.03	2.05	0.34	5	4,804
Min	7.6	5.4	712	16.8	0.00	0.00	0.01	0.80	0.27	2	860
Max	8.1	9.8	1,024	22.2	0.15	2.15	0.03	2.30	0.36	18	12,229

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 24 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	$NH_3 - N$	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-8	8/8/2017	124.17	7.7	8.1	589	18.2	0.15	0.00	0.0075	2.77	0.23	3	3,592
	5/30/2017	144	7.2	6.3	808	18.5	0.00	0.00	0.03	3.06	0.26	5	1,869
	6/27/2017	9.11	7.1	10.2	801	16.8	0.13	0.04	0.06	4.27	0.28	3	860
	9/5/2017	124.17	7.9	7.5	842	20.3	0.15	0.05	0.02	2.23	0.26	4	852

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	100%
Count	4	4	4	4	4	4	4	4	4	4	4
Average	7.4	8.0	760	18.4	0.11	0.02	0.03	3.08	0.26	4	1,793
Median	7.4	7.8	805	18.3	0.14	0.02	0.02	2.92	0.26	4	1,365
QI	7.1	7.2	748	17.8	0.09	0.00	0.01	2.64	0.25	3	858
Q3	7.7	8.6	817	18.9	0.15	0.04	0.03	3.36	0.27	4	2,300
Min	7.1	6.3	589	16.8	0.00	0.00	0.01	2.23	0.23	3	852
Max	7.9	10.2	842	20.3	0.15	0.05	0.06	4.27	0.28	5	3,592

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 25 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-9	5/30/2017	0.01	8.1	10.3	580	18.0	0.50	0.05	0.0075	2.16	0.23	I	1,596

% BM Exceendaces	0%	0%	100%	0%	100%	0%	0%	100%	0%	0%	100%
Count	I	I	I	I	I	I	I	I	I	I	I
Average	8.1	10.3	580	18.0	0.50	0.05	0.01	2.16	0.23	I	1,596
Median	8.1	10.3	580	18.0	0.50	0.05	0.01	2.16	0.23	I	1,596
QI	8.1	10.3	580	18.0	0.50	0.05	0.01	2.16	0.23	1	1,596
Q3	8.1	10.3	580	18.0	0.50	0.05	0.01	2.16	0.23	1	1,596
Min	8.1	10.3	580	18.0	0.50	0.05	0.01	2.16	0.23	I	1,596
Max	8.1	10.3	580	18.0	0.50	0.05	0.01	2.16	0.23	I	1,596

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I Cane Run Watershed-Focused Monitoring Phase 2 Results Summary Page 26 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(uS/cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-10	5/30/2017	12.1	7.8	8.8	682	18.3	0.00	0.00	0.03	2.41	0.25	I	1,211
	6/27/2017	15.55	7.5	9.3	667	18.3	0.25	0.01	0.04	2.97	0.26	4	2,109

% BM Exceendaces	0%	0%	100%	0%	0%	0%	0%	100%	0%	0%	100%
Count	2	2	2	2	2	2	2	2	2	2	2
Average	7.7	9.1	675	18.3	0.13	0.01	0.03	2.69	0.25	3	1,660
M edian	7.7	9.1	675	18.3	0.13	0.01	0.03	2.69	0.25	3	1,660
Q۱	7.6	8.9	671	18.3	0.06	0.00	0.03	2.55	0.25	2	1,436
Q3	7.8	9.2	678	18.3	0.19	0.01	0.04	2.83	0.26	3	1,885
Min	7.5	8.8	667	18.3	0.00	0.00	0.03	2.41	0.25	Ī	1,211
Max	7.8	9.3	682	18.3	0.25	0.01	0.04	2.97	0.26	4	2,109

Note: %BM Exceedance shading indicates "health grade"

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C.I

Cane Run Watershed-Focused Monitoring
Phase 2 Results Summary Page 27 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			рН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-11	8/8/2017	3.21	7.2	8.1	687	19.1	0.15	0.00	0.0075	3.17	0.26	4	4,103
	5/16/2017	0.61	8.5	7.5	904	21.3	0.00	0.24	0.02	3.24	0.26	6	202
	5/30/2017	5.24	7.4	9.4	834	17.4	0.00	0.80	0.03	3.36	0.26	12	626
	6/13/2017	0.61	8.3	12.8	1,331	25.9	0.00	0.05	0.02	0.77	0.23	8	738
	6/27/2017	5.24	7.0	9.5	724	17.7	0.25	0.05	0.0075	4.42	0.19	5	2,281
	7/18/2017	0.61	7.9	9.2	1,083	24.3	0.25	0.05	0.03	1.04	0.26	4	413
	7/25/2017	0.61	7.8	9.4	906	21.7	0.15	0.00	0.03	0.72	0.23	5	1,089
	8/22/2017	0.61	8.0	7.1	1,105	24.0	0.15	0.12	0.02	0.48	0.23	4	844
	9/5/2017	3.21	7.2	7.7	871	18.6	3.00	0.02	0.02	3.15	0.25	6	1,089
	9/19/2017	0.61	7.8	12.3	941	20.4	0.15	0.07	0.02	0.71	0.24	7	738

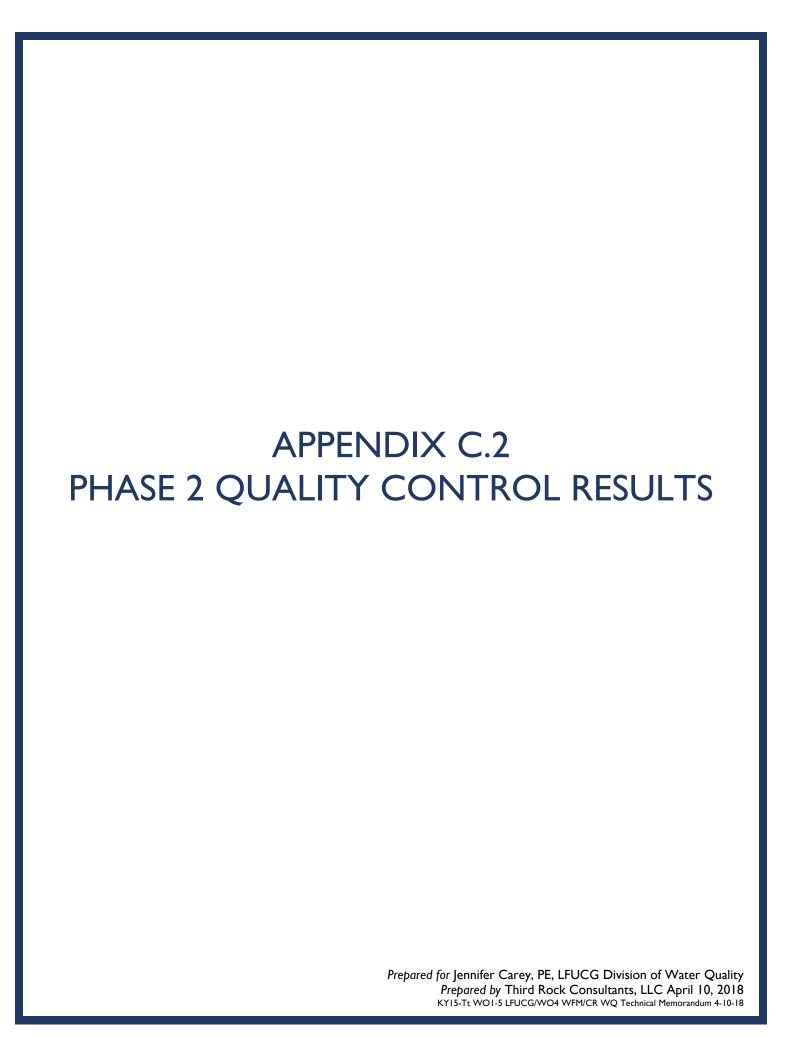
% BM Exceendaces	0%	0%	100%	0%	10%	10%	0%	50%	0%	0%	90%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.7	9.3	939	21.0	0.41	0.14	0.02	2.11	0.24	6	1,212
Median	7.8	9.3	905	20.8	0.15	0.05	0.02	2.10	0.25	6	791
Q۱	7.3	7.8	843	18.7	0.04	0.03	0.02	0.73	0.23	4	654
Q3	8.0	9.5	1,048	23.5	0.23	0.11	0.02	3.22	0.26	7	1,089
Min	7.0	7.1	687	17.4	0.00	0.00	0.01	0.48	0.19	4	202
Max	8.5	12.8	1,331	25.9	3.00	0.80	0.03	4.42	0.26	12	4,103

Red text indicates >= benchmark value

Blue text indicates at reporting limit changed for calculation

Appendix C. I

Cane Run Watershed-Focused Monitoring


Phase 2 Results Summary Page 28 of 28

		Benchmark Value:	6 - 9	4	300	31.7	0.5	0.5	0.5	2	0.5	80	240
													E. coli
			pН	DO	COND	TEMP	DTRG	Chl	NH ₃ - N	NO ₃ - N	TP	TSS	(MPN/
Site ID	Date	Est. Flow (cfs)	(SU)	(mg/L)	(u S /cm)	(°C)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	100mLs)
CR-12	7/25/2017	0.15	7.6	5.1	994	21.2	0.50	0.00	2.02	1.40	0.60	8	98,039
	7/18/2017	0.68	7.6	3.2	1,158	21.8	0.25	0.09	0.19	2.94	0.39	2	72,699
	8/8/2017	0.68	8.0	7.2	750	20.8	0.15	0.00	0.0075	2.18	0.27	2	15,648
	5/16/2017	0.15	8.3	8.3	679	24.8	0.00	0.12	0.04	3.58	0.36	3	1,336
	5/30/2017	0.15	7.7	8.2	668	21.6	0.00	0.10	0.06	3.45	0.33	0	1,078
	6/13/2017	0.07	7.9	5.8	995	21.7	0.00	0.05	0.03	1.77	0.32	5	1,100
	6/27/2017	0.15	7.8	6.8	745	19.1	0.13	0.16	0.05	4.22	0.30	3	2,462
	8/22/2017	0.15	8.2	5.2	629	24.1	0.15	0.01	0.06	1.93	0.33	I	413
	9/5/2017	11.57	7.7	7.5	475	21.9	0.15	0.26	0.39	3.14	0.68	49	48,844
	9/19/2017	0.68	7.9	6.5	669	21.8	0.15	0.08	0.03	1.35	0.39	9	1,464

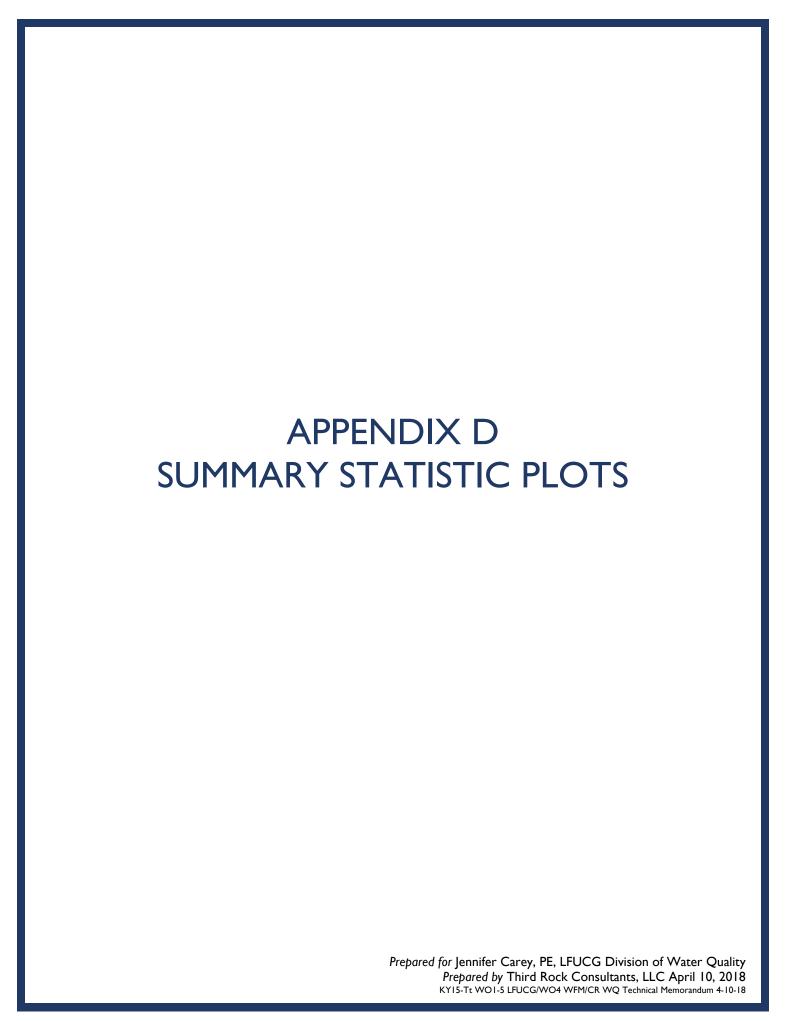
% BM Exceendaces	0%	10%	100%	0%	10%	0%	10%	60%	20%	0%	100%
Count	10	10	10	10	10	10	10	10	10	10	10
Average	7.9	6.4	776	21.9	0.15	0.09	0.29	2.60	0.40	8	24,308
M edian	7.9	6.7	712	21.8	0.15	0.09	0.05	2.56	0.34	3	1,963
QI	7.7	5.4	668	21.3	0.03	0.02	0.04	1.81	0.32	2	1,159
Q3	8.0	7.4	933	21.8	0.15	0.12	0.15	3.37	0.39	7	40,545
Min	7.6	3.2	475	19.1	0.00	0.00	0.01	1.35	0.27	0	413
Max	8.3	8.3	1,158	24.8	0.50	0.26	2.02	4.22	0.68	49	98,039

Red text indicates >= benchmark value

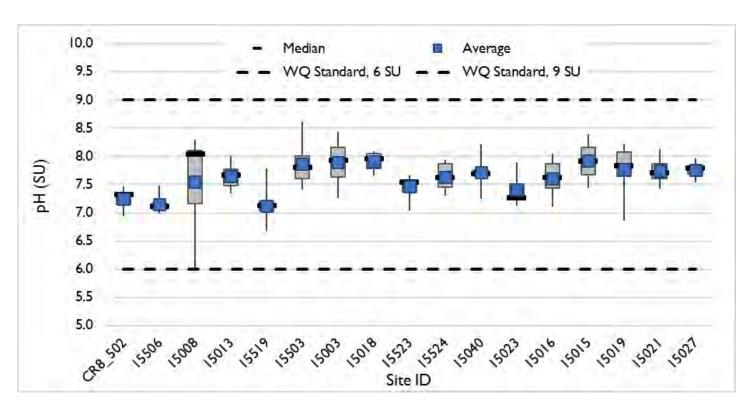
Blue text indicates at reporting limit changed for calculation

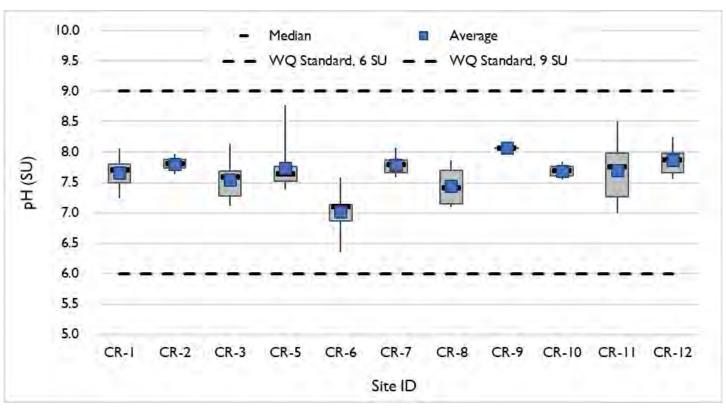
Appendix C.2

Cane Run Watershed-Focused Monitoring

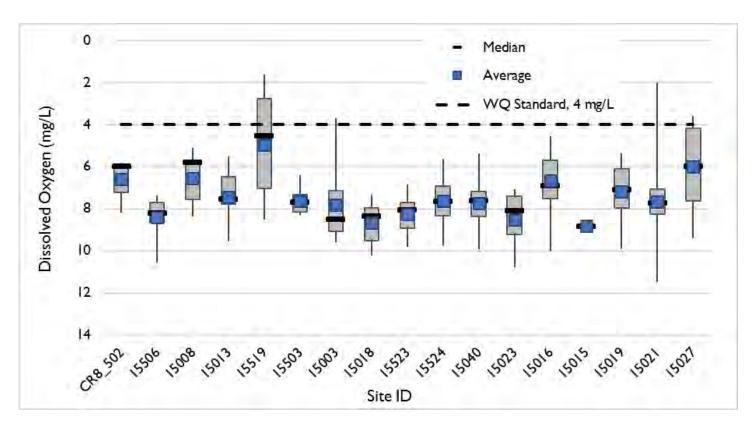

Phase 2 WQ Monitoring Quality Control Results Page I of I

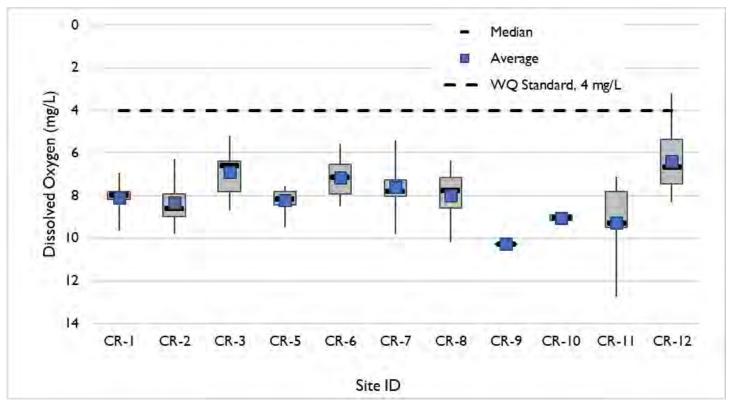
	OADD Day sision	7/2	5/2017	017 - 15003 8/8/2017 - 15018 8/22/2017 - CR-7 9/5/2017 - 15524				- 15524	9/19/2017 - 15040							
	QAPP Precision (Relative %			Relative %			Relative %			Relative %			Relative %			Relative %
Parameter	Difference) ^I	15003	DUP	Difference	15018	DUP	Difference	CR-7	DUP	Difference	15524	DUP	Difference	15040	DUP	Difference
pH (SU)	20	8.44	8.45	0%	8.09	8.09	0%	8.07	8.09	0%	7.3	7.61	4%	7.25	7.26	0%
DO (mg/L)	20	8.14	7.57	7%	8.1	7.2	12%	5.41	4.91	10%	7.21	6.97	3%	5.35	5.85	9%
COND (uS/cm)	20	721	719	0%	429	662	43%	1,024	920	11%	339	352	4%	506	578	13%
TEMP (°C)	20	20.15	19.77	2%	18.83	18.65	1%	22.24	22.1	1%	21.33	21.27	0%	19.73	19.67	0%
DTRG (mg/L)	20 ²	0.15	0.15	0%	0.15	0.15	0%	0.15	0.15	0%	0.15	0.15	0%	0.75	0.5	40%
ChI (mg/L)	20	0.02	0.06	100%	0.06	0.09	40%	0.06	0.06	0%	0	0	0%	0.19	0.15	24%
NH ₃ - N (mg/L)	20	0.02	0.019	5%	0.015^{3}	0.02	29%	0.024	0.02	4%	0.668	0.695	4%	0.287	0.26	10%
NO ₃ - N (mg/L)	20	0.097	0.1	3%	0.262	0.394	40%	0.355	0.42	16%	0.285	0.281	1%	0.988	1.04	5%
TP (mg/L)	20	2.59	2.62	1%	2.15	1.91	12%	1.55	1.55	0%	2.23	2.22	0%	2.44	2.03	18%
TSS (mg/L)	20	4	3	29%	2	5	86%	3	13	125%	17	16	6%	51	89	54%
E. coli (MPN/ 100mLs)	20	1,596	1,350	17%	2,917	3,225	10%	6,127	9,599	44%	1,849	2,917	45%	12,457	15,001	19%

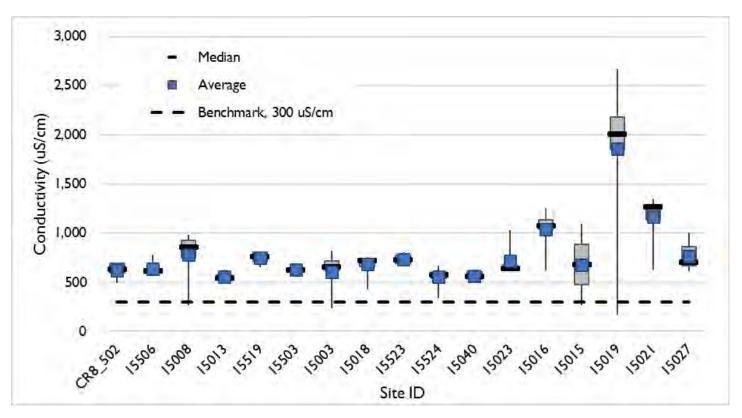

Precision was compared to the laboratory precision values established in Table 7 of the QAPP (Third Rock 2017). Values shaded in yellow indicate exceedances of the established precision values; however, no data was excluded from analyses based on these values.

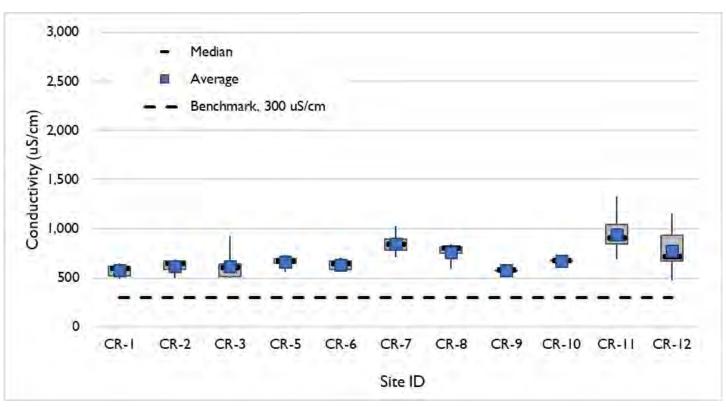

² Precision limit for Detergent was "Variable" per the QAPP for the field method; substituted limit of 20% Relative % Difference RPD since performed laboratory analysis of this parameter in Phase 2 monitoring.

 $^{^{3}\,}$ This value was reported as <0.015 mg/L.

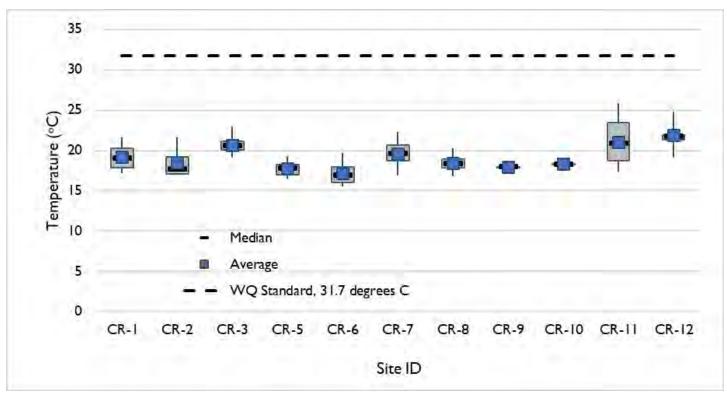

Appendix D Cane Run Watershed Focused Monitoring Phase 2 Plots of Statistics per Parameter Page I of II

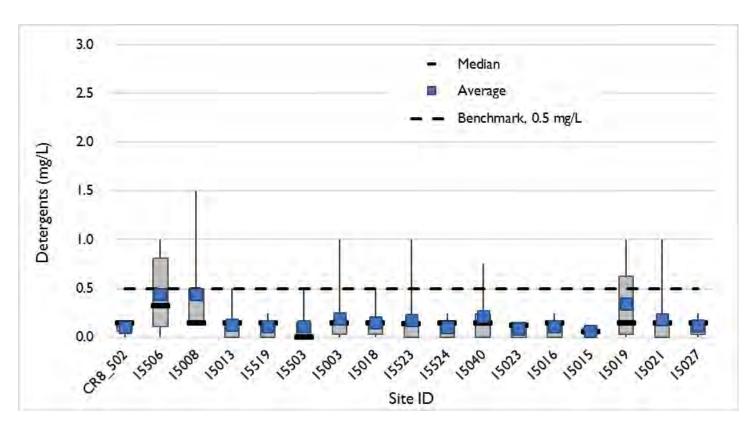


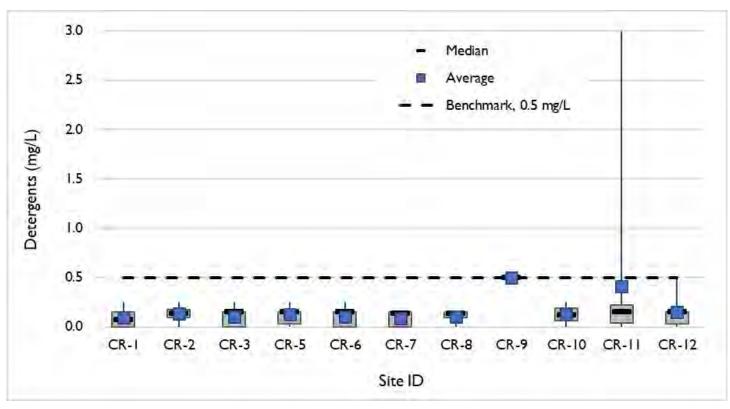

Appendix D

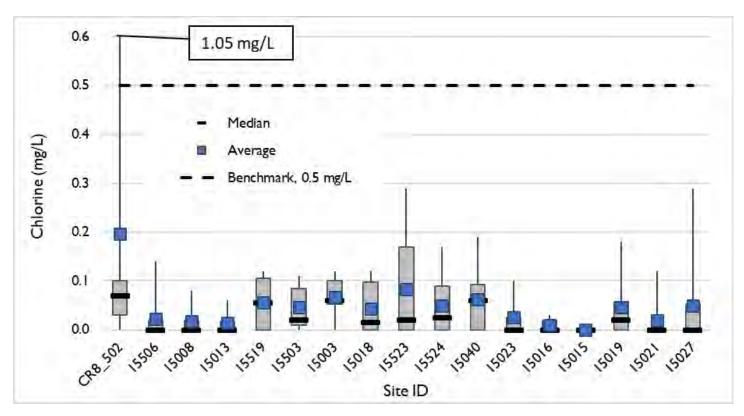

Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 2 of 11

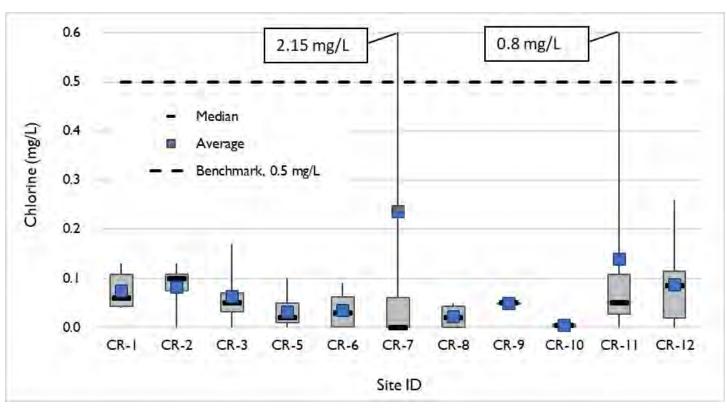
Appendix D Cane Run Watershed Focused Monitoring Phase 2 Plots of Statistics per Parameter Page 3 of 11



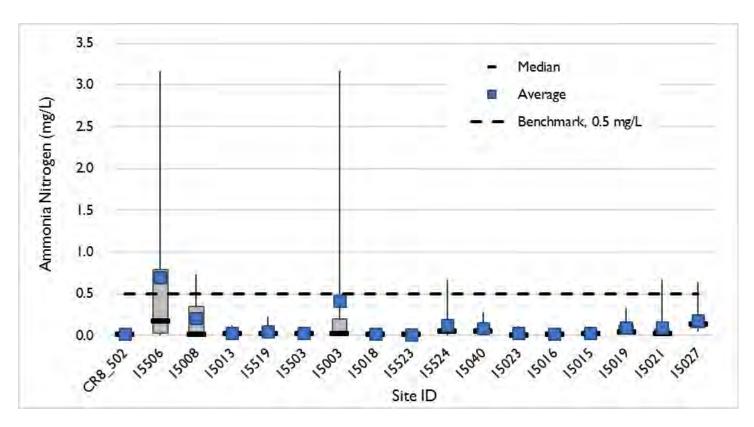

Appendix D

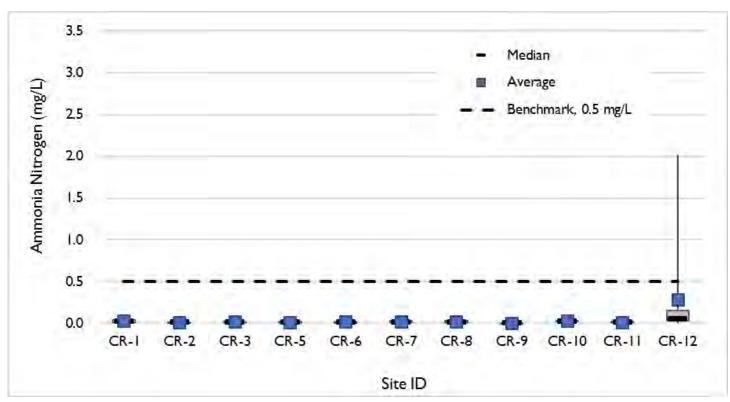

Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 4 of 11


Appendix D Cane Run Watershed Focused Monitoring Phase 2 Plots of Statistics per Parameter Page 5 of 11

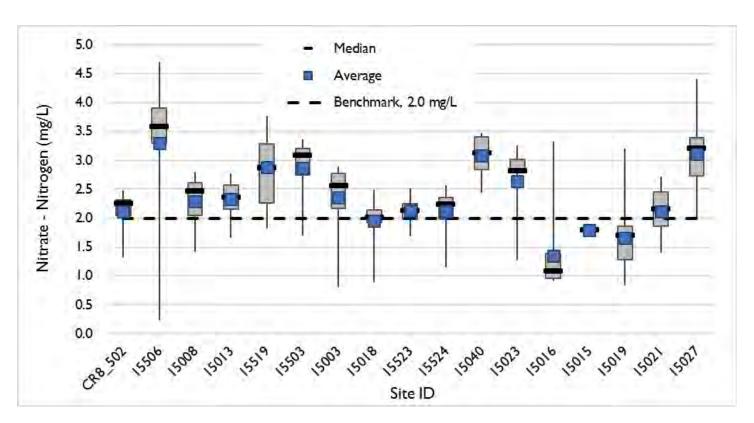


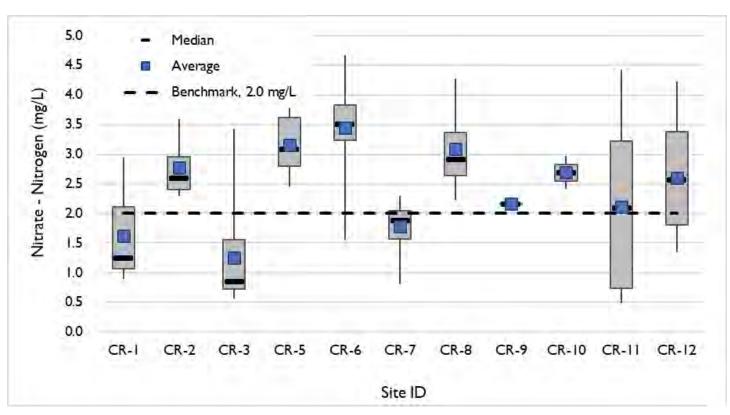
Appendix D

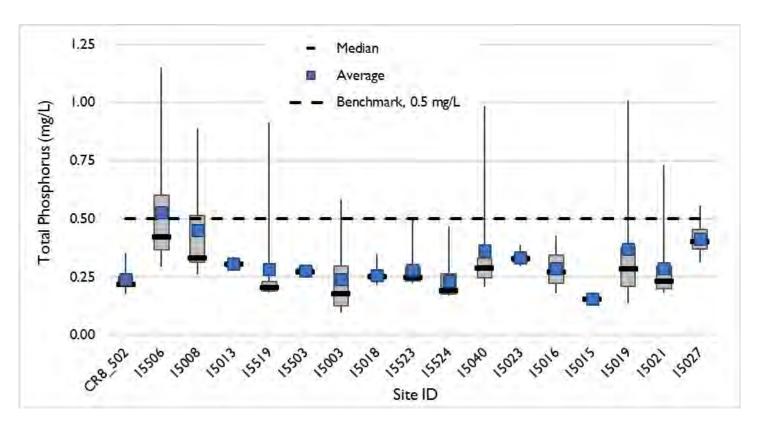

Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 6 of 11

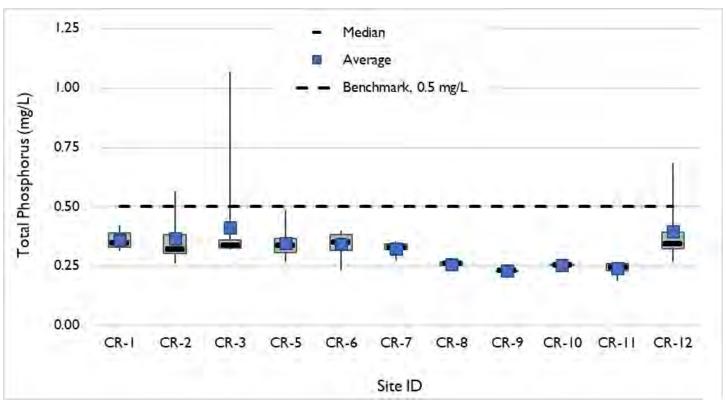


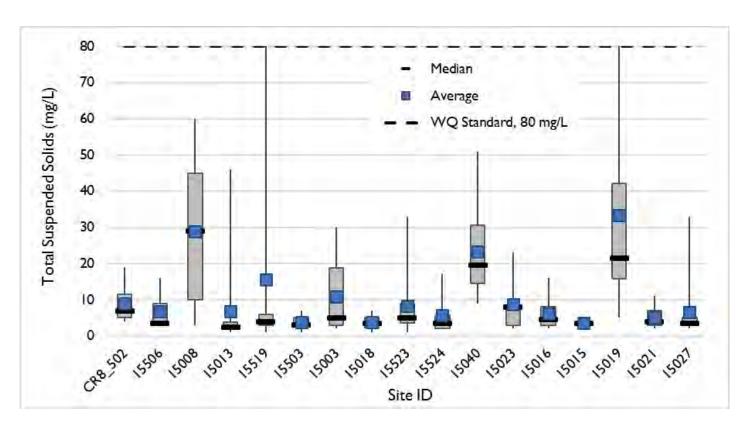
Appendix D

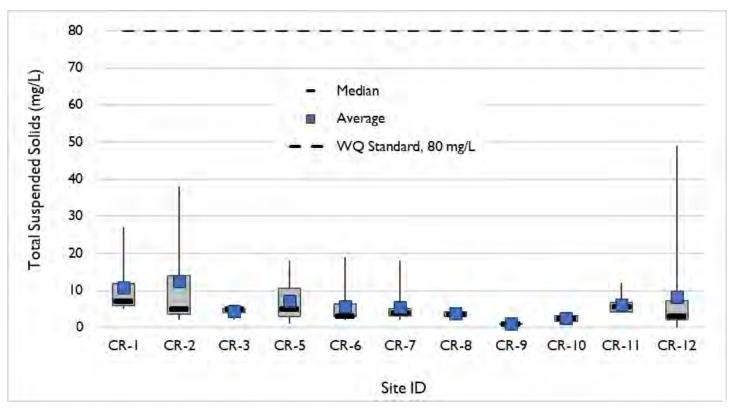

Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 7 of 11

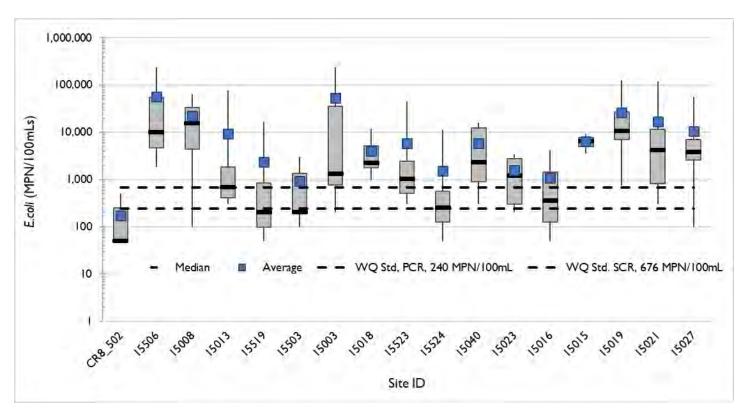


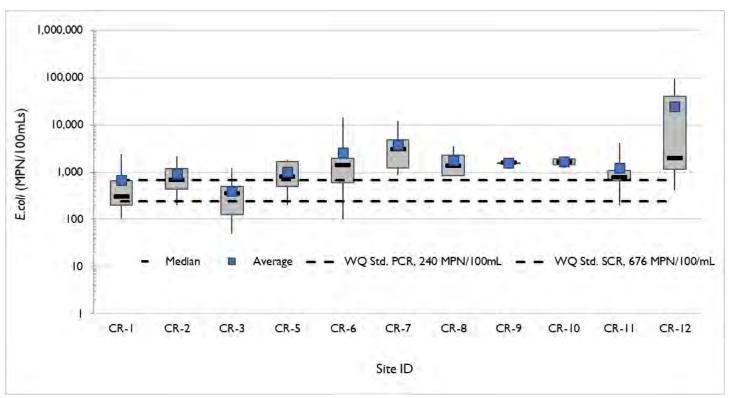

Appendix D


Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 8 of 11

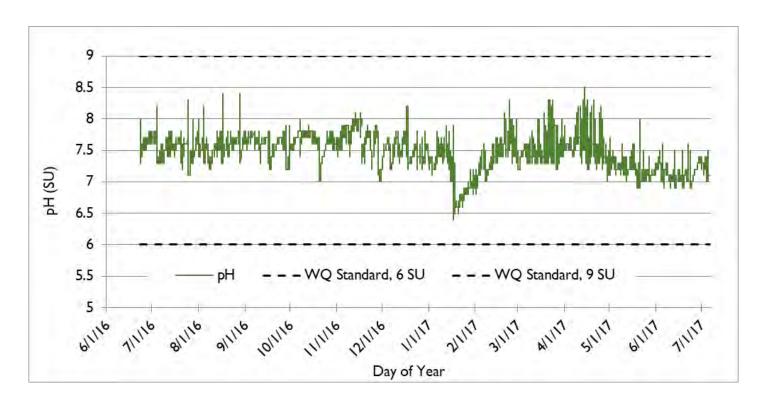


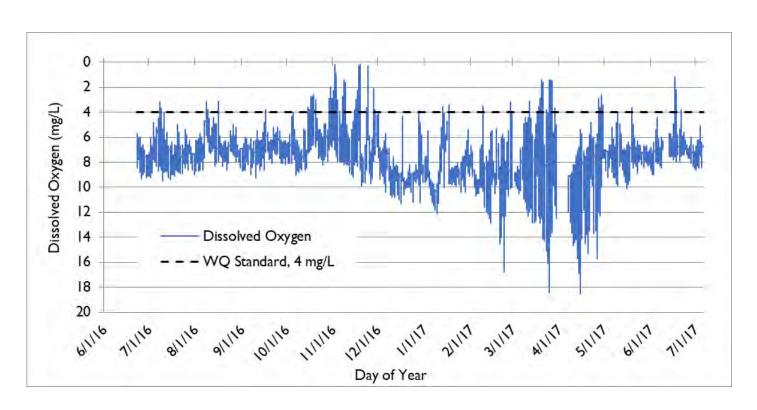

Appendix D Cane Run Watershed Focused Monitoring Phase 2 Plots of Statistics per Parameter Page 9 of 11



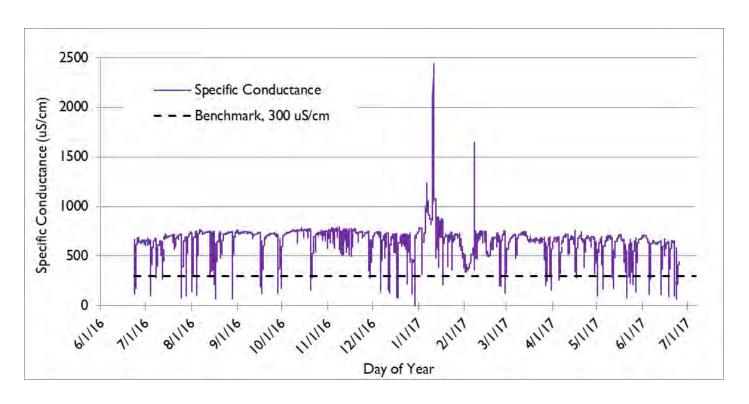

Appendix D
Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 10 of 11

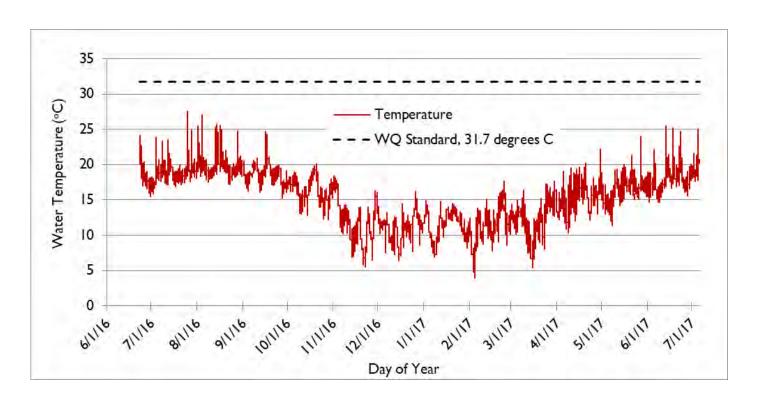
Appendix D
Cane Run Watershed Focused Monitoring
Phase 2 Plots of Statistics per Parameter Page 11 of 11

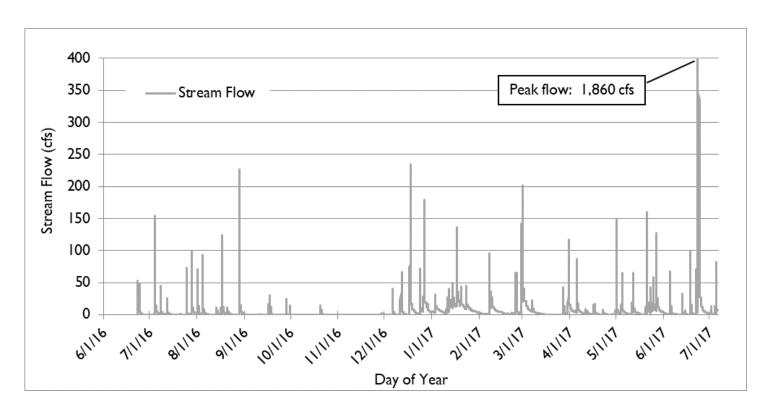


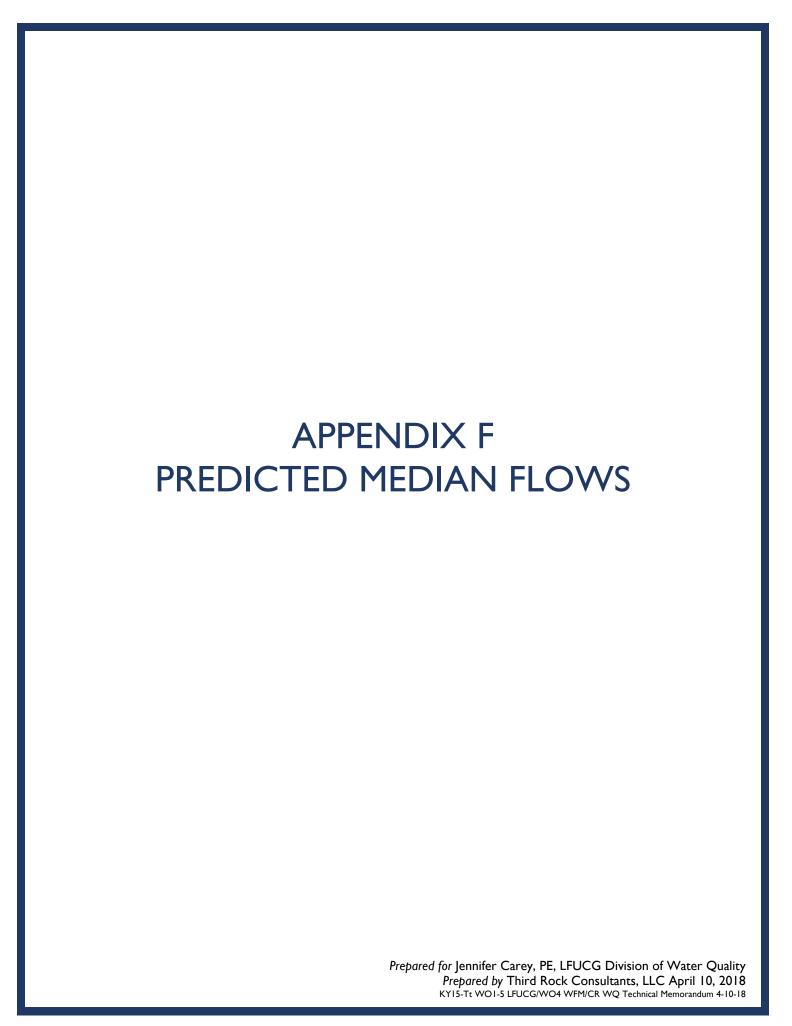


APPENDIX E USGS DATA PLOTS


Appendix E


Cane Run Watershed Focused Monitoring
Phase 2 Plots of USGS Data Page 1 of 3




Appendix E Cane Run Watershed Focused Monitoring Phase 2 Plots of USGS Data Page 2 of 3

Appendix E Cane Run Watershed Focused Monitoring Phase 2 Plots of USGS Data Page 3 of 3

Appendix F Cane Run Watershed Focused Monitoring Predicted Median Flows for Loading Calculations

			Dry Weather		
		Surface	(Karst-Adjusted)	Predicted	
	Downstream	Drainage Area	Drainage Area	Median Flow	
Site ID	Site	(mi²)	(mi²)	(cfs)	
15506	CR6	0.16	0.16	0.14	
15008	CR5	0.18	0.18	0.16	
15013	CR7	0.08	0.08	0.08	
15519	CR8	0.01	0.01	0.01	
15503	CR9	0.12	0.12	0.11	
15003	CR3	0.16	0.16	0.15	
15018	-	0.10	0.10	0.09	
15523	-	0.24	0.24	0.23	
15524	-	0.09	0.09	0.08	
15040	-	0.11	0.11	0.10	
15023	CR10	0.04	0.04	0.04	
15016	CR10	0.04	0.04	0.04	
15015	CRII	0.12	0.12	0.11	
15019	CRII	0.07	0.07	0.06	
15021	CRII	0.11	0.11	0.10	
15027	CR12	1.03	1.03	0.95	
CR8_502HW	-	-	-	0.02	
CR-I	-	7.58	1.50	1.39	
CR-2	CRI	6.08	0.54	0.50	
CR-3	CRI	1.30	1.30	1.20	
CR-5	CR2	5.54	1.50	1.60 ²	
CR-6	CR5	0.16	0.16	0.15	
CR-7	CR5	4.56	0.39	0.36	
CR-8	CR7	4.09	0.31	0.29	
CR-9	CR8	0.35	0.35	0.32	
CR-10	CR8	1.67	1.67	1.55	
CR-11	CR8	1.75	1.75	1.62	
CR-12	CRII	1.15	1.15	1.07	

 $^{^{\}rm I}$ Median flow for this station estimated as average flow measured during monitoring events.

² Median flow for this station estimated as long-term median flow from USGS gage 3288180 (at this location, Citation Blvd); flow at remaining stations was computed by scaling the long-term median annual flow from USGS gage 3288190 (at Newtown Pike) for each sampling site's dry weather drainage area.

APPENDIX G LOADS AND REQUIRED LOAD REDUCTIONS

Appendix G Cane Run Watershed-Focused Monitoring Loads and Load Reductions to Reach Benchmark Loads Page 1 of 2

								Ber	nchmark				240	676
								Concent	ration Value:	0.5 mg/L	2 mg/L	0.5 mg/L	MPN/I00mLs	MPN/100mLs
	Predicted		Average	Concentr	ation		Existing A	Annual Lo	oad		Anr	nual Bench	ımark Load	
	Median	NH ₃ - N	NO ₃ - N	TP	E. coli	NH ₃ - N	NO ₃ - N	TP	E. coli	NH ₃ - N	NO ₃ - N	TP	E. coli PCR	E. coli SCR
Site ID	Flow (cfs)	(mg/L)	(mg/L)	(mg/L)	(MPN/I00mLs)	(lbs/year)	(lbs/year)	(lbs/year)	(trillion/year)	(lbs/year)	(lbs/year)	(lbs/year)	(trillion/year)	(trillion/year)
CR8_502	0.019	0.02	2.12	0.24	174	0.7	77	9	0.0	18.2	72.8	18.2	0.0	0.1
15018	0.09	0.02	1.95	0.26	4,000	4.0	352	46	3.3	90. I	360.4	90.1	0.2	0.6
15523	0.23	0.02	2.13	0.28	5,768	7.5	942	124	11.6	221.4	885.8	221.4	0.5	1.4
15524	0.08	0.13	2.12	0.23	1,524	20.6	345	38	1.1	81.5	326.1	81.5	0.2	0.5
15040	0.10	0.09	3.09	0.36	5,920	18.0	637	75	5.5	103.2	413.0	103.2	0.2	0.6
CR-I	1.39	0.03	1.62	0.36	682	77.3	4431	978	8.4	1,363.6	5,454.6	1,363.6	3.0	8.3
CR-2	0.50	0.02	2.77	0.37	926	14.8	2707	359	4.1	489.6	1,958.3	489.6	1.1	3.0
CR-3	1.20	0.02	1.25	0.41	395	54.0	2956	978	4.2	1,184.8	4,739.2	1,184.8	2.6	7.3
15003	0.15	0.41	2.36	0.24	53,760	121.0	694	70	71.8	147.0	588.1	147.0	0.3	0.9
CR-5	1.60	0.02	3.16	0.34	1,009	51.2	9937	1085	14.4	1,573.9	6,295.5	1,573.9	3.4	9.6
15008	0.16	0.21	2.29	0.45	22,388	68.3	738	145	32.8	161.2	645.0	161.2	0.4	1.0
CR-6	0.15	0.02	3.44	0.34	2,608	6.4	990	98	3.4	143.9	575.7	143.9	0.3	0.9
15506	0.14	0.69	3.30	0.53	57,613	196.8	939	150	74.4	142.2	568.7	142.2	0.3	0.9
CR-7	0.36	0.02	1.79	0.32	3,762	15.9	1266	229	12.1	354.7	1,418.7	354.7	0.8	2.2
15013	0.08	0.03	2.33	0.31	9,224	4.9	345	45	6.2	73.9	295.5	73.9	0.2	0.5
CR-8	0.29	0.03	3.08	0.26	1,793	14.9	1747	146	4.6	283.4	1,133.5	283.4	0.6	1.7
15519	0.01	0.05	2.89	0.29	2,381	1.4	78	8	0.3	13.6	54.4	13.6	0.03	0.1
CR-9	0.32	0.01	2.16	0.23	1,596	4.7	1362	146	4.6	315.4	1,261.5	315.4	0.7	1.9
15503	0.11	0.03	2.86	0.28	932	5.9	618	59	0.9	107.9	431.6	107.9	0.2	0.7
CR-10	1.55	0.03	2.69	0.25	1,660	98.9	8189	775	22.9	1,522.2	6,088.6	1,522.2	3.3	9.3
15023	0.04	0.03	2.63	0.33	1,601	2.4	186	24	0.5	35.3	141.2	35.3	0.1	0.2
15016	0.04	0.02	1.35	0.29	1,081	1.5	110	23	0.4	40.6	162.3	40.6	0.1	0.2
CR-11	1.62	0.02	2.11	0.24	1,212	57.7	6719	766	17.6	1,594.8	6,379.4	1,594.8	3.5	9.8
15015	0.11	0.03	1.80	0.16	6,434	6.7	394	34	6.4	109.5	438.1	109.5	0.2	0.7
15019	0.06	0.09	1.66	0.37	25,827	11.9	209	47	14.8	62.9	251.7	62.9	0.1	0.4
15021	0.10	0.10	2.12	0.29	16,818	19.0	415	56	14.9	97.8	391.1	97.8	0.2	0.6
CR-12	1.07	0.29	2.60	0.40	24,308	602.3	5445	830	231.4	1,048.8	4,195.3	1,048.8	2.3	6.4
15027	0.95	0.18	3.12	0.41	10,691	338. I	5849	777	91.1	938.6	3,754.2	938.6	2.0	5.7

Note: Sites are ordered such that outfalls are listed below the stream site that they drain to (considers karst drainage, when applicable)

Appendix G

Cane Run Watershed-Focused Monitoring

Loads and Load Reductions to Reach Benchmark Loads Page 2 of 2

Benchmark
Concentration Value: 0.5 mg/L 2 mg/L 0.5 mg/L MPN/I00mLs MPN/I00mLs

Annual Load Reductions Required to

Concentrati	ion Value:				MPN/I00mLs											
			Annual L	oad Reduc	tions Require	d to		Ann	ual Load R	Reductions to			Increm	ental Load	d Reductions	to
	Predicted			ach Bench	mark Load					ark Load as %	<u> </u>			ch Bench	mark Load	
	Median	NH ₃ - N	NO ₃ - N	TP	E. coli PCR	E. coli SCR	NH ₃ - N	NO ₃ - N	TP	E. coli PCR	E. coli SCR	NH ₃ - N	NO ₃ - N	TP	E. coli PCR	E. coli SCR
Site ID	Flow (cfs)	(lbs/year)	(lbs/year)	(lbs/year)	(trillion/year)	(trillion/year)	(lbs/year)	(lbs/year)	(lbs/year)	(trillion/year)	(trillion/year)	(lbs/year)	(lbs/year)	(lbs/year)	(trillion/year)	(trillion/year)
CR8_502	0.019	-	4.2	-	-	-	-	5%	-	-	-	-	4.2	-	-	-
15018	0.09	-	-	-	3.1	2.7	-	-	-	94%	83%	-	-	-	3.1	2.7
15523	0.23	-	56.2	-	11.1	10.2	-	6%	-	96%	88%	-	56.2	-	11.1	10.2
15524	0.08	-	19.1	-	1.0	0.6	-	6%	-	84%	56%	-	19.1	-	1.0	0.6
15040	0.10	-	224.3	-	5.3	4.9	-	35%	-	96%	89%	-	224.3	-	5.3	4.9
CR-I	1.39	-	-	-	5.5	0.1	-	-	-	65%	1%	-	-	-	2.4	-
CR-2	0.50	-	749.0	-	3.0	1.1	-	28%	-	74%	27%	-	-	-	3.0	1.1
CR-3	1.20	-	-	-	1.7	-	-	-	-	39%	-	-	-	-	-	-
15003	0.15	-	106.1	-	71.4	70.9	-	15%	-	100%	99%	-	106.1	-	71.4	70.9
CR-5	1.60	-	3,642.0	-	11.0	4.8	-	37%	-	76%	33%	-	3,505.5	-	-	-
15008	0.16	-	92.6	-	32.4	31.8	-	13%	-	99%	97%	-	92.6	-	32.4	31.8
CR-6	0.15	-	413.9	-	3.1	2.5	-	42%	-	91%	74%	-	43.9	-	-	-
15506	0.14	54.6	370.0	8.1	74.1	73.5	28%	39%	5%	100%	99%	54.6	370.0	8.1	5.3	4.2
CR-7	0.36	-	-	-	11.3	9.9	-	-	-	94%	82%	-	-	-	1.3	1.3
15013	0.08	-	49.2	-	6.0	5.7	-	14%	-	97%	93%	-	49.2	-	6.0	5.7
CR-8	0.29	-	613.5	-	4.0	2.9	-	35%	-	87%	62%	-	-	-	-	-
15519	0.01	-	24.1	-	0.3	0.2	-	31%	-	90%	72%	-	24.1	-	0.3	0.2
CR-9	0.32	-	100.9	-	3.9	2.6	-	7%	-	85%	58%	-	-	-	3.2	2.4
15503	0.11	-	186.5	-	0.7	0.3	-	30%	-	74%	28%	-	186.5	-	0.7	0.3
CR-10	1.55	-	2,100.6	-	19.6	13.6	-	26%	-	86%	59%	-	2,055.8	-	18.9	13.2
15023	0.04	-	44.8	-	0.4	0.3	-	24%	-	85%	58%	-	44.8	-	0.4	0.3
15016	0.04	-	-	-	0.3	0.1	-	-	-	78%	38%	-	-	-	0.3	0.1
CR-11	1.62	-	339.4	-	14.1	7.8	-	5%	-	80%	44%	-	-	-	-	-
15015	0.11	-	-	-	6.2	5.7	-	-	-	96%	90%	-	-	-	6.2	5.7
15019	0.06	-	-	-	14.6	14.4	-	-	-	99%	97%	-	-	-	14.6	14.4
15021	0.10	-	23.5	-	14.7	14.3	-	6%	-	99%	96%	-	23.5	-	14.7	14.3
CR-12	1.07	-	1,250.2	-	229.2	225.0	-	23%	-	99%	97%	-	-	-	140.1	139.7
15027	0.95	-	2,094.9	- " " (2) 2:	89.0	85.3	-	36%	-	98%	94%	-	2,094.9	-	89.0	85.3

Note: (I) Negative load reductions are indicted by " - "; (2) Sites are ordered such that outfalls are listed below the stream site that they drain to (considers karst drainage, when applicable); (3) Incremental loads calculated for stream sites include deductions of outfall loads contributing to those sites (considers karst drainage, where applicable)

APPENDIX M

Submitted to: Jennifer Carey, PE

Lexington-Fayette Urban County Government (LFUCG)

Division of Water Quality

Copied to: Richard Walker, PE

Tetra Tech, Inc.

Prepared by: Jennifer Shelby, PE

Cory Bloyd

Subject: Cane Run Watershed-Focused Monitoring

Discharge Prevention / Source Investigation

Submitted on: April 13, 2018

BACKGROUND

LFUCG's Phase I MS4 Permit (KPDES No. KYS00002 AI No. 74551) was issued on May 1, 2015, with a five-year duration period effective June 1, 2015. One of the requirements of the permit is that "LFUCG shall begin to change its monitoring program to a watershed-focused monitoring program. In order to facilitate this process, monitoring should be conducted on a watershed basis with additional monitoring stations sampled for water chemistry, macroinvertebrates, microbial source tracking, hydrogeomorphic characterization, and habitat assessment."

The study area for LFUCG's Watershed-Focused Monitoring Program (WFMP) encompasses the seven major watersheds that drain LFUCG's Urban Service Area including Cane Run, South Elkhorn, West Hickman, East Hickman, Town Branch, North Elkhorn, and Wolf Run. Monitoring began in 2016 with the Cane Run Watershed, with monitoring to begin in in South Elkhorn in 2017, West Hickman in 2018, and so on until each watershed is monitored and the results reported to the Kentucky Division of Water (KDOW).

The overall objective of the WFMP is to collect and generate data to identify and remediate sources of recreational and aquatic habitat impairments to streams within the Urban Service Boundary. Key monitoring elements include:

- I. Stream Corridor Characterization
- 2. Stream Biology
- 3. Water Quality Monitoring
- 4. Discharge Prevention / Source Investigation
- 5. Priority Area Upland Visual Assessment

Third Rock Consultants, LLC (Third Rock) was retained as a subconsultant to Tetra Tech, Inc. to provide water quality consulting services in support of LFUCG's MS4 program, including conducting key monitoring elements required by LFUCG's WFMP. Results will be used to compute and assess pollutant loading and ultimately summarized in a comprehensive, Watershed-Focused Monitoring Program Report for each of the seven watersheds.

To that end, Third Rock conducted a discharge prevention investigation of the Cane Run Watershed to inform LFUCG Compliance and Monitoring section staff and aid in the tracing and identification of unknown sources of pollution contributing to water quality measurements above established action limits. The investigation involved the compilation and review of LFUCG Division of Water Quality (DWQ) Illicit Discharge Detection and Elimination (IDDE) investigation data, an optical brightener survey (to investigate locations of elevated *E. coli* and ammonia concentrations not clearly attributable to any specific source), and microbial source tracking (used to trace sources of fecal contamination at sites with consistently high *E. coli* and ammonia concentrations).

This Technical Memorandum documents the methodology and results of the discharge prevention investigation.

METHODOLOGY

IDDE Investigation Data Compilation and Review

When Cane Run WFMP water quality monitoring results indicated an exceedance of action limits, LFUCG DWQ Environmental Inspectors were notified and investigated the source of the discharge. The Inspectors began at the monitoring site with the actionable result(s) to confirm the previously measured result(s) and then traced high results through the stream and stormwater network in accordance with LFUCG's IDDE-01: *Illicit Discharge Detection and Elimination Protocol*. Various methods were employed working bridge-to-bridge or manhole-to-manhole to identify and isolate sources. In some cases, dye testing was also utilized to aid in the identification of potential discharges. Ultimately, best professional judgement was used by LFUCG's Environmental Inspectors to determine if additional tracing efforts were justified or if the source was adequately identified and / or verified to not be present.

LFUCG IDDE investigation data for Cane Run was compiled, reviewed and summarized by Third Rock and is included in **Table 1**, page 3.

Table I. Cane Run IDDE Investigation Data Table I. Cane Run IDDE Investigation Results Summary

	IDDE			Administratives cigation results Summary
Site ID		WFM E. coli Hits (MPN/100mLs)	IDDE E. coli Hits (MPN/100mLs)	Comments
CR I	Closed	2,433	N/A	I of 10 WFM samples above E. coli action limit; not an IDDE issue
CR 3	Closed	1,211	N/A	I of I0 WFM samples above E. coli action limit; not an IDDE issue
CR 6	Closed	N/A	N/A	See 15506
CR 8	Closed	3,592; 1,869	N/A	2 of 10 WFM samples above E. coli action limit; not an IDDE issue
CR 9	Closed	1,596	N/A	I of I0 WFM samples above E. coli action limit; not an IDDE issue
CR 10	Closed	1,211; 2,109	N/A	2 of 10 WFM samples above E. coli action limit; predominately dry; thought to be attributed to animal sources; not an IDDE issue
CR II	Closed	N/A	N/A	Conductivity hit attributed to Lexmark OT #002; See 15019 and 15021
		2,882; 1,696; 241,960; 46,111;		
15003	Closed	241,960	61,314; 68,667; 241,960; 2,820	E.coli attributed to manhole surcharge
			4,434; 2,182; 3,225; 2,433; 3,498;	
15005	Closed	N/A	1,596; 2,621; 1,596; 9,590; 1,089	Numerous E.coli results above action limits; attributed to birds in flume
				Isolated E.coli hits during wet event, lower in dry; raccoons observed in storm system; high E. coli attributed to raccoons and excessive
15013	Closed	2,109; 9,331; 77,010	3,089; 1,596; 27,230; 10,460	sediment in system
				2 of 10 WFM samples above E. coli action limit (rain within 3 days of each event); follow up sampling produced E.coli hits above action
15015	Closed	9,322; 3,545	11,446; 43,517	limit; checked 3 additional times and no flow; not an IDDE issue due to no apparent dry weather discharge.
				2 of 10 WFM samples above E. coli action limit; slightly elevated conductivity reported (1,000 µms/cm range) over multiple sampling events;
15016	Closed	1,596; 4,195; 2,917	N/A	thought to be groundwater or cooling tower drain; not an IDDE issue.
15023	Closed	1,223; 3,498; 2,776	5,448	Isolated E. coli hits with numerous follow ups with low result or no flow; no dry weather flow; not an IDDE issue.
15526	Closed	N/A	N/A	Chlorine hit (2.49 mg/L) confirmed to be KY American water leak; not an IDDE issue
15522	Closed	N/A	N/A	Initial hit on chlorine; rechecked at 0.0; not an IDDE issue
CR 5	Open	N/A	N/A	See 15506
CR 12	Open	N/A	N/A	See 15027
				5 of 10 WFM samples above E. coli action limit; MST hit; dye testing results indicate no LFUCG sanitary influence; follow up effort below
15008	Closed	15,756; 7,976; 34,480; 64,882; 32,554	N/A	action limit; suspected stagnant water sampled during previous WFM events; not an IDDE issue.
		1,890; 1,869; 1,749; 1,464; 5,833;		
15018	Open	2,917; 11,874; 2,621; 8,803	2,462; 2,882; 1,869	9 of 10 WFM samples above E. coli action limit; dye testing results indicate no LFUCG sanitary influence.
15524	Closed	1,849; 11,446	N/A	Investigation initiated on 1-18-17 with subsequent results below action limit; not an IDDE issue.
		57,943; 20,142; 2,378; 3,839; 7,328;		9 of 10 WFM samples above E. coli action limit; MST and Optical Brightener hit; dye tracing positive hits at 733 N upper, CR3_192MH,
15027	Open	3,310; 3,786; 6,631; 1,449	30,759; 8,162; 9,867; 36,540; 4,020	CRS_197MH, CR3_198MH; investigation still underway
		15,756; 12,740; 1,199; 1,100; 3,498;	2,182; 2,917; 11,619; 11,874; 3,786;	
15040	Open	12,457	2,133; 2,255	6 of 10 WFM samples above E. coli action limit; additional IDDE hits; MST and Optical Brightener hit; known septic tank influence.
		173,289; 10,193; 9,881; 5,284; 1,869;	98,039; 48,844; 5,686; 13,735;	8 of 10 WFM samples above E. coli action limit; IDDE hits; dye testing confirmed sewage leak; MST and Optical Brightener hit; investigation
15506	Open	3,145; 15,286; 241,960	141,361; 1,449	ceased, awaiting repairs.
15523	Open	1,078; 1,849; 3,184; 46,111; 2,621	1,199; 1,100	5 of 10 WFM samples above E. coli action limit; dye testing results indicate no LFUCG sanitary influence.
		5,208; 3,592; 1,336; 3,319; 2,882;		
CR 7	Open	1,211; 6,127; 9,599; 12,229	4,798; 1,323; 2,917; 4,479; 2,433	Consistently high E.coli; MST hit; still tracing upstream.
		27,551; 23,822; 38,732; 6,437; 8,823;		
15019	TBD	9,108; 129,965; 12,112	19,890; 4,725; 77,010	8 of 10 WFM samples above E. coli action limit; thought to be partially attributed to animal sources; MST hit.
		5,730; 2,655; 13,540; 6,198; 16,743;		
15021	TBD	120,333; 1,749	2,255	7 of 10 WFM samples above E. coli action limit; thought to be attributed to animal sources; MST hit.

Shading indicates an elevated concentration of E. coli.

Optical Brightener Survey

Optical brighteners are dyes added to many laundry detergents. The brighteners adhere to natural fibers and increase the "brightness" of fabrics. Laundry effluent is predominantly associated with sanitary wastewater, thus the presence of optical brighteners in storm drains can indicate an illicit discharge or suggest that untreated wastewater is entering the stormwater system via exfiltration from the sanitary system. Based on Cane Run WFMP water quality results, 13 locations were sampled as part of the optical brightener survey as illustrated on **Exhibit I** (**Appendix A**). Each was identified as a potential illicit discharge with *E. coli* results above the 1,000 MPN/mL action limit.

The cotton absorption method was utilized in accordance with LFUCG Standard Operating Procedure for Optical Brightener (SOP-ID: DWQ-MON-03). The method involves the deployment of cotton pads into the stormwater system during dry weather for a period of at least three days.

Two types of pads were used, sterile 3" x 3" medical gauze and 2" x 2" unbleached cosmetic pads to ensure no optical brighteners were present within the pad. Each pad type was checked for negative fluorescence before deployment. Pads were placed within plastic mesh bags and anchored in the stormwater system at each of the 13 locations using bricks as shown in **Figure 1**. In an attempt to sample each location twice, pads were deployed during three separate dry weather periods during the following dates: 8/25/2017 to 8/28/2017, 9/8/2017 to 9/11/17, and 9/22/2017 to 9/26/2017 as documented on field data sheets included in **Appendix B**.

Each set of pads was positioned securely and out of direct sunlight where they remained for a period of three days until they were retrieved, rinsed in the field with source water, and transported to Third Rock's office in brown envelopes to protect them from exposure to sunlight. The pads were subsequently placed in a designated dark room where they were left to dry overnight before being viewed and photographed under a UV light. In the presence of UV light, optical brightener dyes fluoresce. The cotton pads from each sampling location were compared against a known positive control and a negative control (clean pad) as shown in Figure 2. The positive control was a pad dipped in a solution of one teaspoon laundry detergent to one gallon of water, a typical concentration for household laundry effluent.

Figure I. Cotton Pad Deployed within the Stormwater System.

Figure 2. Visual Fluorescence of Control Sample Treated with Optical Brightener Compared to Sample Where Optical Brightener Not Detected.

MST Assessment

MST analysis was used to detect the presence (with quantification) of general, human and bovine DNA biomarkers associated with host-specific *Bacteroides* species. *Bacteroides* are a species of bacteria commonly found in the feces of humans and other animals, with subpopulations of microorganisms that harbor gene sequences associated the fecal material of their animal host; these unique gene sequences are those sampled by the biomarkers. Based upon Cane Run WFMP water quality results, MST samples were collected for analysis from 11 locations with consistently high *E. coli* and ammonia concentrations. The locations where MST samples were collected are illustrated on **Exhibit 2**, **Appendix C.** Generally, samples from two different dates were analyzed from each location (except for outfall 15013 and CR-7, which only had one sample each). Thus, 19 samples were collected.

Samples selected for MST analysis were first evaluated for *E. coli* to ensure a high value of bacteria present. The samples were filtered and the filters containing the sample DNA were frozen at the Town Branch WWTP Laboratory. Third Rock took possession of the DNA samples and shipped them to the laboratory of Dr. Alice Layton at the University of Tennessee (UT) on August 31, 2017. Dr. Layton analyzed the samples using qPCR for ABac (all *Bacteroides* species), Hubac (human-associated *Bacteroides* species), and BoBac (bovine-associated *Bacteroides* species).

RESULTS

Optical Brighteners

A photo log documenting positive survey results is included in **Appendix D.** Results, as summarized in **Table 2**, suggest wastewater may be present at outfalls 15027, 15040, and 15506. While florescence was observed from pads collected at these locations, the fluorescence was weak and not suggestive of a substantial influence. Both samples collected from outfall 15506, however, had a positive response, indicating that the problem is likely ongoing at this location.

Table 2. Cane Run Optical Brightener Survey Results

Site ID	Date of Retrieval	Fluorescence Result	E. coli [†] (MPN/100mL)	Potential Sources
15003	8/28/2017	Negative		
15003	9/11/2017	Negative	53,770	Winburn Neighborhood
15008	8/28/2017	Negative		Oakwood Estates Neighborhood; Commercial
15008	9/11/2017	Negative	22,388	off of Nandino / Whipple Court
15013	8/28/2017	Negative		
15013	9/11/2017	Negative	9,224	Businesses; Imperial Mobile Home Estates
15015	9/11/2017	Negative		
15015	9/26/2017	Negative	6,434	Park Place / Russell Cave Industries
15016	9/11/2017	Negative		
15016	9/26/2017	Negative	1,081	Fayette Housing Authority (300 New Circle)

Table 2.	Optical	Brightener	Survey	Results	Cont.
----------	----------------	-------------------	--------	---------	-------

Site ID	Date of Retrieval	Fluorescence Result	E. coli [†] (MPN/100mL)	Potential Sources
15018	9/11/2017	Negative		
15018	9/26/2017	Not Retrieved	4,000	Joyland Neighborhood
15019	9/11/2017	Negative		Lexmark; Inspectors discovered data to help rule out sanitary leak; Saw evidence of groundhogs /
15019	9/26/2017	Negative	25,827	scat around inlets
15021	9/11/2017	Negative		Lexmark; Inspectors discovered data to help rule out sanitary leak; Saw evidence of groundhogs /
15021	9/26/2017	Negative	16,818	scat around inlets
15027	9/11/2017	Positive, Weak		Downtown / Loudon area; E. Louden west of Idlewild Court; Elm Tree Lane.; Possibly Florida
15027	9/26/2017	Not Retrieved	10,691	Street area
15040	9/11/2017	Negative		Septic systems near Kingston Rd; Some chickens
15040	9/26/2017	Positive, Weak	5,920	upstream
15506	8/28/2017	Positive, Weak		
15506	9/11/2017	Positive, Weak	57,613	Highlands Neighborhood
15519	8/28/2017	Negative		
15519	9/11/2017	Negative	2,392	Townhome Neighborhood
15523	9/11/2017	Negative		
15523	9/26/2017	Negative	5,768	Joyland Neighborhood

¹ Average from Cane Run WFMP Water Quality Monitoring

Two samples were not retrieved from 9/26/2017 event, likely as a result of animal activity. The cotton pads were missing from the mesh bags at two locations (15018, 15027) with animal influence evident (torn bag, bricks relocated, animal scat). Though not confirmed, it is believed that racoons were attracted to the cotton pads and subsequently disturbed the monitoring devices. Therefore, results associated with 15018 and 15027 for the 9/26/2017 event were not generated.

In summary:

- Surveying for optical brighteners during dry weather may be a simple and inexpensive way to
 determine if wastewater is being discharged into the stormwater network without being physically
 present during the "event."
- Pads need to be deployed during a period of no rainfall; if rainfall/runoff occurs once the pad is deployed, the sample will likely wash away and if not will be considered "contaminated.
- "Weak" positives observed indicate that the technique may only pick up the most contaminated discharges.

- Average E. coli levels at sites where a positive result was observed range from nearly 6,000 to over 57,000 MPN/100mL.
- This technique is likely best suited as a simple indicator of the presence or absence of intermittent wastewater flow or to detect the most concentrated flows.

Microbial Source Tracking

The absolute copy numbers of each marker were compared across sites to determine the sites with the most human or bovine contamination. As expected for this generally developed watershed, copies of BoBac markers were much lower than copies of HuBac markers for each event. As such, samples were ranked from high to low based on the abundance of HuBac copies.

Results generated from the qPCR analysis suggest that the highest of human fecal contamination was most likely present at sites 15506, 15008, 15040, 15027, CR-7, 15019 and 15021, compared to the remaining four sites. The HuBac copies detected at 15506 on 7/25/17 were especially high — over 7 times greater than the next largest HuBac value. This is suggestive that a relatively large and fresh input of human waste was captured by that sample. For reference, sites 15027, 15506 and 15040 also had positive detections of optical brighteners.

Results for each marker are and summarized in **Table 3**, page 8 (also presented in rank of HuBac copies) and plotted in **Figure 3**, page 9.

Table 3. Cane Run MST Results

		ı	_ab-Reported Values	:	Ca	alculated Ratio	s:			Reference Data:
Sample ID	Collection Date	ABac Avg. 3 reps copies/40µl DNA	HuBac Avg. 3 reps copies/40µl DNA	BoBac Avg. 3 reps copies/40µl DNA	HuBac/ABac	BoBac/ABac	Remainder	E. coli (MPN/ 100mLs)	Rainfall / Moisture Conditions	Potential Bacteria Sources
15506	7/25/2017	24,572,549	6,912,551	153,850	28.1%	0.6%	71.2%	173,289	dry	Highlands Neighborhood
15008	7/18/2017	1,664,126	924,747	0	55.6%	0.00	44.4%	7,976	dry	Oakwood Estates Neighborhood; Commercial off of Nandino / Whipple Court
15040	6/13/2017	2,119,765	600,085	0	28.3%	0.00	71.7%	15,756	0.21"	Septic systems near Kingston Rd; Some chickens upstream
15506	7/18/2017	917,119	197,509	6,459	21.5%	0.7%	77.8%	10,193	dry	Highlands Neighborhood
15008	6/27/2017	657,130	114,186	38	17.4%	0.0%	82.6%	15,756	dry	Oakwood Estates Neighborhood; Commercial off of Nandino / Whipple Court
15027	7/18/2017	452,608	95,457	2,557	21.1%	0.6%	78.3%	57,943	dry	Downtown / Loudon area; E. Louden west of Idlewild Ct; Elm Tree Ln.; Florida Street area?
CR-7	6/13/2017	369,223	33,596	32	9.1%	0.0%	90.9%	5,208	0.21"	In-stream site; Outfall 15013 drains to this location
15040	8/8/2017	68,562	22,063	0	32.2%	0.00	67.8%	12,740	0.41" on day before	Septic systems near Kingston Rd; Some chickens upstream
15019	6/13/2017	125,935	17,266	890	13.7%	0.7%	85.6%	23,822	0.21"	Lexmark; Inspectors discovered data to help rule out sanitary leak; Saw evidence of groundhogs / scat around inlets
15021	6/13/2017	88,152	7,133	118	8.1%	0.1%	91.8%	13,540	0.21"	Lexmark; Inspectors discovered data to help rule out sanitary leak; Saw evidence of groundhogs/scat around inlets
15027	7/25/2017	8,902	5,224	93	58.7%	1.0%	40.3%	20,142	dry	Downtown / Loudon area; E. Louden west of Idlewild Ct; Elm Tree Ln.; Possibly Florida Street area
15018	8/8/2017	7,606	4,625	130	60.8%	1.7%	37.5%	2,917	0.41" on day before	Joyland Neighborhood
15019	7/18/2017	13,824	3,178	117	23.0%	0.8%	76.2%	27,551	dry	Lexmark; Inspectors discovered data to help rule out sanitary leak; Saw evidence of groundhogs / scat around inlets
15013	6/27/2017	4,954	1,952	264	39.4%	5.3%	55.3%	9,331	dry	Businesses; Imperial Mobile Home Estates
15018	6/13/2017	4,591	781	571	17.0%	12.4%	70.5%	5,833	0.21"	Joyland Neighborhood
15016	6/27/2017	12,338	573	0	4.6%	0.00	95.4%	4,195	dry	Fayette Housing Authority (300 New Circle)
15015	6/27/2017	3,484	536	0	15.4%	0.00	84.6%	3,545	dry	Park Place / Russell Cave Industries
15021	7/18/2017	890	381	0	42.8%	0.00	57.2%	6,198	dry	Lexmark; Inspectors discovered data to help rule out sanitary leak; Saw evidence of groundhogs/scat around inlets
15016	8/8/2017	1,361	250	0	18.3%	0.00	81.7%	2,917	0.41" on day before	Fayette Housing Authority (300 New Circle)

Calculated Statistics:									
Average I,636,480.0 470,636.4 8,690.6									
Median	68,562.3	7,132.7	92.9						

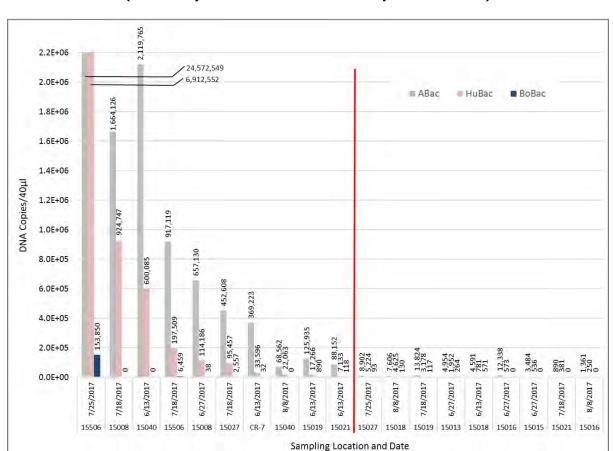


Figure 3. Cane Run MST Results, Copies of Each Biomarker Quantified (Sorted by Abundance of HBac Copies Detected)

Figure 3 plots the sites with the highest human fecal contamination (15506, 15008, 15040, 15027, CR-7, 15019 and 15021) on the left side of the vertical red line. The red line is a threshold selected to differentiate between sites with a larger human waste problem and sites where the concentration of human waste is likely lower. The sites to the left of the red line are those with HuBac results greater than or equal to the median HuBac copies value. The samples to the right of the red line in **Figure 3** can be considered to have low HuBac levels compared to the other sites for these sampling dates. These low results could be considered a "background" level of contamination for this watershed, though it is only based on a limited number of sampling dates. The levels are low for these samples; however, it is worth noting that the *Bacteriodes* HuBac marker is still being detected at all sites above the laboratory's negative control values.

For sites 15506, 15008, and 15040, both sampling events resulted in HuBac copies above the median value, indicating a higher need for investigating and eliminating sources of human waste at these locations. Site CR-7 is downstream of site 15506, thus it is reasonable that if HuBac was detected at 15506 it would be detected to a lesser degree at CR-7 (in-stream site), with no additional human waste inputs between the two sites (Hubac diluted as flow increases and *Bacteroides* signal decays with time/distance from source). However, the sample at CR-7 was taken on a different day from the two samples at 15506, so this cannot be confirmed with this dataset.

Relative copy numbers between ABac and the two source markers (BoBac and HuBac) is also considered important after the sites with the highest levels of contamination are identified (Layton 2017). A site with greater than 10% HuBac relative to ABac is considered likely to have human fecal contamination and a site with less than 1% HuBac relative to ABac is unlikely to have human fecal contamination. **Figure 4** plots the HuBac/ABac ratios for samples with HuBac total copies greater than or equal to the median HuBac copies value.

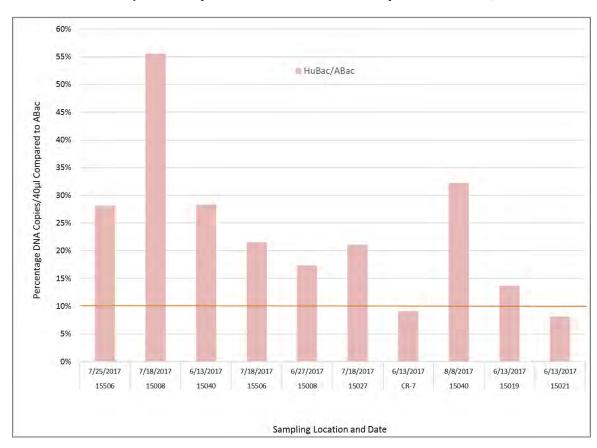


Figure 4. MST Results, Relative Copies Between ABac and HuBac Marker (Sorted by Abundance of HBac Copies Detected)

These are the samples plotted to the left of the red vertical line in **Figure 3** and are presented in the same order as in **Figure 3**, ranked from greatest HuBac copies to least HuBac copies. Thus, of the ten samples (representing 7 sites) considered to have the most human fecal contamination for the events analyzed, all but two (CR-7 and 15021) also have HuBac/ABac ratios greater than 10%, confirming the likelihood of human fecal contamination. However, while the ratios for sites CR-7 and 15021 may not be above the 10% threshold cited by the UT researchers (Layton 2017), they are approximately 9% and 8%, respectively, which does support the likelihood of human fecal contamination.

Generally, the HuBac marker is associated with fresh human waste and sewage influent and tends to degrade quickly. However, the HuBac marker has been reported to cross-react to some degree with swine and canine waste. There should not be any swine present in these sampling locations, though canines are likely present and could amplify the HuBac marker in this watershed. Nevertheless, even

with the potential amplification due to canines, this data is highly suggestive of the presence of human fecal contamination that should be addressed. Priority should be given to sites 15506, 15008, 15040, 15027, CR-7, 15019 and 15021, those with the highest magnitude of contamination.

None of the sites with the highest total copies of ABac (same sites as those with total HuBac copies, plotted in **Figure 3**) had a BoBac/ABac ratio indicative of bovine fecal contamination. The BoBac/ABac ratios for all samples plotted to the left of the red vertical line in **Figure 3** were less than 1%, thus those sites are unlikely to have bovine fecal contamination. This was expected since there are not known cattle within the developed watersheds of these sites.

In summary:

- Using microbial source tracking is a highly technical way to assess whether the source of bacterial
 contamination is likely human or non-human. The MST testing is rather expensive compared to
 other analytical testing; however, if the human-associated *Bacteroides* DNA marker is detected,
 there is a high level of certainty that fresh human waste is contaminating the sample. Performing
 quantification of the DNA results gives the ability to rank and prioritize sites based on the relative
 magnitude of each detected marker.
- For this investigation, samples were only analyzed where chronically high *E. coli* and ammonia concentrations were observed. MST can be performed in locations where *E. coli* is not always elevated.
- Sometimes *E. coli* levels correlate with copies of biomarkers, other times it does not. Generally, in this investigation, samples with the highest magnitude of HuBac marker detected also had high *E. coli* concentrations (measured before MST analyses occurred). When the linear relationship between measured sample *E. coli* and HuBac copies was plotted, the values correlated with an R² of 0.88. This high correlation between *E. coli* and HuBac for the high priority sites suggests that the fecal contamination was fresh and provides additional evidence that it was from human sources. This is in contrast to the linear relationship between measured sample *E. coli* and HuBac copies for the samples where HuBac copies were below the median Hubac value. Those values only correlated with an R² of 0.31, which indicates less fresh bacterial inputs and/or that the bacterial inputs are from more than one environmental source.
- Samples were evaluated for two biomarkers, human and bovine. Though bovine waste was not
 expected in the developed part of the Cane Run watershed covered by this assessment, it could be
 present in the more rural portions of the watershed and its use would be more applicable there.
 When this marker is used in a more applicable setting it is considered more conservative than the
 HuBac marker meaning if detected there is less chance of a false-positive interpretation for the
 BoBac marker, though low cross-amplification of the BoBac marker with deer could occur.
- This technique is likely best suited when enough background information is present such that suspected sources of bacteria are known this enables the selection of the most relevant biomarkers for analysis.

References

Layton, A. and Williams, D.E. 2017. Numerous email conversations related to their MST methods, data analyses, and results interpretation.

APPENDIX A EXHIBIT I - OPTICAL BRIGHTENER SURVEY SAMPLING LOCATIONS

Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, Kentucky 40503

Cane Run Watershed - Focused Monitoring Discharge Prevention Investigation

LFUCG Division of Water Quality 125 Lisle Industrial Ave, Ste 180 Lexington, Kentucky 40511

APPENDIX B OPTICAL BRIGHTENER SURVEY FIELD DATA SHEETS

Optical Brightener Data Sheet

	Field Deployment an	d Retrieval
	Deployment	Retrieval
Date:	8-25-17	8-28-17
Sampler(s):	C. Bland B. Rewley	
Rainfall Prio	r to Deployment: Date: 8-22-17	Amount (in): 1,36 '
Rainfall Dur	ing Deployment? (Y) N If Y, Date: 8-7	17 Amount (in): 0,06 "
	Analysis	
Analyst I:	C-Blayd	
Analyst 2:	B. Reuley	

		Deployment	- 11	Retrieval			(B Analysis Results*				
		Flow	Photo		Flow	Days	Analyst	Analyst	Final		
Site ID	Time	(Describe)	#	Time	(Describe)	Deployed		2	Result		
15003	1003	Moderatefla	15003	1000	moderate A	w3	-	1			
15519	1039	dry	15519	1130	dry	3					
15506	0930	strong Flan	15506	1040	Mascrate Au	J 3	+, weak	+, weak	+, wed		
15008	0945	Pooled_	15008	1056	pooled	3	-				
15013	1028	strong flau Pooled _ strong flau	15013	1105	Strong Flo	, 3		- '	N.		
		7									
								-			
								-			
*Indicate Day	erilte ac "A	Strong", "+ Weak		or "Inco	nclusive"						

Optical Brightener Data Sheet

	Field Deployment and Retrieval									
	Deployment	Retrieval								
Date:	9-8-17	9-11-17								
Sampler(s):	D, HEMILY	B. Renley								
Rainfall Prio	r to Deployment: Date: 9-5-17	Amount (in): O, O9 "								
Rainfall Duri	ng Deployment? Y (N) If Y, Date:	Amount (in):								
	Analysis									
Analyst 1:	C. Bloyd									
Analyst 2:	C. Olson									

	Deployment		Retrieval			Analysis Results*				
	-	Flow	Photo		Flow	Days	Analyst	Analyst	Final	
Site ID	Time	(Describe)	#	Time	(Describe)	Deployed		2	Result	
15015	1227	no flow	15015	1350	no flow	3	-			
15519	1055	no flow	15519	1440	10 Plan	3				
15040	1150	lau	15040	1324	10 Flew	3				
15027	1215	uaderate.	15027	1423	moderate	3	t, weak	+, weak	+, weal	
5018	1110	low	15018		low	3				
15506	1012	low	15506	1513	pooled	3	+, weak	+ weak	t, weak	
5008	1028	low	15008	1502	low	3				
5523	1125	Moderate	15523	1316	Low	3 3 3 3				
5016	1207	low	15016	1400	low	3				
5003	10:00	low	15003	1247	low	3			_	
15013	1039	low	15013	1450	low					
15019	1235	low	15019	1408	low	3			/	
15021	1353	Moderate	15021	1415	Moderate	3			_	
	V 1	3								
		Strong", "+ Weak								

Optical Brightener Data Sheet

	Field Deployment and	Retrieval
	Deployment	Retrieval
Date:	9-22-17	9-26-17
Sampler(s):	C. 13/04d	C. Bloyd
Rainfall Prior	to Deployment: Date: 9-20-17	Amount (in): 0.00
Rainfall Duri	ng Deployment? Y/N If Y, Date:	Amount (in):
	Analysis	
Analyst 1:	B. Renley	
Analyst 2:	C. Bloyd	

		Deployment		Retrieval			Analysis Results*				
Site ID	Time	Flow (Describe)	Photo #	Time	Flow (Describe)	Days Deployed	Analyst I	Analyst 2	Final Result		
15 018	0925	Low	1058	1000	Low Pad recor.	4	AA	NA	NA		
15523	0935	Low	1059	1005	LOW	4	_	_	_		
15040	0945	Trickle	1060	1020	dry	4	+ Weak	+ Weak	+ weg		
15016	0955	moderate	1061	1030	Low	4		_	_		
5015	1005	dry	1062	1045	dry	4		_	_		
15019	1015	Low	1063	1050	Trickle	4	-	_	_		
15021	1036	Low	1064	1055	Low-	4	_	_	_		
15027	1040	moderate	1065	1110	Low Man	v 4	NA	NA	NA		
				4							
	-										
		Strong", "+ Weak	0_0_1								

APPENDIX C EXHIBIT 2 MST SAMPLING LOCATIONS

APPENDIX D OPTICAL BRIGHTENER RESULTS PHOTOLOG

Cane Run Watershed-Focused Monitoring Discharge Prevention Investigation - Optical Brightener Survey Photo Log Page I

15027 Negative Control 09-11-17.JPG

15040 Negative Control 09-26-17.jpg

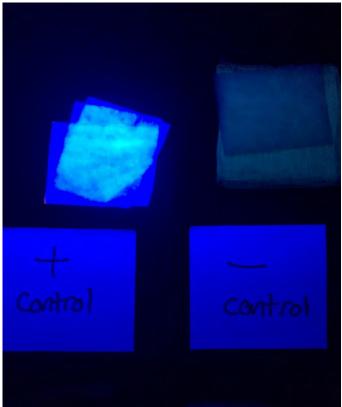
15040 Positive Control 09-26-17.jpg

15027 Positive Control 09-11-17.JPG

15506 Negative Control 08-28-17.JPG

15506 Negative Control 09-11-17.JPG

15506 Positive Control 08-28-17.JPG


Cane Run Watershed-Focused Monitoring

Discharge Prevention Investigation - Optical Brightener Survey

Photo Log Page 3

Positive and Negative Control Samples.JPG

APPENDIX N

Submitted to: Jennifer Carey, PE, MS4 Coordinator

Lexington-Fayette Urban County Government (LFUCG)

Division of Water Quality

Copied to: Richard Walker, PE

Tetra Tech, Inc.

Prepared by: Jennifer Shelby, PE

William Hall

Subject: Cane Run Watershed-Focused Monitoring

Priority Area Upland Visual Assessment

Submitted on: February 26, 2018

BACKGROUND

LFUCG's Phase I MS4 Permit (KPDES No. KYS00002 AI No. 74551) was issued on May 1, 2015, with a five-year duration period effective June 1, 2015. One of the requirements of the permit is that "LFUCG shall begin to change its monitoring program to a watershed-focused monitoring program. In order to facilitate this process, monitoring should be conducted on a watershed basis with additional monitoring stations sampled for water chemistry, macroinvertebrates, microbial source tracking, hydrogeomorphic characterization, and habitat assessment."

The study area for LFUCG's Watershed-Focused Monitoring Program (WFMP) encompasses the seven major watersheds that drain LFUCG's Urban Service Area including Cane Run, South Elkhorn, West Hickman, East Hickman, Town Branch, North Elkhorn, and Wolf Run. Monitoring began in 2016 with the Cane Run Watershed, with monitoring to begin in in South Elkhorn in 2017, West Hickman in 2018, and so on until each watershed is monitored and the results reported to the Kentucky Division of Water (KDOW).

The overall objective of the WFMP is to collect and generate data to identify and remediate sources of recreational and aquatic habitat impairments to streams within the Urban Service Area. Key monitoring elements include:

- I. Stream Corridor Characterization
- 2. Stream Biology
- 3. Water Quality Monitoring
- 4. Discharge Prevention / Source Investigation
- 5. Priority Area Upland Visual Assessment

Third Rock Consultants, LLC (Third Rock) was retained as a subconsultant to Tetra Tech, Inc. to provide water quality consulting services in support of LFUCG's MS4 program, including conducting key monitoring elements required by LFUCG's WFMP. Results for each watershed will be used to compute and assess pollutant loadings and ultimately summarized in a comprehensive, Watershed-Focused Monitoring Program Report for each of the seven watersheds.

As detailed in the WFMP Quality Assurance Project Plan (QAPP), a priority area upland visual assessment was conducted to identify potential sources of contaminants previously detected at LFUCG water quality monitoring sites within the watershed. Visual assessment using methods from the Center for Watershed Protection's "Unified Subwatershed and Site Reconnaissance: A User's Manual" (2004) was conducted to evaluate potential sources of pollution within neighborhoods and to investigate areas of potential pollutant generators.

This Technical Memorandum documents the results of Third Rock's priority area upland visual assessment of the Cane Run Watershed.

NEIGHBORHOOD SOURCES

Methodology

Five neighborhoods were visually assessed for indicators of nutrients, oil and grease, trash / litter, bacteria, and sediment based upon their locations upstream of LFUCG water quality monitoring sites found to have routinely high pollutant levels as follows:

- Joyland
- Winburn
- North Limestone / Castlewood
- Oakwood
- Highlands

The boundaries of each neighborhood are illustrated on **Exhibit I**, **Appendix A**. Because neighborhood associations independently define their extents when registering with the LFUCG Division of Planning, the North Limestone and Castlewood neighborhood boundaries overlap. As a result, the two neighborhoods were evaluated as one for purposes of this assessment with distinctions made when appropriate.

Field reconnaissance was conducted during dry weather between August 25, 2017 and September 15, 2017. A driving survey of all neighborhood streets was conducted initially, followed by detailed assessment of three representative properties within each neighborhood (six, total, for the combined North Limestone / Castlewood area). Each representative property was assigned a unique identifier, located with GPS (Exhibit 2, Appendix A), photographed (Appendix B), and assessed based upon the following: neighborhood characterization; yard and lawn condition; driveway, sidewalk, and curb; rooftop; and common area ("Neighborhood Source Assessment" (NSA) forms, Appendix C). Subsequent to field reconnaissance, satellite imagery of each representative property was analyzed using ArcView GIS to confirm lot dimensions and calculate percent ground cover.

Following data compilation and analysis, Pollution Severity Index (PSI) and Neighborhood Restoration Opportunity Index (NROI) scores were calculated for each neighborhood. Possible PSI scores range from 0 to 15, with 0 being the least severe and 15 being the most severe. Possible NROI scores range from 0 to 8, with 0 being the least likely to improve neighborhood pollution control and 8 being the most likely to improve neighborhood pollution control.

Results

PSI and NROI results are shown on **Exhibits 3** and **4** (**Appendix A**), respectively, and summarized in **Table I**, page 4.

POTENTIAL POLLUTANT GENERATORS

Methodology

Sixteen potential pollutant generators, including unpermitted and lower risk commercial and industrial operations, were visually assessed for indicators of sediment, organic material, and litter. Like the neighborhood assessment, sites were selected on the basis of their location upstream of LFUCG water quality monitoring sites found to have routinely high pollutant levels. Each site was assigned a unique identifier, located with GPS (**Exhibit 5**, **Appendix A**), photographed (**Appendix B**), and assessed based upon the following criteria: vehicle operations; outdoor materials; waste management; physical plant; turf and landscaping; and stormwater infrastructure ("Potential Generator Investigation" (PGI) forms, **Appendix C**).

Following data compilation and analysis, Hotspot Status Index (HSI) scores were calculated for each site. Possible HSI scores range from 0 to 28, with 0 indicative of a site that is not a hot spot and 15 or greater indicative of a severe hotspot.

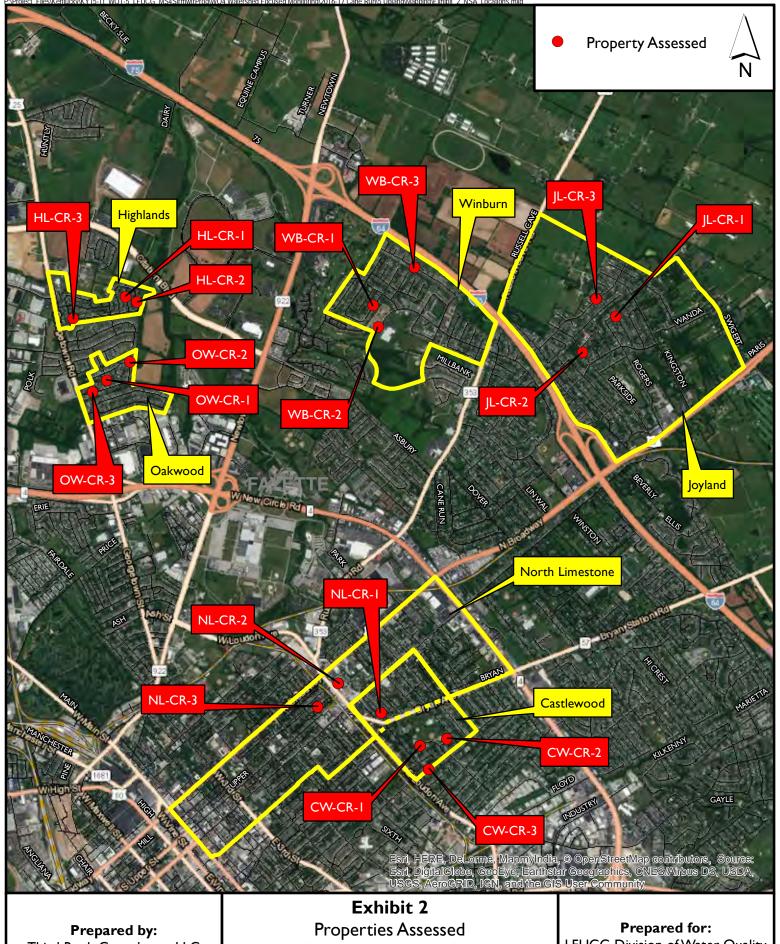
Results

HSI results are shown on **Exhibit 6** (**Appendix A**) and summarized in **Table 2**, page 5.

Table I. Neighborhood Source Assessment Results

	Neighborhood									
NSA Criteria	Joyland	Winburn	North Limestone / Castlewood	Oakwood	Highlands					
Neighborhood Characterization	-				-					
		Single Family Attached, Single Family	Single Family Detached and							
Housing Style	Single Family Detached	Detached, and Multifamily	Mobile Home Park	Single Family Detached	Single Family Detached					
Acres	300	150	445	30	50					
Garage (%)	70	20	60	50	75					
Basement (%)	10	20	60	50	50					
Index of Infill, Etc. (%)	<5	>10	5 - 10	0	0					
Yard and Lawn Conditions	1									
Average % of Impervious Cover	36.7	41.7	44.2	38.3	40.6					
Average % of Grass Cover	58.3	55	52.2	61.7	5.6					
Average % of Landscaping	5	0	3.7	0	1.7					
Average % of Bare Soil	0	3.3	0	0	1.7					
Average % of Forest Canopy	13.3	20	16	9.43	55					
Average % of Evidence of Non-Target Irrigation	0	0	0	0	0					
Proportion of High Lawn Management (%)	10	5	15	5	0					
Proportion of Medium Lawn Management (%)	80	55	55	85	80					
Proportion of Low Lawn Management (%)	10	40	30	10	20					
Estimated # of Swimming Pools	20	5	5	0	5					
Junk/Trash in Yards (%)	5	60	20	0	0					
Driveways, Sidewalks, and Curbs										
% of Driveways that Are Impervious	90	90	70	95	95					
Driveway Conditions	Breaking Up	Dirty, Breaking Up, and Stained	ined Clean, Dirty and Breaking Up Clean, Dirty, Breaking Up		Clean, Dirty, and Breaking Up					
Distance Between Sidewalk and Streets (ft)	4	4	3	5	3					
Curb and Gutter Conditions	Sediment, Trash, Litter, and Debris	Lawn Clippings, Trash, Litter, Debris	Lawn Clippings, Trash, and Litter	Lawn Clippings	Long-Term Parking, Lawn Clippir					
Pet Waste Present?	No	Yes	Yes	No	No					
Rooftops										
Downspouts Connected Directly to Sewer (%)	0	0	0	0	0					
Downspouts Directed to Impervious Areas (%)	20	20	40	30	25					
Downspouts Discharge to Pervious Areas (%)	80	80	55	70	75					
Downspouts Discharge to a Cistern/Rainbarrel (%)	0	0	0	0	0					
Common Areas	1									
Storm Drain Inlets?	Yes	Yes	Yes	Yes	Yes					
			North Limestone No;							
Storm Drains Stenciled?	No	No	Castlewood Yes	No	No					
Storm Drain Conditions	Dirty	Dirty	Dirty	Dirty	Clean					
Open Space Conditions	No Concern	Pet Waste	Pet Waste	No Concern	No Concern					
•			North Limestone No;							
Buffers/Floodplain	Present, No Encroachment	Present, No Encroachment	Castlewood Yes, No Encroachment	Not Present	Present, No Encroachment					
·			North Limestone 7 (High)							
NSA Pollution Severity Index (PSI)	3 (Moderate)	7 (High)	Castlewood 3 (Moderate)	2 (Moderate)	I (Moderate)					
	(. (North Limestone 4 (Moderate)	(*	. (
Noighborhood Portoration Opportunity Index (NIDOI)	2 (1 2004)	4 (Moderate)	· · · · · · · · · · · · · · · · · · ·	3 (1 200)	2 (1 5))					
Neighborhood Restoration Opportunity Index (NROI)	3 (Low)	4 (Moderate)	Castlewood 3 (Low)	3 (Low)	2 (Low)					

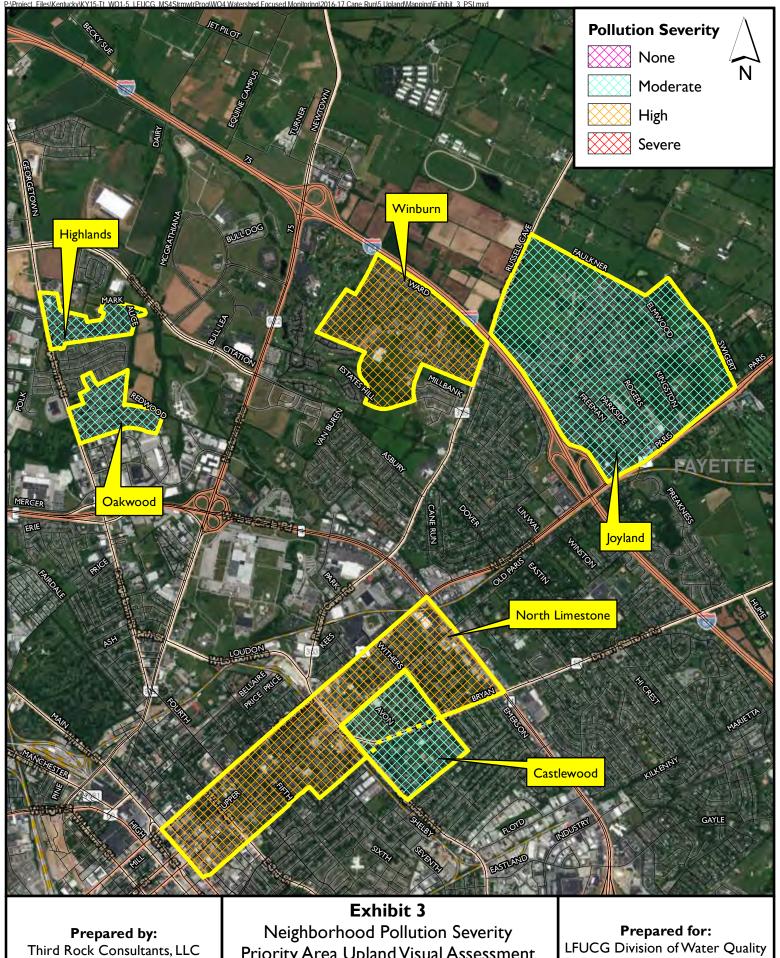
Table 2. Potential Generator Investigation Results


							1	-	ı	ı		ı	ı		
		Affordable									,				
	Sharps Lawn and	Restaurant	N&H	Val's Auto Sales	Kentucky		Site One	Estes	National Lease	Bluegrass	Duffs /	Ziegler	Legends'	Broadway	Star
PGI Criteria	Landscape	Equipment Inc.	Auto Sales	and Repair	Utilities	Coit	Landscape Supply	Truck Line	Trucks	Contracting	Royal Auto	Tire	Field	Auto Mall	Manufacturing
Site Data and Characteristics		0/10/0017			0/10/0017	1 0/10/00/-	1 0/10/00/0	I	I			I			0// //00/-
Date Assessed	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/12/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/13/2017	9/14/2017	9/14/2017	9/14/2017	9/14/2017	9/14/2017
Category	Commercial	Commercial	Commercial	Commercial	Industrial	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial	Commercial	Industrial
NPDES Status	Unregulated	Unregulated	Unregulated	Unregulated	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown	Unknown
Vehicle Type	Fleet Vehicles		Vehicles For Sale	Sales/Repair	Fleet Vehicles			Fleet Vehicles	Fleet Vehicles		Sales			Sales	
Vehicle Operations	ı		T	T		T	T	T	ı	T		T	T	1 1	
Approximate Number of Vehicles	10		30	100	50			50	30		50			>100	
									Maintained, Repaired,						
	Maintained, Washed,			Maintained, Repaired,				Washed, Fueled,	Washed, Fueled,		Maintained, Repaired,			Maintained, Repaired,	
Vehicle Activities	Stored		Washed, Stored	Washed, Stored	Stored			Stored	Stored		Washed, Stored			Washed, and Stored	
Stored/Repaired Outside	Yes		No	No	Yes			Cannot Tell	No		Yes			Yes	
Runoff Diversion Methods	No		No	No	Cannot Tell			Cannot Tell	Cannot Tell		No			No	
Spills or Leaks?	Cannot Tell		No	Yes	No			No	No		Yes			No	
Uncovered Outdoor Fueling Areas?	No		No	Yes	Cannot Tell			Yes	Yes		No			No	
Fueling Areas Connected to Storm Drains?	No		No	No	Cannot Tell			No	No		No			No	
Vehicles Washed Outdoors?	Yes		Yes	Cannot Tell	Cannot Tell			Cannot Tell	Cannot Tell		Cannot Tell			Yes	
Washing Area Connected to Storm Drain?	Cannot Tell		Cannot Tell	Cannot Tell	Cannot Tell			Cannot Tell	Cannot Tell		Cannot Tell			Yes	
Outdoor Materials															
Loading/Unloading Operations	Present				Present		Not Present			Present		Present	Present		Present
	Soil, Mulch, Covered														
Materials Stored Outside	Salt				Yes		Rock, Soil, and Mulch			Yes		Yes	Yes		Industrial Parts
Storage Area Connected to Storm Drain?	Cannot Tell				Cannot Tell		Cannot Tell			Cannot Tell		No	Yes		No
Staining or Discoloration Present?	No, Unpaved				Cannot Tell	Yes, Staining in Inlet	Cannot Tell			Cannot Tell		Yes	No		Yes
Covered Storage Area?	No				No		No			No		No	No		No
								Yes, Containers for							•
Secondary Liquid Containment Storage	Cannot Tell				Yes, Oil Drums		No	Fuel		No		No	No		No
, ,															Missing Labels, Poor
Labeling Condition	Cannot Tell				Cannot Tell		Labels Present			Labels Present		Cannot Tell	Labels Present		Conditions
Waste Management															
Type of Waste	Vegetation						I					Garbage			
Dumpster Condition	Ü											Cannot Tell			-
•	Yes, Lacks Runoff											Yes, Lacks Runoff			
Dumpster Near Storm Drain Inlet?	Diversion											Diversion			
Physical Plant				l		1									
Building Condition															
Evidence of Discharge from Maintenance															
Parking Lot Condition		Dirty													
Downspout Direction		4/					1							+	
Turf / Landscaping				<u> </u>		I				<u> </u>			<u> </u>		
% Forest Canopy	0					1	I								
% Turf	20														
% Landscaping	0			+			 							+	
% Bare Soil	80													+	
Turf Management Status	High													+	
Evidence of Non-Target Irrigation	None														
Landscaping Drain to Storm Drain Inlet?	Yes		1			+	1							+	
Accumulation of Organic Matter?	Yes													+	
Storm Water Infrastructure	1 (2)					<u> </u>	<u> </u>			<u> </u>			<u> </u>		
Storm Water Infrastructure Storm Water Treatment Present?	N ₂	NI-				1	T	1	1			1		1	
	No Yes	No												+	
Private Stormdrains in the Area?	Yes	No					<u> </u>								
Index Rating for Gutter Accumulation	,	,	1 2	1 2		1	1	1	1	I		1		1	
Sediment	4	<u> </u>	2	2	<u> </u>									1	
Organic Material	4	1	2	2	<u>!</u>	1	1								
Litter	4	3	2	2	l l									1	
Hot Spot Index (HSI)	8 (Potential Hotspot)	2 (Not a Hotspot)	2 (Not a Hotspot)	4 (Not a Hotspot)	0 (Not a Hotspot)	0 (Not a Hotspot)	I (Not a Hotspot)	I (Not a Hotspot)	I (Not a Hotspot)	3 (Not a Hotspot)	4 (Not a Hotspot)	6 (Potential Hotspot)	5 (Potential Hotspot)	5 (Potential Hotspot)	5 (Potential Hotspot)

APPENDIX A EXHIBITS I - 6

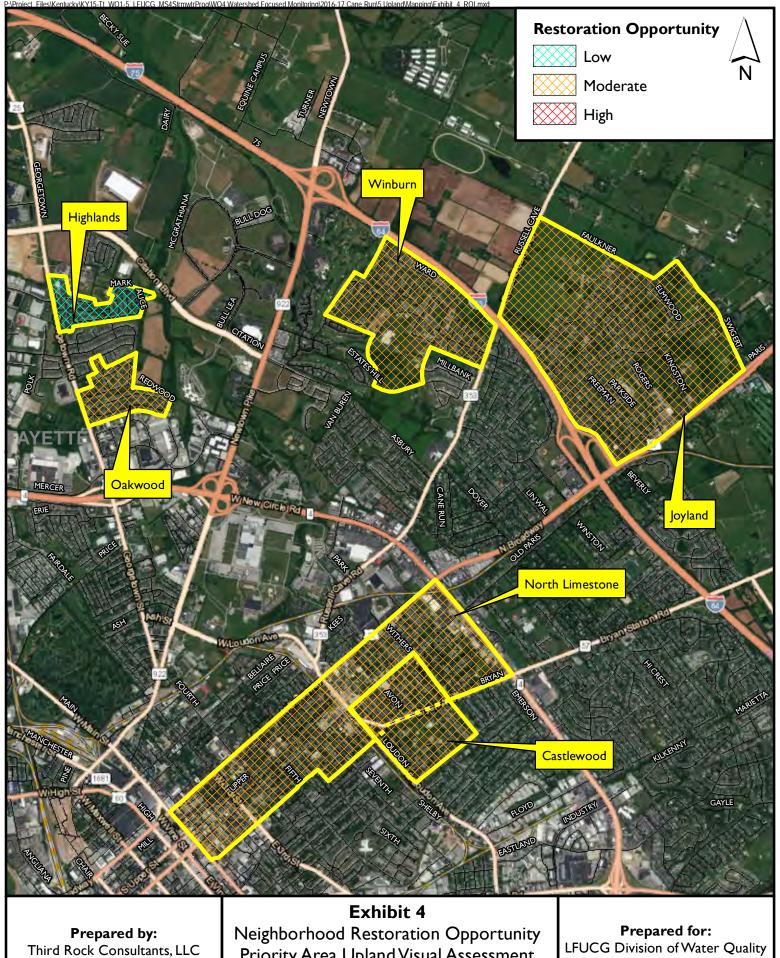
2526 Regency Road, Suite 180 Lexington, Kentucky 40503 Neighborhoods Assessed
Priority Area Upland Visual Assessment
Cane Run Watershed, Fayette County, KY

0 3,200 6,400
Feet


FUCG Division of Water Quality 125 Lisle Industrial Ave, Ste 180 Lexington, Kentucky 40511

Third Rock Consultants, LLC 2526 Regency Road, Suite 180 Lexington, Kentucky 40503 Priority Area Upland Visual Assessment
Cane Run Watershed, Fayette County, KY

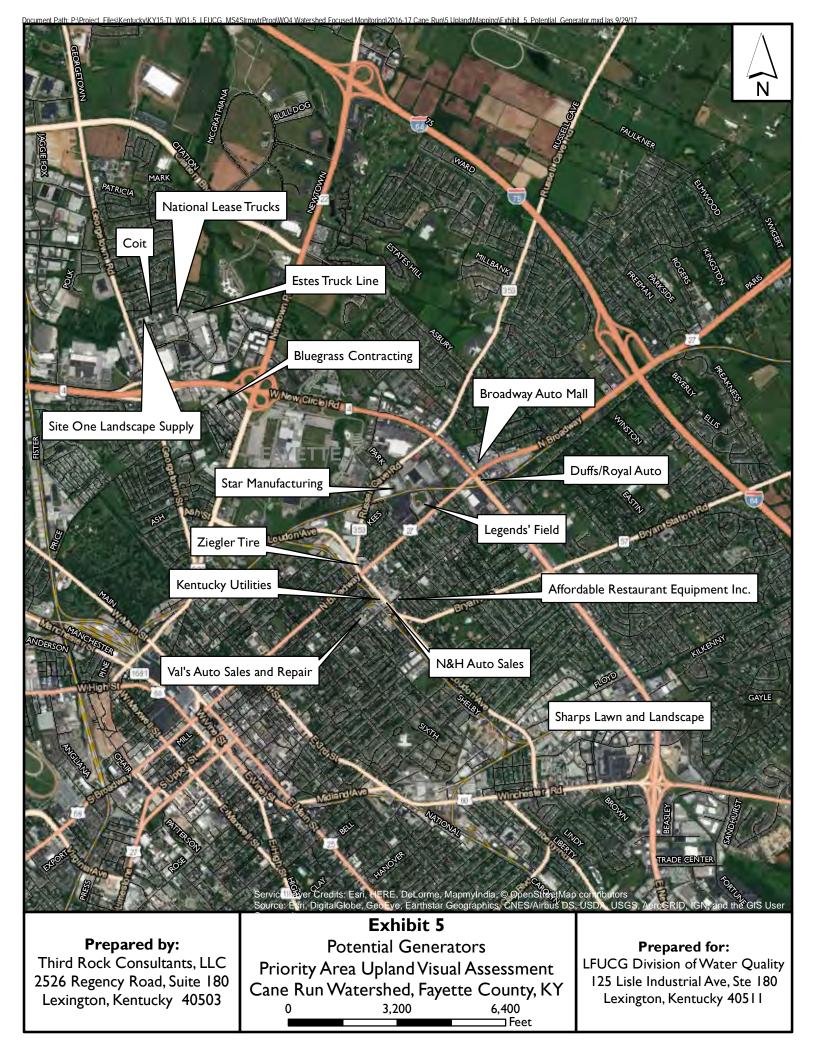
0 3,200 6,400
Feet

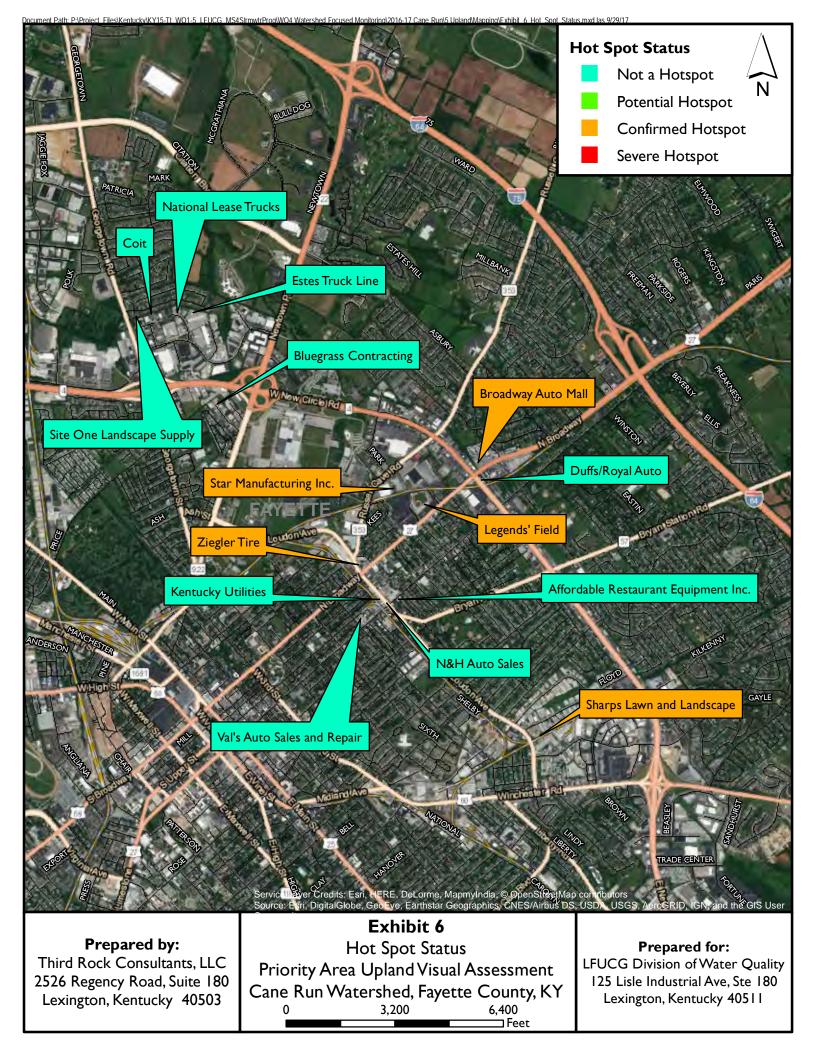

LFUCG Division of Water Quality 125 Lisle Industrial Ave, Ste 180 Lexington, Kentucky 40511

2526 Regency Road, Suite 180 Lexington, Kentucky 40503 Neighborhood Pollution Severity Priority Area Upland Visual Assessment Cane Run Watershed, Fayette County, KY

Feet

FUCG Division of Water Quality 125 Lisle Industrial Ave, Ste. 180 Lexington, Kentucky 40511




2526 Regency Road, Suite 180 Lexington, Kentucky 40503 Priority Area Upland Visual Assessment

Cane Run Watershed, Fayette County, KY

0 3,200 6,400
Feet

FUCG Division of Water Quality 125 Lisle Industrial Ave, Ste 180 Lexington, Kentucky 40511

APPENDIX B PHOTO LOGS

Cane Run Watershed Focused Monitoring Priority Area Upland Visual Assessment Neighborhood Sources

CW-CR-I CW-CR-2

CW-CR-3 HL-CR-I

HL-CR-3

Cane Run Watershed Focused Monitoring Priority Area Upland Visual Assessment Neighborhood Sources

JL-CR-1 JL-CR-2

JL-CR-3 NL-CR-I

NL-CR-2 NL-CR-3

Cane Run Watershed Focused Monitoring Priority Area Upland Visual Assessment Neighborhood Sources

OW-CR-I OW-CR-2

OW-CR-3 WB-CR-I

WB-CR-2 WB-CR-3

Cane Run Watershed Focused Monitoring Priority Upland Visual Assessment Potential Generators

Sharps Lawn and Landscape

Affordable Restaurant Equipment Inc.

N&H Auto Sales

Val's Auto Sales and Repair

Kentucky Utilities

Coit

Cane Run Watershed Focused Monitoring Priority Upland Visual Assessment Potential Generators

Site One Landscape Supply

Estes Truck Line

National Lease Trucks

Duffs-Royal Auto

Ziegler Tire

Legends' Field

Cane Run Watershed Focused Monitoring
Priority Upland Visual Assessment
Potential Generators

Broadway Auto Mall

Star Manufacturing

APPENDIX C NSA AND PGI FORMS

Neighborhood Source Assessment

NSA

WATERSHED: Come Bun	SUBWATERSHED:		U	NIQUE	SITE ID: 3L-C	2-1,2	PIC#:	
DATE: 8 /25/17	ASSESSED BY: M, Hall		C	AMERA	ID: Shellow	PIC#:		
A. NEIGHBORHOOD CHARACTER	RIZATION		alui(graph Ar	DATE STATE OF THE	Chairte.	e Kark	
Neighborhood/Subdivision Name:	Toyland	2012-01		N	Jeighborhood Area	(acres)	300	
If unknown, address (or streets) surve	yed:			4				
Homeowners Association? Y	N Inknown If yes name and cor	tact i	inform	ation:				
Residential (circle average single fam	ully lot size).	iuoi i	niitot II	ianon				
☐ Single Family Attached (Duplexes	, Row Homes) $<\frac{1}{8}$ $\frac{1}{8}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{3}$	acre] Multi	family (Apts, Town	homes, C	Condos)	
Single Family Detached	/4 ½ ½ 1 1			-	e Home Park	1555		
Estimated Age of Neighborhood:	years Percent of Homes with Ga	rages	: 70	2% W	ith Basements VO	% IN	DEX*	
Sewer Service? ☑Y ☐ N						4.00	0	
Index of Infill, Redevelopment, and Re		of u	nits [<u>]</u> 5-109	% □ >10%	871	0	
Record percent observed for ea depending on applicabili	ch of the following indicators,	P	ercen	tage	Comments/Note	s		
B. YARD AND LAWN CONDITIONS		EW	705-	195			33041	
B1. % of lot with impervious cover		35	35	40	36.7%	180	0.020	
B2. % of lot with grass cover		60	60	55	58.3%		0	
B3. % of lot with landscaping (e.g., m	ulched bed areas)	5	5	5	50/0	1000	0	
B4. % of lot with bare soil		0	0	0	00/0	-01	O	
*Note: B1 through B4 must to	tal 100%	100	100	100	100 010			
B5. % of lot with forest canopy		2	52	10	13.3%	5.80	0	
B6. Evidence of permanent irrigation of	r "non-target" irrigation	5	0	0	00%		0	
		Hig	gh: _\	0		1,52	0	
B7. Proportion of total neighborhood to	urf lawns with following	Me	d: 2	0				
management status:		Lov	v: \()		5.77		
B8. Outdoor swimming pools?	N Can't Tell Estimated # 2.0		10			-	9	
B9. Junk or trash in yards?		.5	5				0	
C. DRIVEWAYS, SIDEWALKS, AND		2170	USP)	15/20/		50 5000		
C1. % of driveways that are impervious	s N/A	(90		2. 野牛类。 30 - X 7. 3 - 1			
C2. Driveway Condition Clean	Stained Dirty Breaking up		10			(0	
C3. Are sidewalks present? Y \(\square\)			r alor	ng both	sides 🖳			
☐ Spotless ☐ Covered	l with lawn clippings/leaves 🔲 Rece	eiving	g 'non	-target'	irrigation	(C	
	ne sidewalk and street? 34 ft.					<	>	
Is pet waste present in this area							C	
4. Is curb and gutter present?								
	or standing water Long-term car						9	
Organic matter, leaves, lawr	r clippings Trash, litter, or debr	1S	J Ove	rnead tr	ee canopy	<	>	

^{*} INDEX: O denotes potential pollution source; ♦ denotes a neighborhood restoration opportunity

D. ROOFTOPS			William						4.19
D1. Downspouts are directly connected to storm drains or sanitary	sewer	C)					\Diamond	0
D2. Downspouts are directed to impervious surface		20	C					Vist.	ntyt-
D3. Downspouts discharge to pervious area		8	0				N.		
D4. Downspouts discharge to a cistern, rain barrel, etc.		C					1	3/0	St. Smil
*Note: C1 through C4 should total 100%								-	A
D5. Lawn area present downgradient of leader for rain garden?									\
E. COMMON AREAS	er the	الالحال	D.A.	Naradi.		REL			A
E1. Storm drain inlets? Y N If yes, are they stenciled? Y N Condition: Clean Dirty Catch basins inspected? Y N If yes, include Unique Site ID from SSD sheet: E2. Storm water pond? Y N Is it a wet pond or dry pond? Is it overgrown? Y N What is the estimated pond area? < 1 acre about 1 acre > 1 acre									
What is the estimated pond area? <> Storm water pond? Y N Is it a wet pond or are about 1	acre = >	1 acre	reigiow						\rightarrow
E3. Open Space? N If yes, is pet waste present? Y N dumping? Y N									
Buffers/floodplain present: Y N If yes, is encroachment evident? Y N									
F. INITIAL NEIGHBORHOOD ASSESSMENT AND RECOMME			16 33	7 360		5.4		23/3	Det.
Based on field observations, this neighborhood has significant indicators for the following: (check all that apply) Nutrients Oil and Grease Trash/Litter Bacteria Sediment Other									0
Specific Action Onsite retrofit potential? Better lawn/landscaping practice? Better management of common space? Pond retrofit? Multi-family Parking Lot Retrofit?									
Other action(s) Initial Assessment									

NOTES:

Neighborhood Source Assessment

NSA

WATERSHED: Care Bur	SUBWATERSHED:		Un	IQUE S	SITE ID: W-CR	-1,2,3			
DATE: 8 /25/ \7	ASSESSED BY: M. Hall				ID: Shelby	PIC#:			
A. NEIGHBORHOOD CHARACTER	IZATION		all has	-Exery M	Danks lib/leg=test=19	Charles History			
Neighborhood/Subdivision Name:				N	leighborhood Area (a	acres)			
If unknown, address (or streets) survey	ed:			E					
Homeowners Association? Y	Unknown If yes, name and co	ntact in	ıforma	tion:					
Residential (circle average single fami	ily lot size):			-					
Single Family Attached (Duplexes, Single Family Detached	Row Homes)				amily (Apts, Townh e Home Park	omes, Condos)			
Estimated Age of Neighborhood:years Percent of Homes with Garages:% With Basements%									
Sewer Service? Y N		_				6 INDEX*			
Index of Infill, Redevelopment, and Re	modeling No Evidence <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <a> <	% of u	nits 🔲	5-10%	6 √>10% Park	0			
Record percent observed for each depending on applicability	h of the following indicators,	STATE OF THE PARTY.	ercent		Comments/Notes				
B. YARD AND LAWN CONDITIONS		1	2	3					
B1. % of lot with impervious cover		30	60	35	41,7%	E STATES			
B2. % of lot with grass cover		70	30	62	55%	o ,			
B3. % of lot with landscaping (e.g., mu	lched bed areas)	0	0	0	0 %	\Q			
B4. % of lot with bare soil		0	10	0	3.3%	0			
*Note: B1 through B4 must tot	al 100%	100	100	100	100 90				
B5. % of lot with forest canopy		40	15	5	20 %	4			
B6. Evidence of permanent irrigation or	"non-target" irrigation	0	0	0	0 %	0			
		Hig	h: <i>5</i>			0			
B7. Proportion of <i>total neighborhood</i> tune management status:	f lawns with following	Med	l: <u>5</u> 2	2					
management states.		Low	: 40)					
B8. Outdoor swimming pools?	Can't Tell Estimated # >	1	.10			0			
B9. Junk or trash in yards?	N Can't Tell	6	0			0			
C. DRIVEWAYS, SIDEWALKS, AND	CURBS		- 11	PIRM					
C1. % of driveways that are impervious	□ N/A	90)						
C2. Driveway Condition 🗌 Clean 🔃						0			
C3. Are sidewalks present? Y N Spotless Covered	If yes, are they on one side of stree with lawn clippings/leaves Rec	et 🔲 o	ralong	both	sides [
What is the distance between the				an got	THE STATE OF THE S	0			
Is pet waste present in this area?			******		*******	Ť			
C4. Is curb and gutter present?	☐ N If yes, check all that apply:				***************************************				
	or standing water 🔲 Long-term car					0			
Organic matter, leaves, lawn clippings Trash, litter, or debris Overhead tree canopy									

^{*} INDEX: O denotes potential pollution source; ♦ denotes a neighborhood restoration opportunity

D. ROOFTOPS								
D1. Downspouts are directly connected to storm drains or sanita	ry sewer		0					0 0
D2. Downspouts are directed to impervious surface			20					
D3. Downspouts discharge to pervious area			80					Part of Files
D4. Downspouts discharge to a cistern, rain barrel, etc.			0					Section 1600
*Note: C1 through C4 should total 100%								
D5. Lawn area present downgradient of leader for rain garden?	☐ Y [N						\Q
E. COMMON AREAS	II CC	No C	W.E.			10000		~
E1. Storm drain inlets? Y N If yes, are they stenciled? Catch basins inspected? Y N If yes, include U	nique Site	e ID fro	m SSD	sheet:				Ŏ ^
E2. Storm water pond? Y N Is it a wet pond or What is the estimated pond area? < 1 acre about	it I acre	>	acre					
E3. Open Space? Y N If yes, is pet waste present?	1 \ \	dumı dumı	oing?					0
Buffers/floodplain present: Y N If yes, is encr	oachment	t evider	it? 🗌 Y	DY	Í			
F. INITIAL NEIGHBORHOOD ASSESSMENT AND RECOMM	MENDAT	IONS		17/1/				
Based on field observations, this neighborhood has significant in Nutrients Oil and Grease Trash/Litter Bacteria	Sedi	iment [Othe	r		that ap	ply)	0
Recommended Actions	Describ							
Specific Action	0 /	NUN	(1	: 66:	1813)		
Onsite retrofit potential?	P P	et	Ne	ste	3	rosc Vo	SO	
Better lawn/landscaping practice? Better management of common space?	_ <	01-	ادممر	1		LV C. L		
Pond retrofit?	7	CENT	WON.	- '	- L	1000	e v	
☐ Multi-family Parking Lot Retrofit?	1	NSP	ECHI	047	CAT	An Cr	1 12	
Other action(s)		C-1/1/F	HUC	t i O	٧١,			
Initial Assessment				-	4			
and a mark of the first			++-				-	
NSA Pollution Severity Index Severe (More than 10 circles checked)		-	-	++	-	-	-	+
High (5 to 10 circles checked)				-	-		+ +	
Moderate (Fewer than 5 circles checked)		-	-	1				
None (No circles checked)	-		-					
			++	+				
Neighborhood Restoration Opportunity Index		-						
High (More than 5 diamonds checked) Moderate (3-5 diamonds checked)		-						
Low (Fewer than 3 diamonds checked)		-						
LI DOW (1 CWC) than 3 diamonds oncodes,				+				

NOTES:

Neighborhood Source Assessment

NSA

WATERSHED: Come Rusa	SUBWATERSHED:		UN	IQUE S	SITE ID: NL- CR	-1,2,3
DATE: 9/6/17	ASSESSED BY: M. Hall			MERA		PIC#:
A. NEIGHBORHOOD CHARACTERI	ZATION		a distribute	auxilies	wide of States and St	Japanes S
Neighborhood/Subdivision Name: If unknown, address (or streets) surveyed				N	eighborhood Area (acr	es) <u>385</u>
Homeowners Association? Y Y Residential (circle average single family		contact in	forma	tion:		
☐ Single Family Attached (Duplexes, I ☐ Single Family Detached	Row Homes) <1/8 1/8 1/4 1/3 1 <1/4 1/4 1/2 1 >				amily (Apts, Townhon e Home Park	nes, Condos)
Estimated Age of Neighborhood:	years Percent of Homes with 0	Garages:	60	% W	th Basements 60 %	INDEX*
Sewer Service? ☑Y ☐ N				. 4		0
Index of Infill, Redevelopment, and Rer	nodeling No Evidence <	5% of ur	nits 🔽	5-10%	% □ >10%	0
Record percent observed for eac depending on applicability		Pe	ercent	age	Comments/Notes	(166)
B. YARD AND LAWN CONDITIONS		The same	1,35	200	20, 19, 11	And the
B1. % of lot with impervious cover		20		35	31.6%	shift fur testing
B2. % of lot with grass cover		68	60	65	PH .4 010	0
B3. % of lot with landscaping (e.g., mu	lched bed areas)	12	0	0	4 010	\Q
B4. % of lot with bare soil	- Ca	0	0	0	C 6/0	- 0
*Note: B1 through B4 must total	al 100%	100	100	100	100%	
B5. % of lot with forest canopy		36	28	11	52,10	•
B6. Evidence of permanent irrigation or	"non-target" irrigation	0	0	0	000	0
		Hig	h: <u>10</u>			0
B7. Proportion of <i>total neighborhood</i> turn management status:	f lawns with following	Med	1: <u>40</u>	2		Vine C 164 1
management states.		Lov	v: <u>5</u>	>		
B8. Outdoor swimming pools? ☐Y ☐	Can't Tell Estimated #		0			0
B9. Junk or trash in yards?	N Can't Tell		25			0
C. DRIVEWAYS, SIDEWALKS, AND	CURBS	E LIE	1	B. Bay		
C1. % of driveways that are impervious	□ N/A		70			
C2. Driveway Condition Clean	Stained Dirty Breaking u	р				0
C3. Are sidewalks present? ☐ Y ☐ N ☐ Spotless ☐ Covered	If yes, are they on one side of str with lawn clippings/leaves R					0
What is the distance between the	e sidewalk and street? <u>5-3</u> ft.		*****			\Q
Is pet waste present in this area?			******		****************	\$
C4. Is curb and gutter present?						
	or standing water Long-term o					0
Organic matter, leaves, lawn	clippings Trash, litter, or d	ebris 🗌	Over	head to	ee canopy	\Diamond

^{*} INDEX: O denotes potential pollution source; ♦ denotes a neighborhood restoration opportunity

D. ROOFTOPS	2001	النها	-		107					0	
D1. Downspouts are directly connected to storm drains or sanit	ary sewe	r	10							0	0
D2. Downspouts are directed to impervious surface			40							=00	
D3. Downspouts discharge to pervious area			5	0						HI SAM	Mase
D4. Downspouts discharge to a cistern, rain barrel, etc.					-44-				N	- 119	Solut!
*Note: C1 through C4 should total 100%	/										
D5. Lawn area present downgradient of leader for rain garden?			12							<	>
E. COMMON AREAS Marked	al or	no	dos	AD.Y	50	ale ale	46	Selection of the last		93	
E1. Storm drain inlets? Y N If yes, are they stenciled?						n 🗹	Dirty				3
Catch basins inspected? Y Y If yes, include L						7			_		O
E2. Storm water pond? Y N Is it a wet pond or What is the estimated pond area? <a> <a> 1 acre abo	dry po ut 1 acre	nd? □>	Is it of	overgr :	own? [_] Y	ЦΝ			<	>
E3. Open Space? Y N If yes, is pet waste present?					Y 🗹	N				(9
Buffers/floodplain present: ☐ Y ☐ N If yes, is enc					200000		*****				******
F. INITIAL NEIGHBORHOOD ASSESSMENT AND RECOM				15	TWE	9.93		3 4 7		110	W 23
Based on field observations, this neighborhood has significant				owing	;: (che	ck all	that o	apply)		,	2
Nutrients Oil and Grease Trash/Litter Bacteri	a 🔲 Se	dimen	t 🗆 🤇	Other						200	0/
Recommended Actions	Descr	ibe R	ecomn	nende	d Acti	ons:					
Specific Action	T e	Low	110		Det		Na	40		Stril	tions.
Onsite retrofit potential? Better lawn/landscaping practice?	Γ θ «		-	7	Oal	١.	Ins t) (<u> </u>	<	lac	,
Better management of common space?	0 1	-177	el	,	101	,	٥٠٠٠		O!(7,0	
Pond retrofit?											
☐ Multi-family Parking Lot Retrofit?											
Other action(s)	-					1			-		
Initial Assessment											-
NGA D-Hution Coverity Index			-	-	-	+	-	+	-	\vdash	-
NSA Pollution Severity Index Sexere (More than 10 circles checked)	-	-	-	-	-	+		-	+	1	
High (5 to 10 circles checked)		1		-		+		-	+	1	-
☐ Moderate (Fewer than 5 circles checked)			-	-			-	+	+	\vdash	
None (No circles checked)		+	-	-		+		+		H	-
	-	+		+		+		-			
Neighborhood Restoration Opportunity Index [High (More than 5 diamonds checked)											
High (More than 5 diamonds checked) Moderate (3-5 diamonds checked)											
Low (Fewer than 3 diamonds checked)											
						1					
						F					

NOTES:

Neighborhood Source Assessment

NSA

WATERSHED: Come Bun	SUBWATERSHED:		UN	IQUE S	SITE ID: CW-CA	-1,2,3
DATE: 9/6/17	ASSESSED BY: M. Hall		CA	MERA	ID:	Pic#:
A. NEIGHBORHOOD CHARACTE			et felten)	18447	Contract seasons are	Sept-Annual
Neighborhood/Subdivision Name:	Castlewood			N	leighborhood Area (ac	cres) 50
If unknown, address (or streets) surve	eyed:			1		
Homeowners Association? Y	N Unknown If yes, name and	l contact i	nforma	ation:		
Residential (circle average single fan	nily lot size):					
Single Family Attached (Duplexes		⅓ acre		Multi	family (Apts, Townho	mes, Condos
Single Family Detached	S/4 1/4 1/2 1				e Home Park	02020010000
Estimated Age of Neighborhood:	years Percent of Homes with	Garages:	_60	_% W	ith Basements <u>60</u> %	
Sewer Service? Y N						0
Index of Infill, Redevelopment, and R		<5% of u	nits	5-109	% <u></u> >10%	0
depending on applicabili	ich of the following indicators, ity and/or site complexity	P	ercent	age	Comments/Notes	
B. YARD AND LAWN CONDITIONS			7/48	PC (9)		
B1. % of lot with impervious cover		65	40	65	56.7°10	(NOT PLACE)
B2. % of lot with grass cover	The state of the s	35	55	30	40°10	0
B3. % of lot with landscaping (e.g., m	ulched bed areas)	0	5	5	3.3°/0	*
B4. % of lot with bare soil		0	0	0	0%	0
*Note: B1 through B4 must to	otal 100%	100	100	100	100010	
B5. % of lot with forest canopy		6	7	8	7010	0
B6. Evidence of permanent irrigation of	or "non-target" irrigation	0	0	0	000	0
		Hig	h: 7	2		0
B7. Proportion of <i>total neighborhood</i> t management status:	urf lawns with following	Med	i: _7(2		Select Leading
management status.		Low	/: \U	_		
B8. Outdoor swimming pools?	N Can't Tell Estimated #	- (.10			0
B9. Junk or trash in yards? ✓ Y ☐	N Can't Tell	1	. 10			0
C. DRIVEWAYS, SIDEWALKS, AND	CURBS	5 () ()				S SAME
C1. % of driveways that are imperviou	s N/A	q	0			
C2. Driveway Condition Clean	Stained Dirty Breaking	up (A	ce	× 1	Repairs Made)	0
C3. Are sidewalks present? Y	N If yes, are they on one side of s	treet 🔲 o	ralong	both	sides 🖳	
	d with lawn clippings/leaves	Receiving	'non-	target'	irrigation	0
	he sidewalk and street? Z-4 ft.				*****************	0
Is pet waste present in this area						0
C4. Is curb and gutter present? Y	or standing water \(\square\) Long-term		α []	Codi	**************************************	
Organic matter, leaves, law					*****************	<u> </u>
La Smar matter, reaves, lavy	I rasii, ittei, 01	TCOLIS []	Overi	icau tr	ее сапору	\Diamond

^{*} INDEX: O denotes potential pollution source; denotes a neighborhood restoration opportunity

D. ROOFTOPS		Gar Dani	70.04								
D1. Downspouts are directly connected to storm drains or sanita	ry sewer	0				\Diamond 0					
D2. Downspouts are directed to impervious surface		NO									
D3. Downspouts discharge to pervious area		60				Augmighture.					
D4. Downspouts discharge to a cistern, rain barrel, etc.	Downspouts discharge to a cistern, rain barrel, etc.										
*Note: C1 through C4 should total 100%											
D5. Lawn area present downgradient of leader for rain garden?	☑ Y □N	5	Basil Walling		PONE I	\Q					
E. COMMON AREAS	I CHILIND	己含的			4-3. di						
E1. Storm drain inlets? Y N If yes, are they stenciled? Catch basins inspected? Y N If yes, include U	nique Site ID	from SSD	sheet:			O					
E2. Storm water pond? Y N Is it a wet pond or What is the estimated pond area? 1 acre about	t 1 acre	> 1 acre	grown?	IY LIN		•					
E3. Open Space? Y N If yes, is pet waste present?	Y DNd	umping? L] У 🗀 И			0					
Buffers/floodplain present: Y N If yes, is encr			MN								
F. INITIAL NEIGHBORHOOD ASSESSMENT AND RECOMM	MENDATION	(S	5217,	78-53-1							
Based on field observations, this neighborhood has significant in Nutrients Oil and Grease Trash/Litter Bacteria	Sedime	nt Other			oply)	0					
Specific Action Onsite retrofit potential? Better lawn/landscaping practice? Better management of common space? Pond retrofit? Multi-family Parking Lot Retrofit? Other action(s)	Describe Recommended Actions: 1 Lawn Clipping S Residential Sed. Control										
Initial Assessment											
NSA Pollution Severity Index Severe (More than 10 circles checked) High (5 to 10 circles checked) Moderate (Fewer than 5 circles checked) None (No circles checked)											
Neighborhood Restoration Opportunity Index High (More than 5 diamonds checked) Moderate (3-5 diamonds checked) Low (Fewer than 3 diamonds checked)											

NOTES:

Neighborhood Source Assessment

WATERSHED: Cone Run	SUBWATERSHED:		UN	IQUE S	SITE ID: OW -C	12-1	12.3
DATE: 9/15/17	ASSESSED BY: M. Hal				ID: LORY	PIC#:	
A. NEIGHBORHOOD CHARACTE	RIZATION		8665	\g\\\\\\ \g\\\\\\\\\\\\\\\\\\\\\\\\	Androllide dules	Northern	and its
Neighborhood/Subdivision Name:			- Contraction	N	leighborhood Area	(acres)	30
If unknown, address (or streets) surve	eyed:						
Homeowners Association? Y	N Thknown If was name and	contact in	Farme	tion			
Residential (circle average single fan	nily lot size).	Contact III	OHII	mon.			
Single Family Attached (Duplexes		⅓ acre		Multit	family (Apts, Town	homes. (Condos)
☑ Single Family Detached	(74) 1/4 1/2 1				e Home Park		701.200)
Estimated Age of Neighborhood:	years Percent of Homes with	Garages:	50	_% W	ith Basements 50	% IN	DEX*
Sewer Service? Y N						19.50	0
Index of Infill, Redevelopment, and R	emodeling No Evidence	<5% of uni	ts 🔲	5-10%	% □ >10%	200M	0
Record percent observed for ea	ich of the following indicators,	Per	cent	900	Comments/Note		•
depending on applicabili B. YARD AND LAWN CONDITIONS			cent	age	Comments/140te	•	
B1. % of lot with impervious cover			1-0	200	THE WALL		15 1
		37	1	40	38.300	155	ing begin
B2. % of lot with grass cover		63	62	60	61.7%) (MHG)	0
B3. % of lot with landscaping (e.g., m	ulched bed areas)	0	0	0	0 %	TARSE.	\rightarrow
B4. % of lot with bare soil		0	0	0	0 10		0
*Note: B1 through B4 must to	otal 100%	160	100	100	10000		E H
B5. % of lot with forest canopy		2.5	2	1.3	9,43%	600	0
B6. Evidence of permanent irrigation o	or "non-target" irrigation	O	0	0	0 %	1.474	0
		High	S		- 1	17.8	0
B7. Proportion of total neighborhood to	urf lawns with following	Med:	8	5			
management status:		Low:	V				
B8. Outdoor swimming pools?	N Can't Tell Estimated #			-		(a) No.	0
B9. Junk or trash in yards?						-	
C. DRIVEWAYS, SIDEWALKS, AND		100 700	2000	2000	(2)(4) (1) (1) (1)	17 P. 17	O
C1. % of driveways that are impervious	the second control of the second control of		5-15		1505-1703-100-181		
C2. Driveway Condition Pclean		in					0
C3. Are sidewalks present?			alone	hoth s	zides 🖂	199348	3
Spotless Covered	d with lawn clippings/leaves	Receiving '	non-t	arget'	irrigation		0
	ne sidewalk and street? 4-5 ft.	**********	••••		***************************************		Š
Is pet waste present in this area	******************************	********			************		Š
24. Is curb and gutter present?							
	or standing water \[\sum \text{Long-term} \]					(C
Organic matter, leaves, lawr	n clippings Trash, litter, or c	lebris 🔲 (Overh	ead tre	ee canopy	<	>

^{*} INDEX: O denotes potential pollution source; ♦ denotes a neighborhood restoration opportunity

D. ROOFTOPS				VI-N				1.74
D1. Downspouts are directly connected to storm drains or sanita	ry sewer	0					\Diamond	0
D2. Downspouts are directed to impervious surface		30						
D3. Downspouts discharge to pervious area		70					ed en	ada an
D4. Downspouts discharge to a cistern, rain barrel, etc.		0					(6,00)	CHAINIA
*Note: C1 through C4 should total 100%	1						Surreit D	^
D5. Lawn area present downgradient of leader for rain garden?	☑ Y □N	12				NAME OF TAXABLE PARTY.		\rightarrow
E. COMMON AREAS	on no	Hamp	A	DE L				
E1. Storm drain inlets? Y N If yes, are they stenciled? Catch basins inspected? Y N If yes, include Un E2. Storm water pond? Y N Is it a wet pond or	nique Site ID	from SSD	sheet:					0
What is the estimated pond area? $ $	t I acre	> 1 acre						<u> </u>
E3. Open Space? Y M If yes, is pet waste present?	Y N du	ımping? [] Y [N				0
Buffers/floodplain present: Y Y If yes, is encre	oachment evi	dent? 🔲 🗅	Y 🗆 N					r. 557
F. INITIAL NEIGHBORHOOD ASSESSMENT AND RECOMM	IENDATION	S						
Based on field observations, this neighborhood has significant in Nutrients Oil and Grease Trash/Litter Bacteria	dicators for to Sedimer Describe R	nt U Othe	er		that app	oly) ———	w est Visit	0
Specific Action Onsite retrofit potential? Better lawn/landscaping practice? Better management of common space? Pond retrofit? Multi-family Parking Lot Retrofit? Other action(s)	o hau	,n (11991	C	Con	if C		
Initial Assessment								
NSA Pollution Severity Index Severe (More than 10 circles checked) High (5 to 10 circles checked) Moderate (Fewer than 5 circles checked) None (No circles checked) Neighborhood Restoration Opportunity Index High (More than 5 diamonds checked) Moderate (3-5 diamonds checked) Low (Fewer than 3 diamonds checked)								

NOTES:

Neighborhood Source Assessment

NSA

WATERSHED: Cone Bun	SUBWATERSHED:		-1,2,3			
DATE: 9/15/17	ASSESSED BY: M. Hall				ID: LORY	PIC#:
A. NEIGHBORHOOD CHARACTER			agrana)		All the terms	بتابات وعامو
Neighborhood/Subdivision Name:	Highlands			N	leighborhood Area (a	icres) 50
If unknown, address (or streets) survey	ved:			-		
Homeowners Association? Y	N Unknown If yes, name and con	ntact in	forma	etion:		
Residential (circle average single fam	ily lot size):					
Single Family Attached (Duplexes,					amily (Apts, Townho	omes, Condos
Single Family Detached	√4 ½ 1 >1				e Home Park	. Pasterius
Estimated Age of Neighborhood:	_ years Percent of Homes with Ga	rages:	15	_% W	ith Basements 50%	
Sewer Service? Y N						0
Index of Infill, Redevelopment, and Re		% of un	its	5-10%	% <u> </u>	0
Record percent observed for ea depending on applicability	ch of the following indicators, v and/or site complexity	Pe	rcent	age	Comments/Notes	
B. YARD AND LAWN CONDITIONS		No.	12	3		Charles San
B1. % of lot with impervious cover		38	38	46	40,6%	9474.324
B2. % of lot with grass cover		57	62		56%	0
B3. % of lot with landscaping (e.g., mu	ulched bed areas)	0	0	5	1.7%	•
B4. % of lot with bare soil		5	0	6	1.7%	0
*Note: B1 through B4 must to	tal 100%	100	100	wo	100 %	
B5. % of lot with forest canopy		29	78	0	55%	\Q
B6. Evidence of permanent irrigation or	"non-target" irrigation	0	0	0	0 %	0
		High	n: O		10	0
B7. Proportion of total neighborhood tu	orf lawns with following	Med	: 80	2		
management status:		Low	: 20	2		
B8. Outdoor swimming pools?	N Can't Tell Estimated # 5		<u> </u>			0
B9. Junk or trash in yards?						0
C. DRIVEWAYS, SIDEWALKS, AND				N FORM		
C1. % of driveways that are impervious		q	5		AUDIE NO MALE	
C2. Driveway Condition Clean	Stained Dirty Breaking up		, 0			0
C3. Are sidewalks present? Y \(\subseteq \) N		t 🔲 or	along	g both	sides 🖵	
☐ Spotless ☐ Covered	with lawn clippings/leaves Rec	eiving	'non-	target'	irrigation	0
What is the distance between th	e sidewalk and street? 3_ ft.				****************	\Q
Is pet waste present in this area					***********	0
24. Is curb and gutter present?					.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	or standing water Long-term car	*****	*****	******		0
Organic matter, leaves, lawn	clippings Trash, litter, or debi	is 🗌	Overl	nead tr	ee canopy	♦

^{*} INDEX: O denotes potential pollution source; denotes a neighborhood restoration opportunity

D. ROOFTOPS			a)to	17	Paralle S				
D1. Downspouts are directly connected to storm drains or sanita	ry sewer	0)				\Diamond	0	
D2. Downspouts are directed to impervious surface		23	5				Pilit		
D3. Downspouts discharge to pervious area		73	5				(interpretation)	diregal	
D4. Downspouts discharge to a cistern, rain barrel, etc.		0					district.	en ing s	
*Note: C1 through C4 should total 100%							SMID	^	
D5. Lawn area present downgradient of leader for rain garden?	☐ Y ☐ N	70		VIII.25100	Santa	THE PARTY OF	0.0	\rightarrow	
E. COMMON AREAS	la re	COM	Pive.	No.		AL IN Y		_	
E1. Storm drain inlets? Y N If yes, are they stenciled? Catch basins inspected? Y N If yes, include U	nique Site ID	from SS	D sheet	-				0	
E2. Storm water pond? Y N Is it a wet pond or What is the estimated pond area? < 1 acre about	t 1 acre \square >	1s it ov	ergrowi	11 [] 1	[=] IA		73.75	Ø.	
E3. Open Space? Y N If yes, is pet waste present?	Y □N dı	imping?	□Y	NE			100000	0	
Buffers/floodplain present: Y N If yes, is encr									
F. INITIAL NEIGHBORHOOD ASSESSMENT AND RECOMM	THE RESERVE THE PERSON NAMED IN	And in Concession.	-081		A CONTRACTOR				
Based on field observations, this neighborhood has significant in Nutrients Oil and Grease Trash/Litter Bacteria	ndicators for t	the follow t	her		ll that a	ipply)	(6.00) (5.04)	0	
Recommended Actions Specific Action Onsite retrofit potential? Better lawn/landscaping practice? Better management of common space? Pond retrofit? Multi-family Parking Lot Retrofit? Other action(s)	Describe Recommended Actions: No long term Parthing Pick UP lawn (lippings								
Initial Assessment									
NSA Pollution Severity Index Severe (More than 10 circles checked) High (5 to 10 circles checked) Moderate (Fewer than 5 circles checked) None (No circles checked) Neighborhood Restoration Opportunity Index High (More than 5 diamonds checked) Moderate (3-5 diamonds checked) Low (Fewer than 3 diamonds checked)									

NOTES:

WATERSHED: Conne Final	SUBWATERSHED: 1502	1	Unique Site II):
DATE: 9 1/21 17	ASSESSED BY: F	CAMERA ID: Per	2	PIC#: 948
MAP GRID:	LAT°'']	LONG'	"]	LMK#
A. SITE DATA AND BASIC CLASSIFICATION		-34. t664	7.0	
Name and Address: Shorps lower	☐ Institutional	Municipal Lelated	iscellaneous] Golf Course] Marina Animal Facilit	у
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation	A.	ing	INDEX*
B. VEHICLE OPERATIONS N/A (Skip to	part C)		Observed Po	llution Source?
B1. Types of vehicles: ⊠ Fleet vehicles	School buses Other:			
B2. Approximate number of vehicles: / ()				
B3. Vehicle activities (circle all that apply):			ed Stored	(4)
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion	ide? ☑ Y ☐ N ☐ Can't Tel methods? ☑ Y ☐ N ☐ Can'	l 't Tell		3
B5. Is there evidence of spills/leakage from	vehicles? Y N M Can't	t Tell		0
B6. Are uncovered outdoor fueling areas pre	esent? Y N Can't Te	ell		0
B7. Are fueling areas directly connected to s	storm drains? 🗌 Y 🔯 N 🔲	Can't Tell		0
B8. Are vehicles washed outdoors? X Y Does the area where vehicles are washed dis	☐ N ☐ Can't Tell charge to the storm drain? ☐ Y	□ N ⊠ Can't I	Tell	0
C. OUTDOOR MATERIALS N/A (Skip to	part D)		Observed Po	llution Source?
C1. Are loading/unloading operations present if yes, are they uncovered and draining toward.	, <u> </u>	□ N □ Can't 1	Γell	0
C2. Are materials stored outside? \(\subseteq Y \) \(\subseteq \) Where are they stored? \(\subseteq \text{grass/dirt area} \)	N Can't Tell If yes, are they	/ Liquid Soli		0 Ca/1
C3. Is the storage area directly or indirectly	connected to storm drain (circle or	ne)? 🗌 Y 🔲 N		0
C4. Is staining or discoloration around the a	rea visible? 🗌 Y 💹 N 🔲 Ca	m't Tell	raned	0
C5. Does outdoor storage area lack a cover?	Y N Can't Tell			0
C6. Are liquid materials stored without seco	ndary containment? Y N	V ☑ Can't Tell		0
C7. Are storage containers missing labels or	in poor condition (rusting)? \[Y	□N ☑ Can't	Tell	0
D. WASTE MANAGEMENT N/A (Skip to	part E)			lution Source?
D1. Type of waste (check all that apply):	Garbage Construction mate	erials 🔲 Hazardou	is materials	ordination O
D2. Dumpster condition (<i>check all that apperent</i> evidence of leakage (stains on ground)	ly): ☐ No cover/Lid is open ☐ l☐ Overflowing	Damaged/poor cond	lition Leal	king or O
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (ber				0
E. PHYSICAL PLANT N/A (Skip to part I	7)		Observed Pol	lution Source?
E1. Building: Approximate age:				
Lividence that maintenance regults in discher	rae to storm drains (staining/disco)	Ioration)?	N Don't kn	ow I ()
Evidence that maintenance results in dischar	rge to storm drains (staining/disco	loration)?	N Don't kn	ow O

E2. Parking Lot: Approximate age yrs. Condition: _ Cle Surface material _ Paved/Concrete _ Gravel _ Permeal					rty [] Break	cing up)			.(O
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?	V 🔲	Don'	t kno	w [] None	e visibl	е				(0
E4. Evidence of poor cleaning practices for construction activities	(stains	leadi	ng to	storr	n draii	n)? 🔲	Y 🔲	N□	Can't	Tell	(0
F. TURF/LANDSCAPING AREAS N/A (skip to part G)					-22-3			l Pollu			e? [>	D
F1. % of site with: Forest canopy % Turf grass % L	andscap	ing	09	6 B	are So	-						9
F2. Rate the turf management status: High Medium												0
F3. Evidence of permanent irrigation or "non-target" irrigation		Ν[Cai	n't To	ell						(0
	Y	_									(0
F5. Do landscape plants accumulate organic matter (leaves, grass clipping						ce? 🏻	Υ□	N□	Can't	Tell		9
G. STORM WATER INFRASTRUCTURE N/A (skip to par								l Polh			62	
G1. Are storm water treatment practices present? Y N		own 1	If ves	s. nle	ase de	-	301 100	1 1 0,110	ition .	Journ		2
G2. Are private storm drains located at the facility? Y N				, [Jr.	17,	1	+		
Is trash present in gutters leading to storm drains? If so, c				belo	w.		6				(9
Index Rating f	or Accu	ımula	tion	in Gı	itters							
Clean				150		Fi	lthy	1 -				
Sediment 1 2	☐ 3 ☐ 3			区区区			F] 5] 5				
Organic material	3						F] 5] 5				
G3. Catch basin inspection – Record SSD Unique Site ID here:		C	ondit		Dir	ty 🗍	Clean	-				
H. INITIAL HOTSPOT STATUS - INDEX RESULTS												
☐ Not a hotspot (fewer than 5 circles and no boxes checked) ☐	Potenti	al ho	tspot	(5 to	10 ci	rcles b	ut no b	oxes o	hecke	ed)		
Confirmed hotspot (10 to 15 circles and/or 1 box checked))	
Follow-up Action:												
Refer for immediate enforcement												
Suggest follow-up on-site inspection												
Test for illicit discharge Include in future education effort			+									
Check to see if hotspot is an NPDES non-filer				-		+	1					+
Onsite non-residential retrofit			-	-	-		++	+=+			H	-
Pervious area restoration; complete PAA sheet and record	-		-	-		-	+	++	-			
Unique Site ID here: Schedule a review of storm water pollution prevention plan		-	-				++				-	-
Schedule a review of storm water pondulon prevention plan			4						-	-	-	-
Notes:												

WATERSHED: CORE RUA	SUBWATERSHED: 15027	Unique Site ID:	
DATE: 91/21/7	ASSESSED BY: GF CAMERA ID:	PIC#:	
MAP GRID:	LAT'' LONG	LMK#	
A. SITE DATA AND BASIC CLASSIFICATION		**************************************	
Name and Address: Restaurant Guident Side Side Side (if available): NPDES Status: Regulated Unknown	Institutional Municipal	Miscellaneous Golf Course Marina Animal Facility	INDEX*
B. VEHICLE OPERATIONS N/A (Skip)	to part C)	Observed Pollution Sou	rce?
B1. Types of vehicles: Fleet vehicles	School buses Other:		
B2. Approximate number of vehicles:			
B3. Vehicle activities (circle all that apply)): Maintained Repaired Recycled Fueled Wa	shed Stored	0
B4. Are vehicles stored and/or repaired out Are these vehicles lacking runoff diversion			0
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0
B6. Are uncovered outdoor fueling areas p	resent? Y N Can't Tell		0
B7. Are fueling areas directly connected to			0
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed d	☐ N ☐ Can't Tell ischarge to the storm drain? ☐ Y ☐ N ☐ Can'	t Tell	0
C. OUTDOOR MATERIALS N/A (Skip	to part D)	Observed Pollution Sou	rce?
C1. Are loading/unloading operations presult yes, are they uncovered and draining tow	ent? 🛛 Y 🔲 N 🔲 Can't Tell vards a storm drain inlet? 🔲 Y 🔂 N 🔲 Can'	t Tell	0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid So So concrete/asphalt bermed area	eguitrant	0
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)? [] Y [] N	V ☐ Can't Tell	0
C4. Is staining or discoloration around the	area visible? 🗌 Y 💢 N 🔲 Can't Tell		0
C5. Does outdoor storage area lack a cover	? ☑Y ☐N ☐ Can't Tell		0
C6. Are liquid materials stored without sec	ondary containment? Y N Can't Tell		0
C7. Are storage containers missing labels of	or in poor condition (rusting)? Y X N Car	ı't Tell	0
D. WASTE MANAGEMENT N/A (Skip	to part E)	Observed Pollution Sour	rce?
D1. Type of waste (check all that apply):	☐ Garbage ☐ Construction materials ☐ Hazard	lous materials	0
	oly): No cover/Lid is open Damaged/poor co		0
D3. Is the dumpster located near a storm dr If yes, are runoff diversion methods (b	ain inlet? YNCan't Tell		0
E. PHYSICAL PLANT N/A (Skip to part	F)	Observed Pollution Sour	rce?
E1. Building: Approximate age:	yrs. Condition of surfaces: Clean Staine	ed Dirty Damaged	0
	arge to storm drains (staining/discoloration)?		0
*Index: O denotes potential p	ollution source; denotes confirmed pollu	ter (evidence was seen)	

E2. Parking Lot: Approximate age yrs. Condition: Clean Stained Dirty Breaking up Surface material Paved/Concrete Gravel Permeable Don't know												0	Ĭ		
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?	N [on't	knov	/ 🗌	None	visib	le						0	
E4. Evidence of poor cleaning practices for construction activities	(stai	ns le	adin	g to s	torn	drain	1)? 🔲	ΥŞ	ΩN		Can't	Tell		0	
F. TURF/LANDSCAPING AREAS N/A (skip to part G)							OI	serv	ed I	Pollut	ion S	Sour	ce?	N]
F1. % of site with: Forest canopy <u>\$\left\\$</u> % Turf grass <u>\$\left\\$</u> % L	andsc	capii	1g]	%	Ba	re Soi	1	%						0	
F2. Rate the turf management status: High Medium														0	
F3. Evidence of permanent irrigation or "non-target" irrigation] Y [□ N		Can	t Te	11								0	
F4. Do landscaped areas drain to the storm drain system?] Y		N [] C	an't '	Гell								0	
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	gs) on	adja	cent i	mper	vious	surfac	ce?	Y [] и		an't	Tell		0	Ĭ
G. STORM WATER INFRASTRUCTURE N/A (skip to pa	rt H))					01	serv	ed F	Pollut	ion S	Sour	ce?	N	
G1. Are storm water treatment practices present?											0				
G2. Are private storm drains located at the facility? Y N Unknown Is trash present in gutters leading to storm drains? If so, complete the index below.										0					
Index Rating 1						_									7
Clean					_		F	ilthy				_		_	
Sediment	∐ 3 □ 3				H'	} I									
Litter	3					L									
G3. Catch basin inspection – Record SSD Unique Site ID here: Condition: Dirty Clean															
H. INITIAL HOTSPOT STATUS - INDEX RESULTS															
Not a hotspot (fewer than 5 circles and no boxes checked)															
Confirmed hotspot (10 to 15 circles and/or 1 box checked)	Seve	re h	otspo	t (>]	5 ci	cles a	nd/or	2 or	more	e box	es ch	ecke	<u>d)</u>		_
Follow-up Action: Refer for immediate enforcement			4	+			-	-			\vdash		+		
Suggest follow-up on-site inspection			_	-							\vdash				
Test for illicit discharge				-							\vdash		4		
☐ Include in future education effort ☐ Check to see if hotspot is an NPDES non-filer						-		-			\perp	-	-	\vdash	
Onsite non-residential retrofit						-					\Box		+	1	
Pervious area restoration; complete PAA sheet and record						_							+		
Unique Site ID here: Schedule a review of storm water pollution prevention plan													_		
Schedule a review of storm water politition prevention plan												-	+		
Notes:											\sqcup	-	+		
												4	+		
											Н		-		
				-								4	+		=
										4	\sqcup		+		
										_	Ш		+		
											\Box		-		
													1	\sqcup	
													-		

WATERSHED: COME RAM	SUBWATERSHE	ED: 1502	7	Unique Site	ID:		
DATE: / /	ASSESSED BY:	GF	CAMERA ID:	2	PIC#:		
MAP GRID:	LAT	0 1	LONG°	1 11	LMK#		
A. SITE DATA AND BASIC CLASSIFICATION		.057292		778			
Name and Address: NEH Auto S 791 N. Lines for e	_		al Municipal Related	Miscellaneous Golf Course Marina Animal Faci		2	
SIC code (if available): NPDES Status: ☐ Regulated ☐ Unknown	140		Repair		IN	DEX*	
B. VEHICLE OPERATIONS N/A (Skip to	o part C)			Observed P	Pollution Source?	1	
B1. Types of vehicles: Fleet vehicles	School buses	Other:	lehicles for s	5016			
B2. Approximate number of vehicles: 30							
B3. Vehicle activities (circle all that apply)				shed Stored		0	
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion						0	
B5. Is there evidence of spills/leakage from	vehicles? \[Y	☑N ☐ Car	ı't Tell			0	
B6. Are uncovered outdoor fueling areas pr	esent? 🔲 Y 🔀]N	Tell			0	
B7. Are fueling areas directly connected to storm drains? Y Y N Can't Tell							
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed di			' □ N □ Can'	t Tell		0	
C. OUTDOOR MATERIALS N/A (Skip to	o part D)			Observed P	ollution Source?	N	
C1. Are loading/unloading operations presently uncovered and draining town			l 7 🔲 N 🔲 Can'	t Tell		0	
C2. Are materials stored outside? \(\subseteq \text{Y} \) \(\subseteq \text{Where are they stored?} \) \(\subseteq \text{grass/dirt area} \)				olid Description	n:	0	
C3. Is the storage area directly or indirectly	connected to stor	m drain (circle	one)? 🗌 Y 🔲 N	V ☐ Can't Te	11	0	
C4. Is staining or discoloration around the a	rea visible? 🔲 Y	/	Can't Tell			0	
C5. Does outdoor storage area lack a cover's	Y N	Can't Tell				0	
C6. Are liquid materials stored without second	ndary containmen	nt? 🗌 Y 📋	N Can't Tell			0	
C7. Are storage containers missing labels or	in poor condition	n (rusting)?	Y N Can	ı't Tell		0	
D. WASTE MANAGEMENT XN/A (Skip t					ollution Source?	\ <u>/</u>	
D1. Type of waste (check all that apply):	Garbage []	Construction ma	aterials	lous materials		0	
D2. Dumpster condition (<i>check all that app</i> evidence of leakage (stains on ground)	Overflowing			ndition Le	eaking or	0	
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (be				,		0	
E. PHYSICAL PLANT N/A (Skip to part.	F)			Observed P	ollution Source?	N	
E1. Building: Approximate age: Evidence that maintenance results in discha						0	
*Index: O denotes potential po	llution source;	denotes	confirmed pollu	ter (evidence w	vas seen)		

											-		
E2. Parking Lot: Approximate age yrs. Condition: Clean Stained Dirty Breaking up Surface material Paved/Concrete Gravel Permeable Don't know													0
E3. Do downspouts discharge to impervious surface? Y \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1 Ll	Don'	t kn	ow [No Don't	ne visi know	ble						0
E4. Evidence of poor cleaning practices for construction activities		_		_] Y [] N		an't '	Γell		0
F. TURF/LANDSCAPING AREAS N/A (skip to part G)							bserv					? [N
F1. % of site with: Forest canopy % Turf grass % La	ındscap	oing		% E	are S	-	_%						0
F2. Rate the turf management status: High Medium	Low												0
F3. Evidence of permanent irrigation or "non-target" irrigation	_	N [Ca	an't T	ell								0
F4. Do landscaped areas drain to the storm drain system?	Y] N		Can'	t Tell								0
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	s) on ac	ljacen	t imp	ervio	us surl	face? [] Y [] N	☐ Ca	an't T	`ell		0
G. STORM WATER INFRASTRUCTURE N/A (skip to par							bserv					? L	
G1. Are storm water treatment practices present? Y N	Unkn	own	If ye	s, ple	ease d	_							0
G2. Are private storm drains located at the facility? \[\subseteq \text{Y} \[\subseteq \text{N} \] Is trash present in gutters leading to storm drains? If so, co	Unk	nowi	n										0
Index Rating fo			_										
Clean							Filthy						
Sediment 1 2	$\frac{1}{2}$			=	4			∐ 5 □ 5					
Organic material	3 3			F	4			$\frac{1}{5}$					
G3. Catch basin inspection – Record SSD Unique Site ID here:		С	ondi	ition:		irty [Cle	an					
H. INITIAL HOTSPOT STATUS - INDEX RESULTS													
Not a hotspot (fewer than 5 circles and no boxes checked)													
Confirmed hotspot (10 to 15 circles and/or 1 box checked)	Severe	hots	pot (>15 c	circles	and/c	r 2 or	more	boxe	s che	cked)	_
Follow-up Action: Refer for immediate enforcement				-	-	4-1		-				\vdash	
Suggest follow-up on-site inspection							-		-		-	\vdash	
Test for illicit discharge							-						
Include in future education effort				-			4				4		
Check to see if hotspot is an NPDES non-filer Onsite non-residential retrofit													
Pervious area restoration; complete PAA sheet and record									1				
Unique Site ID here: Schedule a review of storm water pollution prevention plan													
Schedule a review of storm water pollution prevention plan													
Notes:													
				1,11									

WATERSHED: Come Rule	SUBWATERSHEI	0: 1500	1	UNIQUE SITE	ID:		
DATE: 9 1/21 17	ASSESSED BY:	GF	CAMERA ID:	Per	PIC#:		
Map Grid:	LAT°	1 1	Long°	1 11	LMK#		
A. SITE DATA AND BASIC CLASSIFICATION	38.0	155778	the state of the s	1198			
Name and Address: 1015 Auto	Category:	☐ Institutiona☐ Transport-	nl	Miscellaneous Golf Course Marina Animal Faci			
SIC code (if available): NPDES Status: Regulated Unknown		iption of Opera		(trust		INDEX*	
B. VEHICLE OPERATIONS N/A (Skip to	part C)			Observed 1	Pollution Source	? 7	
B1. Types of vehicles: Fleet vehicles B2. Approximate number of vehicles:	<u> </u>						
B3. Vehicle activities (circle all that apply)				shed Stored	7	0	
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion	methods? Y	□ N □ Cai	ı't Tell			0	
B5. Is there evidence of spills/leakage from	vehicles? Y	□ N □ Can	't Tell			Ø	
B6. Are uncovered outdoor fueling areas pro	esent? Y	N Can't	Tell			0	
B7. Are fueling areas directly connected to s			Can't Tell			0	
B8. Are vehicles washed outdoors? Y N Can't Tell Does the area where vehicles are washed discharge to the storm drain? Y N Can't Tell							
C. OUTDOOR MATERIALS N/A (Skip to	part D)			Observed I	Pollution Source	?	
C1. Are loading/unloading operations presently uncovered and draining toward the control of the			∏N ∏ Can	't Tell		0	
C2. Are materials stored outside? Y Where are they stored? grass/dirt area				olid Description	n:	0	
C3. Is the storage area directly or indirectly	connected to storn	n drain (circle	one)?	V ☐ Can't Te	11	0	
C4. Is staining or discoloration around the a	rea visible? X		an't Tell			0	
C5. Does outdoor storage area lack a cover?	□Y □N [Can't Tell				0	
C6. Are liquid materials stored without seco	ndary containmen	t? 🗌 Y 📋	N 🔲 Can't Tell			0	
C7. Are storage containers missing labels or	in poor condition	(rusting)?	Y N Car	ı't Tell		0	
D. WASTE MANAGEMENT N/A (Skip to	part E)			Observed F	Pollution Source	?	
D1. Type of waste (check all that apply): [Garbage C	onstruction ma	terials	lous materials		0	
D2. Dumpster condition (<i>check all that app</i> eridence of leakage (stains on ground)	ly): No cover/L Overflowing	Lid is open	Damaged/poor co	ndition L	eaking or	0	
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (ber	in inlet? 🔲 Y 🔲					0	
E. PHYSICAL PLANT N/A (Skip to part I	7)			Observed F	Pollution Source	?	
E1. Building: Approximate age: Evidence that maintenance results in discharge.						0	
*Index: O denotes potential po	llution source;	denotes	confirmed pollu	ter (evidence v	was seen)		

										1000		
E2. Parking Lot: Approximate age yrs. Condition:											C)
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?		Don	't kno	w [] None Oon't k	e visible now					C	
E4. Evidence of poor cleaning practices for construction activities	(stains	lead	ing to	stori	n drai	n)? 🔲 Y	$I \square N$		Can't T	Γell)
F. TURF/LANDSCAPING AREAS N/A (skip to part G)						7 11	erved				?	
	andscap	oing	9	⁄6 В	are So	il9	6)
F2. Rate the turf management status: High Medium	Low)
F3. Evidence of permanent irrigation or "non-target" irrigation		N [Car	n't T	ell)
] Y [] N			Tell)
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	gs) on ac	ljacer	t impe	erviou	ıs surfa	ce? 🔲	Y 🔲 N	1 🗌 C	an't T	ell)
G. STORM WATER INFRASTRUCTURE N/A (skip to par							erved				?	
G1. Are storm water treatment practices present? Y N		own	If yes	s, ple	ase de	-					C)
G2. Are private storm drains located at the facility? $\square Y \square N$,,,								
Is trash present in gutters leading to storm drains? If so, c	omplet	e the	index	belo	w,						()
Index Rating for Accumulation in Gutters												
Clean				_		Fil	thy					
Sediment 1 2	\square 3			님	4			5 5				
Organic material \square 1 \square 2 \square 3 \square 4 \square 5 Litter \square 1 \square 2 \square 3 \square 4 \square 5												
G3. Catch basin inspection - Record SSD Unique Site ID here:	les and	(Condit	ion:	Dir	ty 🔲	Clean					
H. INITIAL HOTSPOT STATUS - INDEX RESULTS												
Not a hotspot (fewer than 5 circles and no boxes checked)	Potent	ial ho	otspot	(5 t	o 10 ci	rcles bu	t no bo	xes cl	necked	1)		
Confirmed hotspot (10 to 15 circles and/or 1 box checked)	Severe	hots	pot (>	15 c	ircles	and/or 2	or mo	re box	es che	cked)		_
Follow-up Action:												
Refer for immediate enforcement												
Suggest follow-up on-site inspection Test for illicit discharge												
Include in future education effort												101
Check to see if hotspot is an NPDES non-filer									100			
Onsite non-residential retrofit Pervious area restoration; complete PAA sheet and record		H										
Unique Site ID here:												
Schedule a review of storm water pollution prevention plan												
Notes:												
1.0000												
			V.									
									11-11			
												4 (7)

WATERSHED:	SUBWATERSHED: 15027	Unique Site 1	D:				
DATE: 9 1/21 17	ASSESSED BY: CAMERA ID:	Per	PIC#:				
Map Grid:	LAT ' '' LONG °	1 11	LMK#				
A. SITE DATA AND BASIC CLASSIFICATION							
Name and Address: KU 104 W Loudon Ave	☐ Institutional ☐ Municipal ☐ Transport-Related ☐	Miscellaneous Golf Course Marina Animal Facil	ity				
SIC code (if available): NPDES Status: Regulated Unregulated Unknown	Basic Description of Operation:	botaton,	Meters INDEX*				
B. VEHICLE OPERATIONS N/A (Skip to	part C)	Observed Po	ollution Source?				
B1. Types of vehicles: Fleet vehicles	School buses Other:	•					
B2. Approximate number of vehicles:	0_						
B3. Vehicle activities (circle all that apply)	Maintained Repaired Recycled Fueled Was	hed Stored	0				
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion			0				
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0				
B6. Are uncovered outdoor fueling areas present? Y N D'Can't Tell							
B7. Are fueling areas directly connected to storm drains? Y N Can't Tell							
B8. Are vehicles washed outdoors? \[Y \] N \[\subseteq \text{Can't Tell} \] Does the area where vehicles are washed discharge to the storm drain? \[Y \] N \[\subseteq \text{Can't Tell} \]							
C. OUTDOOR MATERIALS N/A (Skip to part D) Observed Pollution Source							
C1. Are loading/unloading operations presently uncovered and draining towards.		Tell	0				
C2. Are materials stored outside? ✓ Y ☐ Where are they stored? ☐ grass/dirt area	N ☐ Can't Tell If yes, are they ☐ Liquid ☐ So ☐ concrete/asphalt ☐ bermed area	lid Description	· O				
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)?	Can't Tell	0				
C4. Is staining or discoloration around the a	rea visible? 🗌 Y 🔲 N 🗹 Can't Tell		0				
C5. Does outdoor storage area lack a cover?	✓Y N Can't Tell		0				
C6. Are liquid materials stored without seco	ndary containment? Y N Can't Tell	oil pour	s 0				
C7. Are storage containers missing labels or	in poor condition (rusting)? Y N Can	t Tell	0				
D. WASTE MANAGEMENT N/A (Skip to	part E)	Observed Po	ollution Source?				
D1. Type of waste (check all that apply):	Garbage Construction materials Hazardo	ous materials	0				
D2. Dumpster condition (check all that apply): No cover/Lid is open Damaged/poor condition Leaking or evidence of leakage (stains on ground) Overflowing							
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (ber			0				
E. PHYSICAL PLANT N/A (Skip to part I	F)	Observed Po	ollution Source?				
	yrs. Condition of surfaces: Clean Stained rge to storm drains (staining/discoloration)? Y						
*Index: O denotes potential po	llution source; denotes confirmed pollute	er (evidence w	as seen)				

E2. Parking Lot: Approximate age yrs. Condition:												0	
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?	N [now	N Don	one v	isible						0
E4. Evidence of poor cleaning practices for construction activities									1 🔲	Can't	Tell		0
F. TURF/LANDSCAPING AREAS N/A (skip to part G)							Obse					e?	
F1. % of site with: Forest canopy % Turf grass % L	andsca	ping		%	Bare	Soil	<u>%</u>						0
F2. Rate the turf management status: High Medium	Low												0
F3. Evidence of permanent irrigation or "non-target" irrigation] Y [] N [Can't	Tell							-	0
F4. Do landscaped areas drain to the storm drain system?] Y	□N] Can	't Te	11						_	0
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	gs) on a	adjace	nt in	pervi	ous su	rface'	Y 🗌 Y		1 🗌 (Can't	Гell	L,	0
G. STORM WATER INFRASTRUCTURE N/A (skip to pa	rt H)						Obse	rved	Pollu	tion S	ourc		
G1. Are storm water treatment practices present? Y N] Unkı	nown	Ify	es, p	lease	desci	ribe:				_		0
G2. Are private storm drains located at the facility? \(\subseteq Y \subseteq N \) Is trash present in gutters leading to storm drains? If so, c	Un comple	know	n ind	ex be	low.								0
Index Rating for Accumulation in Gutters													
Sediment	П3	_	_	Г	74		Filth	_	5		-	-	-
Organic material													
Litter 2	3]4	100			5				
G3. Catch basin inspection - Record SSD Unique Site ID here:	_	_	Conc	lition	: [_]	Dirty		lean	_				
H. INITIAL HOTSPOT STATUS - INDEX RESULTS				. /=	. 10		1				1\	_	
☐ Not a hotspot (fewer than 5 circles and no boxes checked) ☐ ☐ Confirmed hotspot (10 to 15 circles and/or 1 box checked) ☐												17	
Follow-up Action:	Jevel	CHOU	por	13	CHCI		10120				CORCO		
Refer for immediate enforcement					1					\Box		\Box	
Suggest follow-up on-site inspection								\top				\Box	
Test for illicit discharge Include in future education effort								1		1			
Check to see if hotspot is an NPDES non-filer	15=4				+					1			-
Onsite non-residential retrofit	+	+						1					
Pervious area restoration; complete PAA sheet and record Unique Site ID here:	+	-					++			11			-
Schedule a review of storm water pollution prevention plan							++	1					
T. C. C. C. C. C. C. C. C. C. C. C. C. C.		+			+		1	+		1			
Notes:	-	+					1	-		1			
	-							#					
D UPD-C	++				17								
J. Duplar								1					
241	-												
/ 1													
													70
13.14 /2-15													
7 () / 5	13.1h /215												

WATERSHED: COME RUN	SUBWATERSHED: 15008	UNIQUE SITE ID	
DATE: 9 /53/17	ASSESSED BY: CAMERA ID:	P	TC#:
MAP GRID:	LAT ° ' " LONG °	' " I	MK#
A. SITE DATA AND BASIC CLASSIFICATI		95	
Name and Address: Coit	Category: Commercial Industrial Institutional Municipal	Miscellaneous Golf Course	
1078 Majourn Rd	Transport-Related	Marina Animal Facility	,
SIC code (if available):	Basic Description of Operation:		
NPDES Status: Regulated Unknown	Clooping & Restoration	Services	INDEX*
B. VEHICLE OPERATIONS N/A (Skip	o to part C)	Observed Pol	ution Source?
B1. Types of vehicles: Fleet vehicles	School buses Other:		
B2. Approximate number of vehicles:			
	by): Maintained Repaired Recycled Fueled Wa	shed Stored	0
B4. Are vehicles stored and/or repaired o Are these vehicles lacking runoff diversion	utside? Y N Can't Tell on methods? Y N Can't Tell		0
B5. Is there evidence of spills/leakage from	om vehicles? Y N Can't Tell		0
B6. Are uncovered outdoor fueling areas	present? Y N Can't Tell		0
B7. Are fueling areas directly connected	to storm drains? Y N Can't Tell		0
B8. Are vehicles washed outdoors? \(\subseteq \) Yoes the area where vehicles are washed	' ☐ N ☐ Can't Tell discharge to the storm drain? ☐ Y ☐ N ☐ Can	't Tell	0
C. OUTDOOR MATERIALS N/A (Skip	o to part D)	Observed Pol	lution Source?
C1. Are loading/unloading operations predictions are they uncovered and draining to		't Tell	0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid S Can't Tell bermed area	olid Description:	o
C3. Is the storage area directly or indirect	tly connected to storm drain (circle one)? Y	N 🔲 Can't Tell	0
C4. Is staining or discoloration around the	e area visible? Y N Can't Tell		8
C5. Does outdoor storage area lack a cove	er? 🔲 Y 🔛 N 🔲 Can't Tell		0
C6. Are liquid materials stored without se			0
	,	n't Tell	0
D. WASTE MANAGEMENT N/A (Ski)		Observed Pol	lution Source?
D1. Type of waste (check all that apply):	Garbage Construction materials Hazar	dous materials	0
evidence of leakage (stains on ground		ondition	ring or O
D3. Is the dumpster located near a storm of the storm of	drain inlet?		0
E. PHYSICAL PLANT N/A (Skip to pa	rt F)	Observed Pol	lution Source?
E1. Building: Approximate age:	yrs. Condition of surfaces:	ed Dirty D	amaged O
Evidence that maintenance results in disc	charge to storm drains (staining/discoloration)? Y	□ N □ Don't kno	ow O
*Index: O denotes potential	pollution source; denotes confirmed pollu	iter (evidence wa	s seen)

E2. Parking Lot: Approximate age yrs. Condition:											C)
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?	V D	on't l			one vi t knov						C)
E4. Evidence of poor cleaning practices for construction activities	(stains le	ading	to sto	rm dr	ain)?	ΠΥ	□N		an't T	ell	C)
F. TURF/LANDSCAPING AREAS N/A (skip to part G)						Obser	ved F	olluti	ion So	urce	?[
F1. % of site with: Forest canopy % Turf grass % La	andscapi	ng	%	Bare S		%					C)
F2. Rate the turf management status: High Medium	Low										C)
F3. Evidence of permanent irrigation or "non-target" irrigation			Can't	Tell							C)
		N ['t Tel	1						C)
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	s) on adja	cent is	npervi	ous sui	rface?	□ Y	ΠN	☐ C	an't To	ell	C)
G. STORM WATER INFRASTRUCTURE N/A (skip to par						Obser			-		2	
G1. Are storm water treatment practices present? Y N		vn If	yes, p	lease (,,,,,	V.1.			C)
G2. Are private storm drains located at the facility? Y N Is trash present in gutters leading to storm drains? If so, co			dex be	low.							С)
Index Rating for Accumulation in Gutters												
Clean Filthy												
	3		Ĺ	_ 4			5					
Organic material □ 1 □ 2 □ 3 □ 4 □ 5 Litter □ 1 □ 2 □ 3 □ 4 □ 5												
G3. Catch basin inspection – Record SSD Unique Site ID here: Condition: Dirty Clean												
H. INITIAL HOTSPOT STATUS - INDEX RESULTS												
☐ Not a hotspot (fewer than 5 circles and no boxes checked) ☐	Potential	hotsp	oot (5	to 10	circle	s but n	o box	es ch	ecked)	,		
Confirmed hotspot (10 to 15 circles and/or 1 box checked)	Severe h	otspo	(>15	circle	s and	or 2 or	more	boxe	s chec	ked)		_
Follow-up Action:												_
Refer for immediate enforcement Suggest follow-up on-site inspection												
Test for illicit discharge												
Include in future education effort												
Check to see if hotspot is an NPDES non-filer												
Onsite non-residential retrofit Pervious area restoration; complete PAA sheet and record												
Unique Site ID here:	10.0											
Schedule a review of storm water pollution prevention plan												
Notes										11		
staniar in inlet at rear of	\Box	T		11						T		
t cla in touck	111	+		\top						1	-17	
Bld. Cerpet Cleaning	+++	-		+	+					+		
Notes: Staining in inlet at rear of Bld. Carpet Cleaning truck Parked next to it.					-		\forall			\forall		
		+										
								1		\Box		
										\Box		
										\Box		
				\top								
			1 1				4					4

WATERSHED: Come Run	SUBWATERSHED: /5008	UNIQUE SITE ID:					
DATE: 9//3/ 17	ASSESSED BY: CAMERA ID:	Pic#:					
MAP GRID:	LAT ' ' LONG '	LMK#					
A. SITE DATA AND BASIC CLASSIFICATIO							
Name and Address: Site One	Category:	∕iiscellaneous ☐ Golf Course ☐ Marina ☐ Animal Facility					
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation:		INDEX*				
B. VEHICLE OPERATIONS N/A (Skip to	p part C)	Observed Pollution Sou	rce?				
B1. Types of vehicles: Fleet vehicles	School buses Other:						
B2. Approximate number of vehicles:							
	: Maintained Repaired Recycled Fueled Was	hed Stored	0				
B4. Are vehicles stored and/or repaired out: Are these vehicles lacking runoff diversion			0				
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0				
B6. Are uncovered outdoor fueling areas pr	esent? Y N Can't Tell		0				
B7. Are fueling areas directly connected to	storm drains? Y N Can't Tell		0				
B8. Are vehicles washed outdoors? Y N Can't Tell Does the area where vehicles are washed discharge to the storm drain? Y N Can't Tell							
C. OUTDOOR MATERIALS N/A (Skip to	o part D)	Observed Pollution Sou	rce?				
C1. Are loading/unloading operations prese If yes, are they uncovered and draining tow		Tell	0				
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid So concrete/asphalt bermed area	lid Description:	0				
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)?	Can't Tell	0				
C4. Is staining or discoloration around the a	rea visible? DV DN DCan't Tell						
	tou visione:						
C5. Does outdoor storage area lack a cover			0				
C5. Does outdoor storage area lack a cover C6. Are liquid materials stored without second	Y N Can't Tell						
	O Y N Can't Tell ondary containment? Y N Can't Tell	t Tell	0				
C6. Are liquid materials stored without second	ondary containment? Y V N Can't Tell r in poor condition (rusting)? Y V N Can'	t Tell Observed Pollution Sour	0 0				
C6. Are liquid materials stored without second containers missing labels on D. WASTE MANAGEMENT N/A (Skip)	ondary containment? Y V N Can't Tell r in poor condition (rusting)? Y V N Can'	Observed Pollution Sour	0 0				
C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply):	ondary containment? Y N Can't Tell ondary containment? Y N Can't Tell on poor condition (rusting)? Y N Can't o part E) Garbage Construction materials Hazardo	Observed Pollution Sour	O O O rcce?				
C6. Are liquid materials stored without second containers missing labels of the containers missing	ondary containment? Y N Can't Tell ondary containment? Y N Can't Tell or in poor condition (rusting)? Y N Can't or part E) Garbage Construction materials Hazardo oly): No cover/Lid is open Damaged/poor cor Overflowing on in inlet? Y N Can't Tell	Observed Pollution Sour	O O O O O				
C6. Are liquid materials stored without second containers missing labels on the containers missing	ondary containment? Y N Can't Tell in poor condition (rusting)? Y N Can't o part E) Garbage Construction materials Hazardo ly): No cover/Lid is open Damaged/poor cor Overflowing in inlet? Y N Can't Tell rms, curbs) lacking? Y N Can't Tell	Observed Pollution Sour	O O O O O				
C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply evidence of leakage (stains on ground) D3. Is the dumpster located near a storm drawing figures, are runoff diversion methods (be E. PHYSICAL PLANT N/A (Skip to part) E1. Building: Approximate age:	ondary containment? Y N Can't Tell in poor condition (rusting)? Y N Can't Tell opart E) Garbage Construction materials Hazardo dy): No cover/Lid is open Damaged/poor cor Overflowing in inlet? Y N Can't Tell rms, curbs) lacking? Y N Can't Tell F) yrs. Condition of surfaces: Clean Stained	Observed Pollution Sources materials dition Leaking or Observed Pollution Sources Directly Damaged	O O O O O O O O O O O O O O O O O O O				
C6. Are liquid materials stored without second containers missing labels of the containers missing	ondary containment?	Observed Pollution Sources materials dition Leaking or Observed Pollution Sources Dirty Damaged N Don't know	O O O O O C C C C C C C C C C C C C C C				

E2. Parking Lot: Approximate age yrs. Condition: _ Clean _ Stained _ Dirty _ Breaking up Surface material _ Paved/Concrete _ Gravel _ Permeable _ Don't know											0	
E3. Do downspouts discharge to impervious surface? Y Name Are downspouts directly connected to storm drains?	Y []	Don't	kno N	w [] [] D	None on't kn	visible low					0	
E4. Evidence of poor cleaning practices for construction activities	(stains	leadii	ng to	storm	drain))? 🔲 Y	□N		an't Te	11	0	
F. TURF/LANDSCAPING AREAS N/A (skip to part G)						Obse	erved 1	Pollut	ion Sou	rce?		
	ndscap	ing _	9	6 Ba	re Soil						0	
F2. Rate the turf management status: High Medium	Low										0	
F3. Evidence of permanent irrigation or "non-target" irrigation	Y 🔲	Ν[] Car	n't Te	1						0	
F4. Do landscaped areas drain to the storm drain system?	Y] N		Can't	Γell						0	
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	s) on ad	jacent	impe	rvious	surfac	e? 🔲 Y	ľΩN	ПС	an't Tel		0	
G. STORM WATER INFRASTRUCTURE \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	t H)					Obse	erved I	Pollut	ion Sou	rce?	e?	
G1. Are storm water treatment practices present?	Unkno	wn]	f yes	s, plea	se desc	cribe: _					0	
G2. Are private storm drains located at the facility? \(\subseteq \text{Y} \subseteq \text{N} \) Is trash present in gutters leading to storm drains? If so, co	Unkı	nown	ndex	belov	v.						0	
Index Rating for Accumulation in Gutters												
Clean Filthy Sediment 1 72 73 74 5												
Sediment 1 2 3 4 5 Organic material 1 2 3 4 5												
Litter 1 2	3							5				
G3. Catch basin inspection – Record SSD Unique Site ID here:		Co	ondit	ion: [Dirt	y 🗆 C	Clean					
H. INITIAL HOTSPOT STATUS - INDEX RESULTS	/	-								_		
☐ Not a hotspot (fewer than 5 circles and no boxes checked) ☐ Confirmed hotspot (10 to 15 circles and/or 1 box checked) ☐	Potenti	al hot	spot	(5 to	10 cir	cles but	no bo	xes ch	ecked)	(be		
Follow-up Action:	Severe	lotsp	01 (>		CIES AI	10/01 2		C DOX	SCHOOL		TT	
Refer for immediate enforcement		H		11	++							
Suggest follow-up on-site inspection		Н	+							1		
Test for illicit discharge Include in future education effort		H	+							-		
Check to see if hotspot is an NPDES non-filer												
Onsite non-residential retrofit		H			#1							
Pervious area restoration; complete PAA sheet and record Unique Site ID here:		1										
Schedule a review of storm water pollution prevention plan												
Notes:												
110665												
			3/1									
Li Li	11		1									
	Ī											
								4				

WATERSHED: Come Run	Subwatershed: 1540 8	UNIQUE SITE II	D:			
DATE: 9//3/ / 7	ASSESSED BY: GF CAMERA ID:		PIC#:			
MAP GRID:	LAT'' LONG	* **	LMK#			
A. SITE DATA AND BASIC CLASSIFICATION		/10				
Name and Address: Estes	caregory.	Miscellaneous Golf Course				
1020 Whipple Dr.	Transport-Related	☐ Marina ☐ Animal Facili	ty			
SIC code (if available):	Basic Description of Operation:					
NPDES Status: Regulated Unknown	Truck line		INDEX*			
B. VEHICLE OPERATIONS N/A (Skip to	part C)	Observed Po	llution Source?			
B1. Types of vehicles: Fleet vehicles	School buses Other:					
B2. Approximate number of vehicles: 50						
	Maintained Repaired Recycled Fueled Was	hed Stored	9			
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion	ide? Y N Can't Tell methods? Y N Can't Tell		0			
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0			
B6. Are uncovered outdoor fueling areas pro	esent? Y N Can't Tell		0			
B7. Are fueling areas directly connected to	storm drains? Y Y N Can't Tell		0			
B8. Are vehicles washed outdoors? Y N Can't Tell Does the area where vehicles are washed discharge to the storm drain? Y N Can't Tell						
C. OUTDOOR MATERIALS N/A (Skip to			llution Source?			
C1. Are loading/unloading operations presently uncovered and draining towards.		t Tell	0			
	N Can't Tell If yes, are they Liquid So		o			
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)? Y N	Can't Tell	0			
C4. Is staining or discoloration around the a	rea visible? Y N Can't Tell	111	0			
C5. Does outdoor storage area lack a cover?	Y N Can't Tell		0			
C6. Are liquid materials stored without seco	ndary containment? Y N Can't Tell		0			
C7. Are storage containers missing labels or	in poor condition (rusting)? Y N Can	't Tell	0			
D. WASTE MANAGEMENT N/A (Skip to	p part E)	Observed Po	llution Source?			
D1. Type of waste (check all that apply): [Garbage Construction materials Hazard	ous materials	0			
D2. Dumpster condition (<i>check all that app</i> evidence of leakage (stains on ground)	ly): No cover/Lid is open Damaged/poor con Overflowing	nditionLea	king or O			
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (bet	in inlet? 🗌 Y 🗌 N 🔲 Can't Tell		0			
E. PHYSICAL PLANT IN/A (Skip to part I	F)	Observed Po	llution Source?			
E1. Building: Approximate age:	yrs. Condition of surfaces: Clean Staine	d 🗌 Dirty 🔲 1	Damaged O			
Evidence that maintenance results in discharge	rge to storm drains (staining/discoloration)? Y	N Don't kr	now O			
*Index: O denotes potential po	llution source; denotes confirmed pollut	er (evidence wa	as seen)			

E2. Parking Lot: Approx		yrs. Condition: C					ty 🗌	Breakin	g up				0
E3. Do downspouts disch	narge to imperviou			Don		w 🗌	None on't kn	visible ow					0
E4. Evidence of poor clear									□N	☐ Ca	n't Tel		0
F. TURF/LANDSCAPIN	/	CONTRACTOR OF THE PARTY OF THE						The Party of the P	rved P				
F1. % of site with: Forest			Landsca	ping		% Ba	re Soil	%					0
F2. Rate the turf manager			Low										0
F3. Evidence of permane			_] N [] Ca	n't Te	11					XII.	0
F4. Do landscaped areas	drain to the storm	drain system?] Y [] N		Can't	Гell						0
F5. Do landscape plants acc	umulate organic ma	atter (leaves, grass clippi	ngs) on a	djacer	t imp	ervious	surface	? 🔲 Y	□ N [Car	i't Tell		0
G. STORM WATER IN									rved P				
G1. Are storm water trea	tment practices pr	resent? Y N	Unkn	own	If ye	s, plea	se desc	ribe:					0
G2. Are private storm dra	ins located at the	facility? Y N I N to storm drains? If so,	Unl	know te the	n inde	x belov	V.						0
•		Index Rating											
	Clean							Filth	ту П 5			_	
Sediment Organic material	Hi		☐ 3 ☐ 3			님.	1		日5				
Litter	∃i		3				ļ		□ 5				
G3. Catch basin inspection	on – Record SSD	Unique Site ID here:		(ondi	tion: [Dirty	/ 🗆 C	lean				
H. INITIAL HOTSPOT		The state of the s											
☐ Not a hotspot (fewer t	han 5 circles and	no boxes checked)	Potent	tial ho	tspot	t (5 to	10 circ	cles but	no box	es che	cked)	as.	
Confirmed hotspot (0 to 15 circles an	d/or 1 box checked) L	Severe	hots	pot (>15 cr	rcles ar	nd/or 2 c	or more	boxes	cnecke	(0)	
Follow-up Action: Refer for immediate e	nforcement		-		4			++	++	+	++	+	++
Suggest follow-up on			-		4	-			+++	++	+	+	
Test for illicit dischar	ge					+				+		-	-
Include in future educe		n filor		4		111		44	4-1	-	+	-	
Onsite non-residential)II-IIICI					44					-	
Pervious area restorat		A sheet and record											
Unique Site ID I	nere:												
Schedule a review of	storm water pollu	tion prevention plan							4.4				
Notes:	/ 1	. +									\perp		
Seasons	ry cant	rannal											
1611	lant/rea	is Under											
Notes: Season of the land of	7.7												
rest.													
, , .													
										-			

WATERSHED: Come Run	SUBWATERSHED: 15008	Unique Site ID:	
DATE: / /	ASSESSED BY: GF CAMERA ID:	PIC#:	
MAP GRID:	LAT°' LONG°	LMK#	
A. SITE DATA AND BASIC CLASSIFICATION	20 001=-		
Name and Address: AIM		Miscellaneous Golf Course	
National loose	☐ Institutional ☐ Municipal ☐ Transport-Related	Marina	
1868 Grupple CT		Animal Facility	
SIC code (if available):	Basic Description of Operation:		
NPDES Status: Regulated Unknown	Fruck leasing		INDEX*
B. VEHICLE OPERATIONS N/A (Skip to	o part C)	Observed Pollution Source	202
		Observed Pollution Source	ce:
B1. Types of vehicles: Lifleet vehicles B2. Approximate number of vehicles: 3			
	Maintained Repaired Recycled Fueled Wa	shed (Stored)	0
B4. Are vehicles stored and/or repaired outs		shed) (Stored	
Are these vehicles lacking runoff diversion			0
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0
B6. Are uncovered outdoor fueling areas pr	esent? Y N Can't Tell	or Cont. Present	0
B7. Are fueling areas directly connected to)	0
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed di		't Tell	0
C. OUTDOOR MATERIALS N/A (Skip to		Observed Pollution Source	202
C1. Are loading/unloading operations prese		Observed I officion Source	
Cities touching amounting operations process			
If yes, are they uncovered and draining tow	ards a storm drain inlet? Y N Can	't Tell	O
	N Can't Tell If yes, are they Liquid S		0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid S	olid Description:	
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid S Concrete/asphalt bermed area	olid Description:	0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly	N Can't Tell If yes, are they Liquid S Concrete/asphalt bermed area connected to storm drain (circle one)? Y N rea visible? Y N Can't Tell	olid Description:	0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a	N Can't Tell If yes, are they Liquid S Concrete/asphalt bermed area connected to storm drain (circle one)? Y N Can't Tell	olid Description:	0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second	N Can't Tell If yes, are they Liquid S Concrete/asphalt bermed area connected to storm drain (circle one)? Y N Can't Tell	olid Description:	0 0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y 1 rea visible? Y N Can't Tell Y N Can't Tell ondary containment? Y N Can't Tell r in poor condition (rusting)? Y N Can	olid Description:	0 0 0 0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second C7. Are storage containers missing labels of the company of the containers missing labels of the co	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y 1 rea visible? Y N Can't Tell Y N Can't Tell ondary containment? Y N Can't Tell r in poor condition (rusting)? Y N Can	olid Description: N	0 0 0 0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover's C6. Are liquid materials stored without second C7. Are storage containers missing labels of D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply) evidence of leakage (stains on ground)	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y 1 Tell rea visible? Y N Can't Tell Ondary containment? Y N Can't Tell ondary containment? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Hazard (aby): No cover/Lid is open Damaged/poor condition (rusting)?	olid Description: N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover's C6. Are liquid materials stored without second C7. Are storage containers missing labels of D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply)	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y 1 Tell rea visible? Y N Can't Tell Pondary containment? Y N Can't Tell r in poor condition (rusting)? Y N Can't Tell Can't Tell Pondary Condition (rusting)? Y N Can't Tell Pondary Condition (rusting)? Y N Can't Tell Pondary Condition (rusting)? Y N Can't Tell Pondary Construction materials Hazard Poly): No cover/Lid is open Damaged/poor condition inlet? Y N Can't Tell	olid Description: N	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover's C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply) D3. Is the dumpster located near a storm drawn.	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y 1 Tell rea visible? Y N Can't Tell Ondary containment? Y N Can't Tell ondary containment? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell Overflowing Sin inlet? Y N Can't Tell overflowing Sin inlet? Y N Can't Tell or in poor can't Tell overflowing Sin inlet? Y N Can't Tell or in poor can't Tell overflowing Sin inlet? Y N Can't Tell or in poor can't Tell overflowing Sin inlet? Y N Can't Tell or in poor can't Tell or	olid Description: N	O O O O O O O O O O O O O O O O O O O
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover's C6. Are liquid materials stored without second C7. Are storage containers missing labels of D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply) D3. Is the dumpster located near a storm drawley, are runoff diversion methods (be	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y 1 Tell rea visible? Y N Can't Tell Ondary containment? Y N Can't Tell ondary containment? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell overflowing on in inlet? Y N Can't Tell overflowing or in inlet? Y N Can't Tell or in curbs) lacking? Y N Can't Tell or in can't Tell or in contains or in inlet? Y N Can't Tell or in contains or in inlet? Y N Can't Tell or in contains or inlet?	Olid Description: Can't Tell Observed Pollution Source Colous materials Oddition Leaking or Observed Pollution Source	0 0 0 0 0 0 0 0 0 0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover's C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply evidence of leakage (stains on ground) D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (be E. PHYSICAL PLANT N/A (Skip to part) E1. Building: Approximate age:	N Can't Tell If yes, are they Liquid S concrete/asphalt bermed area connected to storm drain (circle one)? Y N Can't Tell Y N Can't Tell Ondary containment? Y N Can't Tell or in poor condition (rusting)? Y N Can't Tell Ondary Condition (rusting)? Y N Can't Tell Ondary Condition (rusting)? Y N Can't Tell Ondary Condition (rusting)? Y N Can't Tell Ondary Construction materials Hazard Coly): No cover/Lid is open Damaged/poor coly Overflowing Sin inlet? Y N Can't Tell Ondary Can'	Olid Description: Can't Tell	O O O O O O O O O O O O O O O O O O O

E2. Parking Lot: Approx	ximate agey Paved/Concrete	rs. Condition: [] (Clean eable [St Do	ained n't k	i 🔲	Dirty		Breakin	g up					0
E3. Do downspouts discl		s surface? Y]N[now	□ N Don	one v	risible w						0
E4. Evidence of poor cle			ies (stai	ns lea	ding	to ste	orm d	rain)	Y			Can't	Tell		0
F. TURF/LANDSCAPIN											Pollut			e?	
F1. % of site with: Fores				capin	g	%	Bare	Soil	%						0
F2. Rate the turf manage															0
F3. Evidence of permane						Can't	Tell								0
F4. Do landscaped areas			Y				n't Te	11							0
F5. Do landscape plants acc	cumulate organic mat	ter (leaves, grass clipp	ings) on	adjac	ent ir	nperv	ious su	rface'	? Y			an't '	Tell		0
G. STORM WATER IN											Pollu			e? [
G1. Are storm water trea					n If	yes, p	lease	desc	ribe:						0
G2. Are private storm dr	ains located at the t	facility? Y Y	V U	nkno lete th	wn ne ind	dex b	elow.								0
	- 8	Index Ratin						rs						_	
	Clean								Filt						
Sediment		☐ 2 ☐ 2				1	4			=	5 5				
Organic material Litter		H₂′	☐ 3 ☐ 3			Ī	4 4				5				
G3. Catch basin inspection	on – Record SSD U		-		Con	dition	n: 🗍	Dirty		lean					
H. INITIAL HOTSPOT															
☐ Not a hotspot (fewer	THE STATE OF THE PARTY OF THE P		Pote	ntial	hotsr	oot (S	5 to 10) circ	les but	no bo	xes cl	necke	:d)		
Confirmed hotspot (10 to 15 circles and	/or 1 box checked)	Seve	ere ho	tspo	t (>1:	circl	es an	d/or 2	or moi	e box	es ch	ecked	1)	
Follow-up Action:															
Refer for immediate of													p 41 13		
Suggest follow-up on Test for illicit dischar										11 [1]					
Include in future educ															
Check to see if hotspo		n-filer													
Onsite non-residentia		about and record								30					
Pervious area restorat Unique Site ID		A sheet and record													
Schedule a review of	storm water pollut	ion prevention plan													
			-		1						Ħ	1			
Notes:			-		+			1	11	-				+	
			-		+		+			-				1	
					+	++	+	-		+					
			-	+	+	+	+		++	+	-		-	-	
			-	\vdash	+		-		++	+	-		-	-	
			-		+				++				+	+	
				-	+	-	+		+			-	+	+	
				H	+	+	-		++	-				+	
				+	+		-	-	+	-				+	
						1 1				-1-				1	

WATERSHED: Como Pun	SUBWATERSHED: CR7	UNIQUE SITE ID:	
DATE: 9 //3/ /7	ASSESSED BY: CAMERA ID:	PIC#:	
MAP GRID:	LAT ' '' LONG '	" LMK#	
A. SITE DATA AND BASIC CLASSIFICATION			
Name and Address: Blue ross	Category: Commercial Industrial M Institutional Municipal	fiscellaneous Golf Course	
Contracting	Transport-Related	Marina	
698 Kernedy Rd		Animal Facility	
SIC code (if available):	Basic Description of Operation:		
NPDES Status: Regulated Unknown	Construction Lord		INDEX*
B. VEHICLE OPERATIONS N/A (Skip to	part C)	Observed Pollution Source	ce?
B1. Types of vehicles: Fleet vehicles			
B2. Approximate number of vehicles:			
B3. Vehicle activities (circle all that apply):	: Maintained Repaired Recycled Fueled Wash	ned Stored	0
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion	ide? Y N Can't Tell methods? Y N Can't Tell		0
B5. Is there evidence of spills/leakage from			0
B6. Are uncovered outdoor fueling areas pro			0
B7. Are fueling areas directly connected to			0
B8. Are vehicles washed outdoors? Y	□ N □ Can't Tell	m 11	0
Does the area where vehicles are washed dis			1.7
C. OUTDOOR MATERIALS AND (Skip to		Observed Pollution Source	ce?
C1. Are loading/unloading operations presently uncovered and draining towards.		Tell	0
Co. 1		id Description:	
Where are they stored? grass/dirt area	N ☐ Can't Tell If yes, are they ☐ Liquid ☐ Sol ☐ concrete/asphalt ☐ bermed area	d Description.	0
Where are they stored? grass/dirt area	Concrete/asphalt bermed area connected to storm drain (circle one)? Y N		0
Where are they stored? grass/dirt area	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N		
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell		0
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Y ☐ N ☐ Can't Tell		0
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Y ☐ N ☐ Can't Tell	☐ Can't Tell	0 0
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Y ☐ N ☐ Can't Tell Indary containment? ☐ Y ☑ N ☐ Can't Tell Tin poor condition (rusting)? ☐ Y ☑ N ☐ Can'	☐ Can't Tell	0 0 0 0
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without seconds. C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Y ☐ N ☐ Can't Tell Indary containment? ☐ Y ☑ N ☐ Can't Tell Tin poor condition (rusting)? ☐ Y ☑ N ☐ Can'	Can't Tell Tell Observed Pollution Source	0 0 0 0
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply) evidence of leakage (stains on ground)	☐ concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell P ☐ Y ☐ N ☐ Can't Tell Indary containment? ☐ Y ☐ N ☐ Can't Tell rin poor condition (rusting)? ☐ Y ☐ N ☐ Can' o part E) ☐ Garbage ☐ Construction materials ☐ Hazardo ly): ☐ No cover/Lid is open ☐ Damaged/poor con ☐ Overflowing	Can't Tell Tell Observed Pollution Source us materials	O O O O C::?
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply)	Concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Y ☐ N ☐ Can't Tell Indary containment? ☐ Y ☑ N ☐ Can't Tell in poor condition (rusting)? ☐ Y ☑ N ☐ Can' o part E) ☐ Garbage ☐ Construction materials ☐ Hazardo ly): ☐ No cover/Lid is open ☐ Damaged/poor con ☐ Overflowing in inlet? ☐ Y ☐ N ☐ Can't Tell	Can't Tell Tell Observed Pollution Source us materials	O O O O O O O O O O O O O O O O O O O
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without secon C7. Are storage containers missing labels or D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply) evidence of leakage (stains on ground) D3. Is the dumpster located near a storm dra	Concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Production (Tan't Tell Indary containment? ☐ Y ☐ N ☐ Can't Tell In poor condition (rusting)? ☐ Y ☐ N ☐ Can't O part E) ☐ Garbage ☐ Construction materials ☐ Hazardo Alp): ☐ No cover/Lid is open ☐ Damaged/poor con ☐ Overflowing In inlet? ☐ Y ☐ N ☐ Can't Tell rms, curbs) lacking? ☐ Y ☐ N ☐ Can't Tell	Can't Tell Tell Observed Pollution Source us materials	
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without seco C7. Are storage containers missing labels or D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply) evidence of leakage (stains on ground) D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (bet	Concrete/asphalt ☐ bermed area connected to storm drain (circle one)? ☐ Y ☐ N rea visible? ☐ Y ☐ N ☐ Can't Tell Production (Tan't Tell Indary containment? ☐ Y ☐ N ☐ Can't Tell In poor condition (rusting)? ☐ Y ☐ N ☐ Can't O part E) ☐ Garbage ☐ Construction materials ☐ Hazardo Alp): ☐ No cover/Lid is open ☐ Damaged/poor con ☐ Overflowing In inlet? ☐ Y ☐ N ☐ Can't Tell rms, curbs) lacking? ☐ Y ☐ N ☐ Can't Tell	Can't Tell Tell Observed Pollution Source us materials dition Leaking or Observed Pollution Source	
Where are they stored? grass/dirt area C3. Is the storage area directly or indirectly C4. Is staining or discoloration around the a C5. Does outdoor storage area lack a cover? C6. Are liquid materials stored without second C7. Are storage containers missing labels on D. WASTE MANAGEMENT N/A (Skip to D1. Type of waste (check all that apply): D2. Dumpster condition (check all that apply): D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (better) E. PHYSICAL PLANT N/A (Skip to part) E1. Building: Approximate age:	□ concrete/asphalt □ bermed area connected to storm drain (circle one)? □ Y □ N rea visible? □ Y □ N □ Can't Tell drain dary containment? □ Y □ N □ Can't Tell rin poor condition (rusting)? □ Y □ N □ Can' o part E) □ Garbage □ Construction materials □ Hazardo hy): □ No cover/Lid is open □ Damaged/poor con □ Overflowing in inlet? □ Y □ N □ Can't Tell rms, curbs) lacking? □ Y □ N □ Can't Tell F)	Can't Tell Tell Observed Pollution Source us materials dition	O O O O O O O O O O O O O O O O O O O

E2. Parking Lot: Approximate age yrs. Condition: Closurface material Paved/Concrete Gravel Permea					rty [Break	ing up					0
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?		Don'i		w [] None		;					0
E4. Evidence of poor cleaning practices for construction activities							7 🗖	ΝП	Can	t Tell	1	0
F. TURF/LANDSCAPING AREAS N/A (skip to part G)	(+		-0			The second		- U.S		Sour	-	
	andscap	ing	•	% B	are Soi		6	, on	ation	Dour	Ĩ	0
	Low										1	Ō
F3. Evidence of permanent irrigation or "non-target" irrigation		NΓ] Ca	n't To	ell							0
] N		Can't	Tell						T	0
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	gs) on ad	jacent	imp	erviou	s surfac	e? 🔲	Υ	Ν□	Can't	Tell		0
G. STORM WATER INFRASTRUCTURE N/A (skip to pa										Sour	ce?	
G1. Are storm water treatment practices present? YNN		own l	f ye	s, ple	ase des	-		2 × 44		5041	1	0
G2. Are private storm drains located at the facility? \(\subseteq \text{Y} \subseteq \text{N} \) Is trash present in gutters leading to storm drains? If so, or	Unk	nown										0
Index Rating									_		-	
Clean						Fil	thy					
Sediment 1 2	\square 3			무	4			5				
Organic material	☐ 3 ☐ 3			H	4 4			5 5				
G3. Catch basin inspection – Record SSD Unique Site ID here:		Co	ndit	ion: [Dirt	у 🗆 (Clean					
H. INITIAL HOTSPOT STATUS - INDEX RESULTS												
☐ Not a hotspot (fewer than 5 circles and no boxes checked) ☐	Potenti	al hot	spot	(5 to	10 ci	cles bu	t no b	oxes o	check	ed)		
Confirmed hotspot (10 to 15 circles and/or 1 box checked)	Severe	hotsp	ot (>	15 ci	rcles a	nd/or 2	or mo	re bo	xes c	hecke	(t	
Follow-up Action:												
Refer for immediate enforcement Suggest follow-up on-site inspection												
Test for illicit discharge				1								
☐ Include in future education effort												
Check to see if hotspot is an NPDES non-filer												
Onsite non-residential retrofit Pervious area restoration; complete PAA sheet and record												
Unique Site ID here:												
Schedule a review of storm water pollution prevention plan				\Box								
Notes: Two lots									T			
1000 13(3					17							
					ri di							
(Kemply)										519		
Act L												
J												

WATERSHED: Core Run	SUBWATERSHED: R-/0	Unique Site ID:	
DATE: 91/41/7	ASSESSED BY: CAMERA ID:	Pic#:	
MAP GRID:	LAT°' LONG°	LMK#	
A. SITE DATA AND BASIC CLASSIFICATION			
Name and Address: Dosfe/Raya	☐ Institutional ☐ Municipal ☐ Transport-Related	Miscellaneous ☐ Golf Course ☐ Marina ☐ Animal Facility	
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation: Scles/Repair Auto		INDEX*
B. VEHICLE OPERATIONS \[\sum \text{N/A} \(\sum \text{Skip to} \)	part C)	Observed Pollution Sou	rce?
B1. Types of vehicles: Fleet vehicles	School buses Other:		
B2. Approximate number of vehicles:			
	Maintained Repaired Recycled Fueled Was	shed Stored	0
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion			0
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0
B6. Are uncovered outdoor fueling areas pro	esent? Y Y Can't Tell		0
	storm drains? Y Y Can't Tell		0
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed dis		t Tell	0
C. OUTDOOR MATERIALS N/A (Skip to	p part D)	Observed Pollution Sou	rce?
C1. Are loading/unloading operations present fyes, are they uncovered and draining towards.		t Tell	0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid So concrete/asphalt bermed area	olid Description:	0
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)? Y D	I ☐ Can't Tell	0
C4. Is staining or discoloration around the a	rea visible? Y N Can't Tell		0
C5. Does outdoor storage area lack a cover?	Y N Can't Tell		0
C6. Are liquid materials stored without seco	ndary containment? Y N Can't Tell		0
C7. Are storage containers missing labels or	in poor condition (rusting)? Y N Can	't Tell	0
D. WASTE MANAGEMENT N/A (Skip to	o part E)	Observed Pollution Sour	rce?
D1. Type of waste (check all that apply): [Garbage Construction materials Hazard	ous materials	0
D2. Dumpster condition (<i>check all that app</i> evidence of leakage (stains on ground)	hy): No cover/Lid is open Damaged/poor co Coverflowing	ndition Leaking or	0
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (ber	in inlet? 🗌 Y 🗌 N 🔲 Can't Tell		0
E. PHYSICAL PLANT \[\sum N/A \(\sum \) N/A to part to	F)	Observed Pollution Sour	rce?
	yrs. Condition of surfaces: Clean Staine		0
Evidence that maintenance results in discha	rge to storm drains (staining/discoloration)? Y	IN [] DOIL I KNOW	0
*Index: O denotes potential po	llution source; denotes confirmed pollut	ter (evidence was seen)	

E2. Parking Lot: Approximate age yrs. Condition: _ Cle Surface material _ Paved/Concrete _ Gravel _ Permeal					Dirty	☐ E	reakii	ng up					0
E3. Do downspouts discharge to impervious surface? Y Are downspouts directly connected to storm drains?	N		't kı			one v t kno							0
E4. Evidence of poor cleaning practices for construction activities		_	_						N [Can	t Tel	1	0
F. TURF/LANDSCAPING AREAS N/A (skip to part G)										ution			
F1. % of site with: Forest canopy % Turf grass % L	andsca	ping		%]	Bare	Soil_	%	5					0
F2. Rate the turf management status: High Medium	Low												0
F3. Evidence of permanent irrigation or "non-target" irrigation	Y [N [c	an't '	Γell								0
F4. Do landscaped areas drain to the storm drain system?] Y [] N] Can	't Te	1							0
F5. Do landscape plants accumulate organic matter (leaves, grass clipping	s) on a	djacer	nt im	pervio	ous su	rface?			N□	Can'	t Tell		0
G. STORM WATER INFRASTRUCTURE N/A (skip to part	rt H)						Obse	erved	Poll	ution	Sou	rce?	
G1. Are storm water treatment practices present?] Unkn	own	Ify	es, pl	ease	descr	ibe: _						0
G2. Are private storm drains located at the facility? \(\subseteq \text{Y} \subseteq \text{N} \) Is trash present in gutters leading to storm drains? If so, c	Unlomplet	cnow e the	n ind	ex be	low.								0
Index Rating f					_	s							
Clean				F	7.4	_	Filt	hy	1 6				
Sediment	∐ 3 □ 3			-	」4 74			片	5 5				
Litter 1 2	<u> 3</u>				4				5				
G3. Catch basin inspection – Record SSD Unique Site ID here:		(Cond	lition		Dirty		lean					
H. INITIAL HOTSPOT STATUS - INDEX RESULTS													
Not a hotspot (fewer than 5 circles and no boxes checked)												. 1\	
Confirmed hotspot (10 to 15 circles and/or 1 box checked) Follow-up Action:	Severe	hots	pot	(>15	circle	s and	Vor 2	or mo	ore bo	oxes c	necke	<u>ea)</u>	TT
Refer for immediate enforcement	-	+	- 0	+		-	++	+	+				
Suggest follow-up on-site inspection	-	-		-	#	+	++				H	+	1
Test for illicit discharge Include in future education effort	-	+		+	+	+		+				+	
Check to see if hotspot is an NPDES non-filer	-	+		+	+	+		+					
Onsite non-residential retrofit	-			-	+	+	++	+		+	H		
Pervious area restoration; complete PAA sheet and record Unique Site ID here:		-		-			++			+	H		
Schedule a review of storm water pollution prevention plan				+			+	+	Н	-	\forall		
Notas							+++						
Notes: Surkce Oil Staining Common													
y										1	П	4	
											\sqcup		
	4			4				-					
										_		-	
				_			-	_		-			+
				-	-		-	-	+	-			+-
		-		+		_	++	-		+			++
					1 1		1 1					- 1	

WATERSHED: Cano Run	SUBWATERSHED: (R-12	UNIQUE SITE ID:	
DATE: 91/41/7	ASSESSED BY: CF CAMERA ID:	PIC#:	
MAP GRID:	LAT°'' LONG°	LMK#	
A. SITE DATA AND BASIC CLASSIFICATI		35	
Name and Address: Zogs/er Ti	Transport-Related	Miscellaneous ☐ Golf Course ☐ Marina ☐ Animal Facility	
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation:	_	INDEX*
B. VEHICLE OPERATIONS N/A (Skip	to part C)	Observed Pollution Sou	rce?
B1. Types of vehicles: Fleet vehicles	School buses Other:		
B2. Approximate number of vehicles:			
	y): Maintained Repaired Recycled Fueled Wa	shed Stored	0
B4. Are vehicles stored and/or repaired or Are these vehicles lacking runoff diversion			0
B5. Is there evidence of spills/leakage fro	m vehicles? Y N Can't Tell		0
B6. Are uncovered outdoor fueling areas	present? Y N Can't Tell		0
	o storm drains? Y N Can't Tell		0
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed	☐ N ☐ Can't Tell discharge to the storm drain? ☐ Y ☐ N ☐ Can'	t Tell	0
C. OUTDOOR MATERIALS N/A (Skip	to part D)	Observed Pollution Sou	rce?
C1. Are loading/unloading operations pre If yes, are they uncovered and draining to		't Tell	0
C2. Are materials stored outside? Y Where are they stored? grass/dirt area	N Can't Tell If yes, are they Liquid So concrete/asphalt bermed area	olid Description:	0
C3. Is the storage area directly or indirect	ly connected to storm drain (circle one)? [] Y [] N	N Can't Tell	0
C4. Is staining or discoloration around the	area visible? TY N Can't Tell		0
C5. Does outdoor storage area lack a cove	r? ☑Y ☐ N ☐ Can't Tell		0
C6. Are liquid materials stored without se	condary containment? Y Y N Can't Tell		0
	or in poor condition (rusting)? Y N Car	ı't Tell	0
D. WASTE MANAGEMENT N/A (Skip		Observed Pollution Sou	rce?
D1. Type of waste (check all that apply):	Garbage Construction materials Hazard	lous materials	0
D2. Dumpster condition (<i>check all that a</i> evidence of leakage (stains on ground	oply): No cover/Lid is open Damaged/poor co	ndition Leaking or	0
	rain inlet? 🗹 Y 🗌 N 🔲 Can't Tell		
If yes, are runoff diversion methods (perms, curbs) lacking? Y Y N Can't Tell		0
		Observed Pollution Sou	1
If yes, are runoff diversion methods (E. PHYSICAL PLANT N/A (Skip to particular) E1. Building: Approximate age:		ed Dirty Damaged	1

E2. Parking Lot: Approx Surface material		rs. Condition:				irty [Breakin	g up				0	
E3. Do downspouts disch	arge to imperviou	s surface? Y d to storm drains?	N Y	Don't l	know [] None	visible				İ	0	
E4. Evidence of poor clear	aning practices for	construction activity	Lames					□N	Ca	ın't Te	:11	0	
F. TURF/LANDSCAPING								rved P					
F1. % of site with: Forest			Landsca	ning	% F	are Soi			0114101			0	
F2. Rate the turf manager				,,,,,,,								0	
F3. Evidence of permane				NΠ	Can't T	'ell					1	Ō	
			ПУГ		Can'						1	0	
F4. Do landscaped areas							2 □ V	ПиП		n't Te	. 	O	-
F5. Do landscape plants acc				ijacent i	mpervio	us surrac							
G. STORM WATER IN								rved P	ollutio	on Sou	irce?	-	
G1. Are storm water treat	tment practices pro	esent? Y N	Unkn	own If	yes, pl	ease des	scribe: _				1	0	
G2. Are private storm dra	ains located at the in gutters leading t	facility? Y Y o storm drains? If s	N ☐ Unk o, complet	nown e the in	dex bel	ow.						0	
		Index Ratio	ng for Acc	umulat	ion in G	utters	2011						_
1	Clean					1 4	Filt	hy 5					_
Sediment		$\square 2$ $\square 2$	∐3 □3		F] 4] <u>/</u>							
Organic material Litter	Hi		3		Ī	14		☐ ₅					
G3. Catch basin inspection	on – Record SSD U		-	Co	ndition:	☐ Dir	ty 🔲 C	lean					
H. INITIAL HOTSPOT													
☐ Not a hotspot (fewer t			Potent	ial hots	spot (5	to 10 ci	rcles but	no box	es che	cked)			
Confirmed hotspot (1	0 to 15 circles and	l/or 1 box checked)	Severe	hotspo	ot (>15	circles a	and/or 2	or more	boxe	s check	ked)		
Follow-up Action:													
Refer for immediate e													
Suggest follow-up on													
Test for illicit dischar				1									
Check to see if hotspo		n-filer			+								
Onsite non-residential	l retrofit		-	++	++	++-	+++		-		+	_	
Pervious area restorat		A sheet and record		44		-	+++	-	-	-	++	1	
Unique Site ID I	nere:	iaiantiam mlan						-			-	-	
				1					-				
Notes:	isil Core	· fires										1	
arry	,3,,	1											
5 tares	on kosdo	in Ave											
5,000	Propert	y. Simslar											
100	to to	RO.		X I I									
Cardilla.	No le le	7671											
Side													
										- V	F		
			1 4			1			- 4		4		1

WATERSHED: Come Run	SUBWATERSHED: CR 10	UNIQUE SITE	ID:
DATE: / /	ASSESSED BY: CAMERA ID:		PIC#:
MAP GRID:	LAT ' ' LONG	1 11	LMK#
A. SITE DATA AND BASIC CLASSIFICATION	4 6		
Name and Address: Lagrads BB	☐ Institutional ☐ Municipal ☐ Transport-Related	Miscellaneous Golf Course Marina Animal Faci	
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation: Miror lesgue Bos	11260	INDEX*
B. VEHICLE OPERATIONS N/A (Skip to	p part C)	Observed I	Pollution Source?
B1. Types of vehicles: Fleet vehicles	School buses Other:		
B2. Approximate number of vehicles:			
	: Maintained Repaired Recycled Fueled W	ashed Stored	0
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion	methods? Y N Can't Tell		0
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0
B6. Are uncovered outdoor fueling areas pro	esent? Y N Can't Tell		0
B7. Are fueling areas directly connected to	The state of the s		0
B8. Are vehicles washed outdoors? Y Does the area where vehicles are washed dis	☐ N ☐ Can't Tell scharge to the storm drain? ☐ Y ☐ N ☐ Can	ı't Tell	0
C. OUTDOOR MATERIALS N/A (Skip to	o part D)	Observed I	Pollution Source?
C1. Are loading/unloading operations prese If yes, are they uncovered and draining toward		n't Tell	Ø
	N Can't Tell If yes, are they Liquid	Solid Description	n: &
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)?	N ☐ Can't Te	ell Ø
C4. Is staining or discoloration around the a	rea visible? Y Y N Can't Tell		O
C5. Does outdoor storage area lack a cover?	? ☑Y ☐ N ☐ Can't Tell		0
C6. Are liquid materials stored without second	ondary containment? Y YN Can't Te	1	0
C7. Are storage containers missing labels or	r in poor condition (rusting)? 🗌 Y 🔃 N 🔲 C	an't Tell	0
D. WASTE MANAGEMENT N/A (Skip t			Pollution Source?
D1. Type of waste (check all that apply):	Garbage Construction materials Haza	rdous materials	0
D2. Dumpster condition (<i>check all that app</i> evidence of leakage (stains on ground)	oly): No cover/Lid is open Damaged/poor of Overflowing	condition \[\]L	eaking or O
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (be	nin inlet? Y N Can't Tell	1	0
E. PHYSICAL PLANT N/A (Skip to part	F)	Observed I	Pollution Source?
E1. Building: Approximate age: Evidence that maintenance results in discharge.	yrs. Condition of surfaces: Clean Stainge to storm drains (staining/discoloration)? Y	ned Dirty Don't	Damaged O O No.
*Index: O denotes potential po	ollution source; denotes confirmed poll	uter (evidence	was seen)

E2. Parking Lot: Approximate age yrs. Condition: _ Clean _ Stained _ Surface material _ Paved/Concrete _ Gravel _ Permeable _ Don't know		0
E3. Do downspouts discharge to impervious surface? Y N Don't known Are downspouts directly connected to storm drains? Y N	w None visible Don't know	0
E4. Evidence of poor cleaning practices for construction activities (stains leading to		0
F. TURF/LANDSCAPING AREAS N/A (skip to part G)	Observed Pollution Source?	
F1. % of site with: Forest canopy% Turf grass% Landscaping%	6 Bare Soil%	0
F2. Rate the turf management status: High Medium Low		0
F3. Evidence of permanent irrigation or "non-target" irrigation Y N Car	ı't Tell	0
F4. Do landscaped areas drain to the storm drain system?		0
F5. Do landscape plants accumulate organic matter (leaves, grass clippings) on adjacent impe	rvious surface? Y N Can't Tell	0
G. STORM WATER INFRASTRUCTURE N/A (skip to part H)	Observed Pollution Source?	
G1. Are storm water treatment practices present? Y N Unknown If yes	, please describe:	0
G2. Are private storm drains located at the facility? \(\sum \) Y \(\sum \) N \(\sum \) Unknown Is trash present in gutters leading to storm drains? If so, complete the index	below.	0
Index Rating for Accumulation		
Clean Sediment 1 2 3	Filthy 5	
Sediment 1 2 3 Organic material 1 2 3	☐4 ☐4 ☐5	
Litter 1 2 3	☐ 4 ☐ 5	
G3. Catch basin inspection – Record SSD Unique Site ID here: Condition	on: Dirty Clean	
H. INITIAL HOTSPOT STATUS - INDEX RESULTS		
Not a hotspot (fewer than 5 circles and no boxes checked) Potential hotspot		
Confirmed hotspot (10 to 15 circles and/or 1 box checked) Severe hotspot (>	15 circles and/or 2 or more boxes checked)	
Follow-up Action: Refer for immediate enforcement		-
Suggest follow-up on-site inspection		
Test for illicit discharge		
Include in future education effort Check to see if hotspot is an NPDES non-filer		
Onsite non-residential retrofit		-
Pervious area restoration; complete PAA sheet and record		
Unique Site ID here: Schedule a review of storm water pollution prevention plan		
Notes: Field mont. Moderials expassed on Lot		
and ar let		
expanse of		
		_
		-
		-
		-
	+++++++++++++++++++++++++++++++++++++++	

WATERSHED: Cope Run	SUBWATERSHED: /5023(?)	Unique Site ID:	
DATE: 9 1/4/ ()	ASSESSED BY: CAMERA ID:	Pic#:	
MAP GRID:	LAT''' LONG	' ' LMK#	
A. SITE DATA AND BASIC CLASSIFICATION			
Name and Address: Brandon Av	Category: Commercial Industrial Institutional Municipal	Miscellaneous Golf Course	
Mar()	Transport-Related	Marina	
1651 N. Brandara	- T n : n : i : co	Animal Facility	
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation:	3	INDEX*
B. VEHICLE OPERATIONS N/A (Skip to	o part C)	Observed Pollution Sou	rce?
B1. Types of vehicles: Fleet vehicles	<u> </u>		
B2. Approximate number of vehicles: >/o			
- 11	: Maintained Repaired Recycled Fueled Wa	shed Stored	0
B4. Are vehicles stored and/or repaired outs Are these vehicles lacking runoff diversion	side? Y N Can't Tell		0
B5. Is there evidence of spills/leakage from			0
B6. Are uncovered outdoor fueling areas pr	resent? Y N Can't Tell		0
B7. Are fueling areas directly connected to	storm drains? Y N Can't Tell		0
B8. Are vehicles washed outdoors? Y	□ N □ Can't Tell	't Tell	9
C. OUTDOOR MATERIALS N/A (Skip t		Observed Pollution Sou	rce?
C1. Are loading/unloading operations prese If yes, are they uncovered <i>and</i> draining tow		't Tell	0
	N Can't Tell If yes, are they Liquid S		0
C3. Is the storage area directly or indirectly	connected to storm drain (circle one)? Y	N Can't Tell	0
C4. Is staining or discoloration around the a	area visible? Y N Can't Tell		0
C5. Does outdoor storage area lack a cover			0
C6. Are liquid materials stored without seco			0
C7. Are storage containers missing labels of	r in poor condition (rusting)? Y N Ca	n't Tell	0
D. WASTE MANAGEMENT N/A (Skip)		Observed Pollution Sou	ırce?
D1. Type of waste (check all that apply):	☐ Garbage ☐ Construction materials ☐ Hazar	dous materials	0
evidence of leakage (stains on ground)		ondition Leaking or	0
D3. Is the dumpster located near a storm dra If yes, are runoff diversion methods (be	ain inlet?		0
E. PHYSICAL PLANT N/A (Skip to part	F)	Observed Pollution Sou	rce?
E1. Building: Approximate age:	yrs. Condition of surfaces: Clean Stain	ed Dirty Damaged	0
Evidence that maintenance results in discha	arge to storm drains (staining/discoloration)?	☐ N ☐ Don't know	0

E2. Parking Lot: Approximate age yrs. Condition:							
E3. Do downspouts discharge to impervious surface? Y N Don't know None visible Are downspouts directly connected to storm drains? Y N Don't know							
E4. Evidence of poor cleaning practices for construction activities (stains leading to storm drain)? Y N Can't Tell							
F. TURF/LANDSCAPING AREAS N/A (skip to part G) Observed Pollution Source							
F1. % of site with: Forest canopy % Turf grass % Landscaping % Bare Soil %	0						
F2. Rate the turf management status: High Medium Low	0						
F3. Evidence of permanent irrigation or "non-target" irrigation Y N Can't Tell	0						
F4. Do landscaped areas drain to the storm drain system?							
F5. Do landscape plants accumulate organic matter (leaves, grass clippings) on adjacent impervious surface? Y N Can't Tell	0						
G. STORM WATER INFRASTRUCTURE N/A (skip to part H) Observed Pollution Source	2						
G1. Are storm water treatment practices present? Y N Unknown If yes, please describe:	0						
	-						
G2. Are private storm drains located at the facility? \(\subseteq N \subseteq N \subseteq Unknown\) Is trash present in gutters leading to storm drains? If so, complete the index below.	0						
Index Rating for Accumulation in Gutters Clean Filthy							
Clean Filthy Sediment							
Organic material 2 3 4 5							
Litter							
G3. Catch basin inspection – Record SSD Unique Site ID here: Condition: Dirty Clean							
H. INITIAL HOTSPOT STATUS - INDEX RESULTS							
Not a hotspot (fewer than 5 circles and no boxes checked) Potential hotspot (5 to 10 circles but no boxes checked) Confirmed hotspot (10 to 15 circles and/or 1 box checked) Severe hotspot (>15 circles and/or 2 or more boxes checked)							
Follow-up Action:							
Refer for immediate enforcement							
Suggest follow-up on-site inspection							
Test for illicit discharge Include in future education effort							
Check to see if hotspot is an NPDES non-filer							
Onsite non-residential retrofit							
Pervious area restoration; complete PAA sheet and record Unique Site ID here:							
Schedule a review of storm water pollution prevention plan							
Notes:							

WATERSHED: Cone Run	SUBWATERSHED: $\angle R - / (?)$	UNIQUE SITE ID:				
DATE: 9/4//7	ASSESSED BY: CAMERA ID:	PIC#:				
MAP GRID:	LAT ° ' LONG ° ' " LMK#					
A. SITE DATA AND BASIC CLASSIFICATIO		î				
Name and Address: Star M.S. Category: Commercial Industrial Miscellaneous Institutional Municipal Golf Course Transport-Related Marina Animal Facility						
SIC code (if available): NPDES Status: Regulated Unknown	Basic Description of Operation: Indestruction for the formation of the fo		INDEX*			
B. VEHICLE OPERATIONS N/A (Skip t	o part C)	Observed Pollution Sour	ce?			
B1. Types of vehicles: Fleet vehicles	School buses Other:					
B2. Approximate number of vehicles:						
	: Maintained Repaired Recycled Fueled Wash	ed Stored	0			
B4. Are vehicles stored and/or repaired out Are these vehicles lacking runoff diversion			0			
B5. Is there evidence of spills/leakage from	vehicles? Y N Can't Tell		0			
B6. Are uncovered outdoor fueling areas pr	resent? Y N Can't Tell		0			
B7. Are fueling areas directly connected to	storm drains? Y N Can't Tell		0			
B8. Are vehicles washed outdoors? Y N Can't Tell Does the area where vehicles are washed discharge to the storm drain? Y N Can't Tell						
C. OUTDOOR MATERIALS N/A (Skip a		Observed Pollution Sour	ce?			
C1. Are loading/unloading operations present? Y N Can't Tell If yes, are they uncovered and draining towards a storm drain inlet? Y N Can't Tell						
C2. Are materials stored outside? Y N Can't Tell If yes, are they Liquid Solid Description: Where are they stored? grass/dirt area concrete/asphalt bermed area						
C3. Is the storage area directly or indirectly connected to storm drain (circle one)? Y N Can't Tell						
C4. Is staining or discoloration around the area visible? Y N Can't Tell						
C5. Does outdoor storage area lack a cover? Y N Can't Tell						
C6. Are liquid materials stored without secondary containment? Y Y Can't Tell						
C7. Are storage containers missing labels or in poor condition (rusting)? Y N Can't Tell						
D. WASTE MANAGEMENT N/A (Skip	to part E)	Observed Pollution Sour	ce?			
D1. Type of waste (check all that apply):	Garbage Construction materials Hazardo	us materials	0			
D2. Dumpster condition (check all that apply): No cover/Lid is open Damaged/poor condition Leaking or evidence of leakage (stains on ground) Overflowing						
D3. Is the dumpster located near a storm dr If yes, are runoff diversion methods (but	ain inlet? 🗌 Y 🗌 N 🔲 Can't Tell		0			
E. PHYSICAL PLANT N/A (Skip to part	F)	Observed Pollution Sour				
E1. Building: Approximate age: Evidence that maintenance results in disch	l ☐ Dirty ☐ Damaged] N ☐ Don't know	0				
*Index: O denotes potential p	ollution source; denotes confirmed pollute	er (evidence was seen)				

E2. Parking Lot: Approximate age yrs. Condition: Clean Stained Dirty Breaking up Surface material Paved/Concrete Gravel Permeable Don't know									C)			
E3. Do downspouts discharge to impervious surface? Y N Don't know None visible								C)				
Are downspouts directly connected to storm drains?								ell	C)			
F. TURF/LANDSCAPING AREAS								rved P]
F1. % of site with: Forest canopy			aping	9,	6 Bar	e Soil	_					C)
F2. Rate the turf management status:		Low										C)
F3. Evidence of permanent irrigation or "non-target" irrigation Y N Can't Tell								C)				
F4. Do landscaped areas drain to the storm drain system?									C)			
F5. Do landscape plants accumulate organ		pings) on a	adjacer	ıt impe	rvious	surface	? 🔲 Y	□N	☐ Ca	ın't Te	ell	C)
G. STORM WATER INFRASTRUCT								rved P				L	
G1. Are storm water treatment practic	es present? Y N	Unk	nown	If yes	s, pleas	se desc	ribe:					C)
G2. Are private storm drains located a Is trash present in gutters lea					belov	/.						C)
To a sum provide a grant a gra	Index Ratio												
Clean							Filtl						
Sediment 1 Organic material 1	∐ 2 ∏ 2	☐ 3 ☐ 3						∐ 5 □ 5					
Litter 1	\square^2	3			☐ 4								
G3. Catch basin inspection - Record	SSD Unique Site ID here:		C	ondit	ion: [Dirty	/ □ C	lean					
H. INITIAL HOTSPOT STATUS - 1	NDEX RESULTS												
Not a hotspot (fewer than 5 circles and no boxes checked) Potential hotspot (5 to 10 circles but no boxes checked) Confirmed hotspot (10 to 15 circles and/or 1 box checked) Severe hotspot (>15 circles and/or 2 or more boxes checked)													
	es and/or 1 box checked)	Sever	e hots	pot (>	15 cir	cles ar	nd/or 2 c	or more	boxe	s chec	ked)		
Follow-up Action: Refer for immediate enforcement			-		++	+	-	+	-		+	+	1
Suggest follow-up on-site inspecti	on		-	-	++		++	-	-4-		+	+	+
Test for illicit discharge		1	-	-		+	++		+		++	+	+
Include in future education effort Check to see if hotspot is an NPDI	ES non-filer		-	-	++	+-1	+		-		+	+	+
Onsite non-residential retrofit					++	+	+						
Pervious area restoration; complete PAA sheet and record Unique Site ID here:				+	+								
Schedule a review of storm water	pollution prevention plan	-	-					+++			+	+	\pm
		\vdash	-	-	Ħ			+			+		+
Notes: See Starge	in Roal	\vdash	-					11				+	
C C 17								11					
of facility													
													T